1/*
2*******************************************************************************
3*
4*   Copyright (C) 2008-2011, International Business Machines
5*   Corporation, Google and others.  All Rights Reserved.
6*
7*******************************************************************************
8*/
9// Author : eldawy@google.com (Mohamed Eldawy)
10// ucnvsel.cpp
11//
12// Purpose: To generate a list of encodings capable of handling
13// a given Unicode text
14//
15// Started 09-April-2008
16
17/**
18 * \file
19 *
20 * This is an implementation of an encoding selector.
21 * The goal is, given a unicode string, find the encodings
22 * this string can be mapped to. To make processing faster
23 * a trie is built when you call ucnvsel_open() that
24 * stores all encodings a codepoint can map to
25 */
26
27#include "unicode/ucnvsel.h"
28
29#if !UCONFIG_NO_CONVERSION
30
31#include <string.h>
32
33#include "unicode/uchar.h"
34#include "unicode/uniset.h"
35#include "unicode/ucnv.h"
36#include "unicode/ustring.h"
37#include "unicode/uchriter.h"
38#include "utrie2.h"
39#include "propsvec.h"
40#include "uassert.h"
41#include "ucmndata.h"
42#include "uenumimp.h"
43#include "cmemory.h"
44#include "cstring.h"
45
46U_NAMESPACE_USE
47
48struct UConverterSelector {
49  UTrie2 *trie;              // 16 bit trie containing offsets into pv
50  uint32_t* pv;              // table of bits!
51  int32_t pvCount;
52  char** encodings;          // which encodings did user ask to use?
53  int32_t encodingsCount;
54  int32_t encodingStrLength;
55  uint8_t* swapped;
56  UBool ownPv, ownEncodingStrings;
57};
58
59static void generateSelectorData(UConverterSelector* result,
60                                 UPropsVectors *upvec,
61                                 const USet* excludedCodePoints,
62                                 const UConverterUnicodeSet whichSet,
63                                 UErrorCode* status) {
64  if (U_FAILURE(*status)) {
65    return;
66  }
67
68  int32_t columns = (result->encodingsCount+31)/32;
69
70  // set errorValue to all-ones
71  for (int32_t col = 0; col < columns; col++) {
72    upvec_setValue(upvec, UPVEC_ERROR_VALUE_CP, UPVEC_ERROR_VALUE_CP,
73                   col, ~0, ~0, status);
74  }
75
76  for (int32_t i = 0; i < result->encodingsCount; ++i) {
77    uint32_t mask;
78    uint32_t column;
79    int32_t item_count;
80    int32_t j;
81    UConverter* test_converter = ucnv_open(result->encodings[i], status);
82    if (U_FAILURE(*status)) {
83      return;
84    }
85    USet* unicode_point_set;
86    unicode_point_set = uset_open(1, 0);  // empty set
87
88    ucnv_getUnicodeSet(test_converter, unicode_point_set,
89                       whichSet, status);
90    if (U_FAILURE(*status)) {
91      ucnv_close(test_converter);
92      return;
93    }
94
95    column = i / 32;
96    mask = 1 << (i%32);
97    // now iterate over intervals on set i!
98    item_count = uset_getItemCount(unicode_point_set);
99
100    for (j = 0; j < item_count; ++j) {
101      UChar32 start_char;
102      UChar32 end_char;
103      UErrorCode smallStatus = U_ZERO_ERROR;
104      uset_getItem(unicode_point_set, j, &start_char, &end_char, NULL, 0,
105                   &smallStatus);
106      if (U_FAILURE(smallStatus)) {
107        // this will be reached for the converters that fill the set with
108        // strings. Those should be ignored by our system
109      } else {
110        upvec_setValue(upvec, start_char, end_char, column, ~0, mask,
111                       status);
112      }
113    }
114    ucnv_close(test_converter);
115    uset_close(unicode_point_set);
116    if (U_FAILURE(*status)) {
117      return;
118    }
119  }
120
121  // handle excluded encodings! Simply set their values to all 1's in the upvec
122  if (excludedCodePoints) {
123    int32_t item_count = uset_getItemCount(excludedCodePoints);
124    for (int32_t j = 0; j < item_count; ++j) {
125      UChar32 start_char;
126      UChar32 end_char;
127
128      uset_getItem(excludedCodePoints, j, &start_char, &end_char, NULL, 0,
129                   status);
130      for (int32_t col = 0; col < columns; col++) {
131        upvec_setValue(upvec, start_char, end_char, col, ~0, ~0,
132                      status);
133      }
134    }
135  }
136
137  // alright. Now, let's put things in the same exact form you'd get when you
138  // unserialize things.
139  result->trie = upvec_compactToUTrie2WithRowIndexes(upvec, status);
140  result->pv = upvec_cloneArray(upvec, &result->pvCount, NULL, status);
141  result->pvCount *= columns;  // number of uint32_t = rows * columns
142  result->ownPv = TRUE;
143}
144
145/* open a selector. If converterListSize is 0, build for all converters.
146   If excludedCodePoints is NULL, don't exclude any codepoints */
147U_CAPI UConverterSelector* U_EXPORT2
148ucnvsel_open(const char* const*  converterList, int32_t converterListSize,
149             const USet* excludedCodePoints,
150             const UConverterUnicodeSet whichSet, UErrorCode* status) {
151  // check if already failed
152  if (U_FAILURE(*status)) {
153    return NULL;
154  }
155  // ensure args make sense!
156  if (converterListSize < 0 || (converterList == NULL && converterListSize != 0)) {
157    *status = U_ILLEGAL_ARGUMENT_ERROR;
158    return NULL;
159  }
160
161  // allocate a new converter
162  LocalUConverterSelectorPointer newSelector(
163    (UConverterSelector*)uprv_malloc(sizeof(UConverterSelector)));
164  if (newSelector.isNull()) {
165    *status = U_MEMORY_ALLOCATION_ERROR;
166    return NULL;
167  }
168  uprv_memset(newSelector.getAlias(), 0, sizeof(UConverterSelector));
169
170  if (converterListSize == 0) {
171    converterList = NULL;
172    converterListSize = ucnv_countAvailable();
173  }
174  newSelector->encodings =
175    (char**)uprv_malloc(converterListSize * sizeof(char*));
176  if (!newSelector->encodings) {
177    *status = U_MEMORY_ALLOCATION_ERROR;
178    return NULL;
179  }
180  newSelector->encodings[0] = NULL;  // now we can call ucnvsel_close()
181
182  // make a backup copy of the list of converters
183  int32_t totalSize = 0;
184  int32_t i;
185  for (i = 0; i < converterListSize; i++) {
186    totalSize +=
187      (int32_t)uprv_strlen(converterList != NULL ? converterList[i] : ucnv_getAvailableName(i)) + 1;
188  }
189  // 4-align the totalSize to 4-align the size of the serialized form
190  int32_t encodingStrPadding = totalSize & 3;
191  if (encodingStrPadding != 0) {
192    encodingStrPadding = 4 - encodingStrPadding;
193  }
194  newSelector->encodingStrLength = totalSize += encodingStrPadding;
195  char* allStrings = (char*) uprv_malloc(totalSize);
196  if (!allStrings) {
197    *status = U_MEMORY_ALLOCATION_ERROR;
198    return NULL;
199  }
200
201  for (i = 0; i < converterListSize; i++) {
202    newSelector->encodings[i] = allStrings;
203    uprv_strcpy(newSelector->encodings[i],
204                converterList != NULL ? converterList[i] : ucnv_getAvailableName(i));
205    allStrings += uprv_strlen(newSelector->encodings[i]) + 1;
206  }
207  while (encodingStrPadding > 0) {
208    *allStrings++ = 0;
209    --encodingStrPadding;
210  }
211
212  newSelector->ownEncodingStrings = TRUE;
213  newSelector->encodingsCount = converterListSize;
214  UPropsVectors *upvec = upvec_open((converterListSize+31)/32, status);
215  generateSelectorData(newSelector.getAlias(), upvec, excludedCodePoints, whichSet, status);
216  upvec_close(upvec);
217
218  if (U_FAILURE(*status)) {
219    return NULL;
220  }
221
222  return newSelector.orphan();
223}
224
225/* close opened selector */
226U_CAPI void U_EXPORT2
227ucnvsel_close(UConverterSelector *sel) {
228  if (!sel) {
229    return;
230  }
231  if (sel->ownEncodingStrings) {
232    uprv_free(sel->encodings[0]);
233  }
234  uprv_free(sel->encodings);
235  if (sel->ownPv) {
236    uprv_free(sel->pv);
237  }
238  utrie2_close(sel->trie);
239  uprv_free(sel->swapped);
240  uprv_free(sel);
241}
242
243static const UDataInfo dataInfo = {
244  sizeof(UDataInfo),
245  0,
246
247  U_IS_BIG_ENDIAN,
248  U_CHARSET_FAMILY,
249  U_SIZEOF_UCHAR,
250  0,
251
252  { 0x43, 0x53, 0x65, 0x6c },   /* dataFormat="CSel" */
253  { 1, 0, 0, 0 },               /* formatVersion */
254  { 0, 0, 0, 0 }                /* dataVersion */
255};
256
257enum {
258  UCNVSEL_INDEX_TRIE_SIZE,      // trie size in bytes
259  UCNVSEL_INDEX_PV_COUNT,       // number of uint32_t in the bit vectors
260  UCNVSEL_INDEX_NAMES_COUNT,    // number of encoding names
261  UCNVSEL_INDEX_NAMES_LENGTH,   // number of encoding name bytes including padding
262  UCNVSEL_INDEX_SIZE = 15,      // bytes following the DataHeader
263  UCNVSEL_INDEX_COUNT = 16
264};
265
266/*
267 * Serialized form of a UConverterSelector, formatVersion 1:
268 *
269 * The serialized form begins with a standard ICU DataHeader with a UDataInfo
270 * as the template above.
271 * This is followed by:
272 *   int32_t indexes[UCNVSEL_INDEX_COUNT];          // see index entry constants above
273 *   serialized UTrie2;                             // indexes[UCNVSEL_INDEX_TRIE_SIZE] bytes
274 *   uint32_t pv[indexes[UCNVSEL_INDEX_PV_COUNT]];  // bit vectors
275 *   char* encodingNames[indexes[UCNVSEL_INDEX_NAMES_LENGTH]];  // NUL-terminated strings + padding
276 */
277
278/* serialize a selector */
279U_CAPI int32_t U_EXPORT2
280ucnvsel_serialize(const UConverterSelector* sel,
281                  void* buffer, int32_t bufferCapacity, UErrorCode* status) {
282  // check if already failed
283  if (U_FAILURE(*status)) {
284    return 0;
285  }
286  // ensure args make sense!
287  uint8_t *p = (uint8_t *)buffer;
288  if (bufferCapacity < 0 ||
289      (bufferCapacity > 0 && (p == NULL || (U_POINTER_MASK_LSB(p, 3) != 0)))
290  ) {
291    *status = U_ILLEGAL_ARGUMENT_ERROR;
292    return 0;
293  }
294  // add up the size of the serialized form
295  int32_t serializedTrieSize = utrie2_serialize(sel->trie, NULL, 0, status);
296  if (*status != U_BUFFER_OVERFLOW_ERROR && U_FAILURE(*status)) {
297    return 0;
298  }
299  *status = U_ZERO_ERROR;
300
301  DataHeader header;
302  uprv_memset(&header, 0, sizeof(header));
303  header.dataHeader.headerSize = (uint16_t)((sizeof(header) + 15) & ~15);
304  header.dataHeader.magic1 = 0xda;
305  header.dataHeader.magic2 = 0x27;
306  uprv_memcpy(&header.info, &dataInfo, sizeof(dataInfo));
307
308  int32_t indexes[UCNVSEL_INDEX_COUNT] = {
309    serializedTrieSize,
310    sel->pvCount,
311    sel->encodingsCount,
312    sel->encodingStrLength
313  };
314
315  int32_t totalSize =
316    header.dataHeader.headerSize +
317    (int32_t)sizeof(indexes) +
318    serializedTrieSize +
319    sel->pvCount * 4 +
320    sel->encodingStrLength;
321  indexes[UCNVSEL_INDEX_SIZE] = totalSize - header.dataHeader.headerSize;
322  if (totalSize > bufferCapacity) {
323    *status = U_BUFFER_OVERFLOW_ERROR;
324    return totalSize;
325  }
326  // ok, save!
327  int32_t length = header.dataHeader.headerSize;
328  uprv_memcpy(p, &header, sizeof(header));
329  uprv_memset(p + sizeof(header), 0, length - sizeof(header));
330  p += length;
331
332  length = (int32_t)sizeof(indexes);
333  uprv_memcpy(p, indexes, length);
334  p += length;
335
336  utrie2_serialize(sel->trie, p, serializedTrieSize, status);
337  p += serializedTrieSize;
338
339  length = sel->pvCount * 4;
340  uprv_memcpy(p, sel->pv, length);
341  p += length;
342
343  uprv_memcpy(p, sel->encodings[0], sel->encodingStrLength);
344  p += sel->encodingStrLength;
345
346  return totalSize;
347}
348
349/**
350 * swap a selector into the desired Endianness and Asciiness of
351 * the system. Just as FYI, selectors are always saved in the format
352 * of the system that created them. They are only converted if used
353 * on another system. In other words, selectors created on different
354 * system can be different even if the params are identical (endianness
355 * and Asciiness differences only)
356 *
357 * @param ds pointer to data swapper containing swapping info
358 * @param inData pointer to incoming data
359 * @param length length of inData in bytes
360 * @param outData pointer to output data. Capacity should
361 *                be at least equal to capacity of inData
362 * @param status an in/out ICU UErrorCode
363 * @return 0 on failure, number of bytes swapped on success
364 *         number of bytes swapped can be smaller than length
365 */
366static int32_t
367ucnvsel_swap(const UDataSwapper *ds,
368             const void *inData, int32_t length,
369             void *outData, UErrorCode *status) {
370  /* udata_swapDataHeader checks the arguments */
371  int32_t headerSize = udata_swapDataHeader(ds, inData, length, outData, status);
372  if(U_FAILURE(*status)) {
373    return 0;
374  }
375
376  /* check data format and format version */
377  const UDataInfo *pInfo = (const UDataInfo *)((const char *)inData + 4);
378  if(!(
379    pInfo->dataFormat[0] == 0x43 &&  /* dataFormat="CSel" */
380    pInfo->dataFormat[1] == 0x53 &&
381    pInfo->dataFormat[2] == 0x65 &&
382    pInfo->dataFormat[3] == 0x6c
383  )) {
384    udata_printError(ds, "ucnvsel_swap(): data format %02x.%02x.%02x.%02x is not recognized as UConverterSelector data\n",
385                     pInfo->dataFormat[0], pInfo->dataFormat[1],
386                     pInfo->dataFormat[2], pInfo->dataFormat[3]);
387    *status = U_INVALID_FORMAT_ERROR;
388    return 0;
389  }
390  if(pInfo->formatVersion[0] != 1) {
391    udata_printError(ds, "ucnvsel_swap(): format version %02x is not supported\n",
392                     pInfo->formatVersion[0]);
393    *status = U_UNSUPPORTED_ERROR;
394    return 0;
395  }
396
397  if(length >= 0) {
398    length -= headerSize;
399    if(length < 16*4) {
400      udata_printError(ds, "ucnvsel_swap(): too few bytes (%d after header) for UConverterSelector data\n",
401                       length);
402      *status = U_INDEX_OUTOFBOUNDS_ERROR;
403      return 0;
404    }
405  }
406
407  const uint8_t *inBytes = (const uint8_t *)inData + headerSize;
408  uint8_t *outBytes = (uint8_t *)outData + headerSize;
409
410  /* read the indexes */
411  const int32_t *inIndexes = (const int32_t *)inBytes;
412  int32_t indexes[16];
413  int32_t i;
414  for(i = 0; i < 16; ++i) {
415    indexes[i] = udata_readInt32(ds, inIndexes[i]);
416  }
417
418  /* get the total length of the data */
419  int32_t size = indexes[UCNVSEL_INDEX_SIZE];
420  if(length >= 0) {
421    if(length < size) {
422      udata_printError(ds, "ucnvsel_swap(): too few bytes (%d after header) for all of UConverterSelector data\n",
423                       length);
424      *status = U_INDEX_OUTOFBOUNDS_ERROR;
425      return 0;
426    }
427
428    /* copy the data for inaccessible bytes */
429    if(inBytes != outBytes) {
430      uprv_memcpy(outBytes, inBytes, size);
431    }
432
433    int32_t offset = 0, count;
434
435    /* swap the int32_t indexes[] */
436    count = UCNVSEL_INDEX_COUNT*4;
437    ds->swapArray32(ds, inBytes, count, outBytes, status);
438    offset += count;
439
440    /* swap the UTrie2 */
441    count = indexes[UCNVSEL_INDEX_TRIE_SIZE];
442    utrie2_swap(ds, inBytes + offset, count, outBytes + offset, status);
443    offset += count;
444
445    /* swap the uint32_t pv[] */
446    count = indexes[UCNVSEL_INDEX_PV_COUNT]*4;
447    ds->swapArray32(ds, inBytes + offset, count, outBytes + offset, status);
448    offset += count;
449
450    /* swap the encoding names */
451    count = indexes[UCNVSEL_INDEX_NAMES_LENGTH];
452    ds->swapInvChars(ds, inBytes + offset, count, outBytes + offset, status);
453    offset += count;
454
455    U_ASSERT(offset == size);
456  }
457
458  return headerSize + size;
459}
460
461/* unserialize a selector */
462U_CAPI UConverterSelector* U_EXPORT2
463ucnvsel_openFromSerialized(const void* buffer, int32_t length, UErrorCode* status) {
464  // check if already failed
465  if (U_FAILURE(*status)) {
466    return NULL;
467  }
468  // ensure args make sense!
469  const uint8_t *p = (const uint8_t *)buffer;
470  if (length <= 0 ||
471      (length > 0 && (p == NULL || (U_POINTER_MASK_LSB(p, 3) != 0)))
472  ) {
473    *status = U_ILLEGAL_ARGUMENT_ERROR;
474    return NULL;
475  }
476  // header
477  if (length < 32) {
478    // not even enough space for a minimal header
479    *status = U_INDEX_OUTOFBOUNDS_ERROR;
480    return NULL;
481  }
482  const DataHeader *pHeader = (const DataHeader *)p;
483  if (!(
484    pHeader->dataHeader.magic1==0xda &&
485    pHeader->dataHeader.magic2==0x27 &&
486    pHeader->info.dataFormat[0] == 0x43 &&
487    pHeader->info.dataFormat[1] == 0x53 &&
488    pHeader->info.dataFormat[2] == 0x65 &&
489    pHeader->info.dataFormat[3] == 0x6c
490  )) {
491    /* header not valid or dataFormat not recognized */
492    *status = U_INVALID_FORMAT_ERROR;
493    return NULL;
494  }
495  if (pHeader->info.formatVersion[0] != 1) {
496    *status = U_UNSUPPORTED_ERROR;
497    return NULL;
498  }
499  uint8_t* swapped = NULL;
500  if (pHeader->info.isBigEndian != U_IS_BIG_ENDIAN ||
501      pHeader->info.charsetFamily != U_CHARSET_FAMILY
502  ) {
503    // swap the data
504    UDataSwapper *ds =
505      udata_openSwapperForInputData(p, length, U_IS_BIG_ENDIAN, U_CHARSET_FAMILY, status);
506    int32_t totalSize = ucnvsel_swap(ds, p, -1, NULL, status);
507    if (U_FAILURE(*status)) {
508      udata_closeSwapper(ds);
509      return NULL;
510    }
511    if (length < totalSize) {
512      udata_closeSwapper(ds);
513      *status = U_INDEX_OUTOFBOUNDS_ERROR;
514      return NULL;
515    }
516    swapped = (uint8_t*)uprv_malloc(totalSize);
517    if (swapped == NULL) {
518      udata_closeSwapper(ds);
519      *status = U_MEMORY_ALLOCATION_ERROR;
520      return NULL;
521    }
522    ucnvsel_swap(ds, p, length, swapped, status);
523    udata_closeSwapper(ds);
524    if (U_FAILURE(*status)) {
525      uprv_free(swapped);
526      return NULL;
527    }
528    p = swapped;
529    pHeader = (const DataHeader *)p;
530  }
531  if (length < (pHeader->dataHeader.headerSize + 16 * 4)) {
532    // not even enough space for the header and the indexes
533    uprv_free(swapped);
534    *status = U_INDEX_OUTOFBOUNDS_ERROR;
535    return NULL;
536  }
537  p += pHeader->dataHeader.headerSize;
538  length -= pHeader->dataHeader.headerSize;
539  // indexes
540  const int32_t *indexes = (const int32_t *)p;
541  if (length < indexes[UCNVSEL_INDEX_SIZE]) {
542    uprv_free(swapped);
543    *status = U_INDEX_OUTOFBOUNDS_ERROR;
544    return NULL;
545  }
546  p += UCNVSEL_INDEX_COUNT * 4;
547  // create and populate the selector object
548  UConverterSelector* sel = (UConverterSelector*)uprv_malloc(sizeof(UConverterSelector));
549  char **encodings =
550    (char **)uprv_malloc(
551      indexes[UCNVSEL_INDEX_NAMES_COUNT] * sizeof(char *));
552  if (sel == NULL || encodings == NULL) {
553    uprv_free(swapped);
554    uprv_free(sel);
555    uprv_free(encodings);
556    *status = U_MEMORY_ALLOCATION_ERROR;
557    return NULL;
558  }
559  uprv_memset(sel, 0, sizeof(UConverterSelector));
560  sel->pvCount = indexes[UCNVSEL_INDEX_PV_COUNT];
561  sel->encodings = encodings;
562  sel->encodingsCount = indexes[UCNVSEL_INDEX_NAMES_COUNT];
563  sel->encodingStrLength = indexes[UCNVSEL_INDEX_NAMES_LENGTH];
564  sel->swapped = swapped;
565  // trie
566  sel->trie = utrie2_openFromSerialized(UTRIE2_16_VALUE_BITS,
567                                        p, indexes[UCNVSEL_INDEX_TRIE_SIZE], NULL,
568                                        status);
569  p += indexes[UCNVSEL_INDEX_TRIE_SIZE];
570  if (U_FAILURE(*status)) {
571    ucnvsel_close(sel);
572    return NULL;
573  }
574  // bit vectors
575  sel->pv = (uint32_t *)p;
576  p += sel->pvCount * 4;
577  // encoding names
578  char* s = (char*)p;
579  for (int32_t i = 0; i < sel->encodingsCount; ++i) {
580    sel->encodings[i] = s;
581    s += uprv_strlen(s) + 1;
582  }
583  p += sel->encodingStrLength;
584
585  return sel;
586}
587
588// a bunch of functions for the enumeration thingie! Nothing fancy here. Just
589// iterate over the selected encodings
590struct Enumerator {
591  int16_t* index;
592  int16_t length;
593  int16_t cur;
594  const UConverterSelector* sel;
595};
596
597U_CDECL_BEGIN
598
599static void U_CALLCONV
600ucnvsel_close_selector_iterator(UEnumeration *enumerator) {
601  uprv_free(((Enumerator*)(enumerator->context))->index);
602  uprv_free(enumerator->context);
603  uprv_free(enumerator);
604}
605
606
607static int32_t U_CALLCONV
608ucnvsel_count_encodings(UEnumeration *enumerator, UErrorCode *status) {
609  // check if already failed
610  if (U_FAILURE(*status)) {
611    return 0;
612  }
613  return ((Enumerator*)(enumerator->context))->length;
614}
615
616
617static const char* U_CALLCONV ucnvsel_next_encoding(UEnumeration* enumerator,
618                                                 int32_t* resultLength,
619                                                 UErrorCode* status) {
620  // check if already failed
621  if (U_FAILURE(*status)) {
622    return NULL;
623  }
624
625  int16_t cur = ((Enumerator*)(enumerator->context))->cur;
626  const UConverterSelector* sel;
627  const char* result;
628  if (cur >= ((Enumerator*)(enumerator->context))->length) {
629    return NULL;
630  }
631  sel = ((Enumerator*)(enumerator->context))->sel;
632  result = sel->encodings[((Enumerator*)(enumerator->context))->index[cur] ];
633  ((Enumerator*)(enumerator->context))->cur++;
634  if (resultLength) {
635    *resultLength = (int32_t)uprv_strlen(result);
636  }
637  return result;
638}
639
640static void U_CALLCONV ucnvsel_reset_iterator(UEnumeration* enumerator,
641                                           UErrorCode* status) {
642  // check if already failed
643  if (U_FAILURE(*status)) {
644    return ;
645  }
646  ((Enumerator*)(enumerator->context))->cur = 0;
647}
648
649U_CDECL_END
650
651
652static const UEnumeration defaultEncodings = {
653  NULL,
654    NULL,
655    ucnvsel_close_selector_iterator,
656    ucnvsel_count_encodings,
657    uenum_unextDefault,
658    ucnvsel_next_encoding,
659    ucnvsel_reset_iterator
660};
661
662
663// internal fn to intersect two sets of masks
664// returns whether the mask has reduced to all zeros
665static UBool intersectMasks(uint32_t* dest, const uint32_t* source1, int32_t len) {
666  int32_t i;
667  uint32_t oredDest = 0;
668  for (i = 0 ; i < len ; ++i) {
669    oredDest |= (dest[i] &= source1[i]);
670  }
671  return oredDest == 0;
672}
673
674// internal fn to count how many 1's are there in a mask
675// algorithm taken from  http://graphics.stanford.edu/~seander/bithacks.html
676static int16_t countOnes(uint32_t* mask, int32_t len) {
677  int32_t i, totalOnes = 0;
678  for (i = 0 ; i < len ; ++i) {
679    uint32_t ent = mask[i];
680    for (; ent; totalOnes++)
681    {
682      ent &= ent - 1; // clear the least significant bit set
683    }
684  }
685  return totalOnes;
686}
687
688
689/* internal function! */
690static UEnumeration *selectForMask(const UConverterSelector* sel,
691                                   uint32_t *mask, UErrorCode *status) {
692  // this is the context we will use. Store a table of indices to which
693  // encodings are legit.
694  struct Enumerator* result = (Enumerator*)uprv_malloc(sizeof(Enumerator));
695  if (result == NULL) {
696    uprv_free(mask);
697    *status = U_MEMORY_ALLOCATION_ERROR;
698    return NULL;
699  }
700  result->index = NULL;  // this will be allocated later!
701  result->length = result->cur = 0;
702  result->sel = sel;
703
704  UEnumeration *en = (UEnumeration *)uprv_malloc(sizeof(UEnumeration));
705  if (en == NULL) {
706    // TODO(markus): Combine Enumerator and UEnumeration into one struct.
707    uprv_free(mask);
708    uprv_free(result);
709    *status = U_MEMORY_ALLOCATION_ERROR;
710    return NULL;
711  }
712  memcpy(en, &defaultEncodings, sizeof(UEnumeration));
713  en->context = result;
714
715  int32_t columns = (sel->encodingsCount+31)/32;
716  int16_t numOnes = countOnes(mask, columns);
717  // now, we know the exact space we need for index
718  if (numOnes > 0) {
719    result->index = (int16_t*) uprv_malloc(numOnes * sizeof(int16_t));
720
721    int32_t i, j;
722    int16_t k = 0;
723    for (j = 0 ; j < columns; j++) {
724      uint32_t v = mask[j];
725      for (i = 0 ; i < 32 && k < sel->encodingsCount; i++, k++) {
726        if ((v & 1) != 0) {
727          result->index[result->length++] = k;
728        }
729        v >>= 1;
730      }
731    }
732  } //otherwise, index will remain NULL (and will never be touched by
733    //the enumerator code anyway)
734  uprv_free(mask);
735  return en;
736}
737
738/* check a string against the selector - UTF16 version */
739U_CAPI UEnumeration * U_EXPORT2
740ucnvsel_selectForString(const UConverterSelector* sel,
741                        const UChar *s, int32_t length, UErrorCode *status) {
742  // check if already failed
743  if (U_FAILURE(*status)) {
744    return NULL;
745  }
746  // ensure args make sense!
747  if (sel == NULL || (s == NULL && length != 0)) {
748    *status = U_ILLEGAL_ARGUMENT_ERROR;
749    return NULL;
750  }
751
752  int32_t columns = (sel->encodingsCount+31)/32;
753  uint32_t* mask = (uint32_t*) uprv_malloc(columns * 4);
754  if (mask == NULL) {
755    *status = U_MEMORY_ALLOCATION_ERROR;
756    return NULL;
757  }
758  uprv_memset(mask, ~0, columns *4);
759
760  if(s!=NULL) {
761    const UChar *limit;
762    if (length >= 0) {
763      limit = s + length;
764    } else {
765      limit = NULL;
766    }
767
768    while (limit == NULL ? *s != 0 : s != limit) {
769      UChar32 c;
770      uint16_t pvIndex;
771      UTRIE2_U16_NEXT16(sel->trie, s, limit, c, pvIndex);
772      if (intersectMasks(mask, sel->pv+pvIndex, columns)) {
773        break;
774      }
775    }
776  }
777  return selectForMask(sel, mask, status);
778}
779
780/* check a string against the selector - UTF8 version */
781U_CAPI UEnumeration * U_EXPORT2
782ucnvsel_selectForUTF8(const UConverterSelector* sel,
783                      const char *s, int32_t length, UErrorCode *status) {
784  // check if already failed
785  if (U_FAILURE(*status)) {
786    return NULL;
787  }
788  // ensure args make sense!
789  if (sel == NULL || (s == NULL && length != 0)) {
790    *status = U_ILLEGAL_ARGUMENT_ERROR;
791    return NULL;
792  }
793
794  int32_t columns = (sel->encodingsCount+31)/32;
795  uint32_t* mask = (uint32_t*) uprv_malloc(columns * 4);
796  if (mask == NULL) {
797    *status = U_MEMORY_ALLOCATION_ERROR;
798    return NULL;
799  }
800  uprv_memset(mask, ~0, columns *4);
801
802  if (length < 0) {
803    length = (int32_t)uprv_strlen(s);
804  }
805
806  if(s!=NULL) {
807    const char *limit = s + length;
808
809    while (s != limit) {
810      uint16_t pvIndex;
811      UTRIE2_U8_NEXT16(sel->trie, s, limit, pvIndex);
812      if (intersectMasks(mask, sel->pv+pvIndex, columns)) {
813        break;
814      }
815    }
816  }
817  return selectForMask(sel, mask, status);
818}
819
820#endif  // !UCONFIG_NO_CONVERSION
821