1/*
2******************************************************************************
3*   Copyright (C) 1997-2014, International Business Machines
4*   Corporation and others.  All Rights Reserved.
5******************************************************************************
6*   file name:  nfrule.cpp
7*   encoding:   US-ASCII
8*   tab size:   8 (not used)
9*   indentation:4
10*
11* Modification history
12* Date        Name      Comments
13* 10/11/2001  Doug      Ported from ICU4J
14*/
15
16#include "nfrule.h"
17
18#if U_HAVE_RBNF
19
20#include "unicode/localpointer.h"
21#include "unicode/rbnf.h"
22#include "unicode/tblcoll.h"
23#include "unicode/coleitr.h"
24#include "unicode/uchar.h"
25#include "nfrs.h"
26#include "nfrlist.h"
27#include "nfsubs.h"
28#include "patternprops.h"
29
30U_NAMESPACE_BEGIN
31
32NFRule::NFRule(const RuleBasedNumberFormat* _rbnf)
33  : baseValue((int32_t)0)
34  , radix(0)
35  , exponent(0)
36  , ruleText()
37  , sub1(NULL)
38  , sub2(NULL)
39  , formatter(_rbnf)
40{
41}
42
43NFRule::~NFRule()
44{
45  delete sub1;
46  delete sub2;
47}
48
49static const UChar gLeftBracket = 0x005b;
50static const UChar gRightBracket = 0x005d;
51static const UChar gColon = 0x003a;
52static const UChar gZero = 0x0030;
53static const UChar gNine = 0x0039;
54static const UChar gSpace = 0x0020;
55static const UChar gSlash = 0x002f;
56static const UChar gGreaterThan = 0x003e;
57static const UChar gLessThan = 0x003c;
58static const UChar gComma = 0x002c;
59static const UChar gDot = 0x002e;
60static const UChar gTick = 0x0027;
61//static const UChar gMinus = 0x002d;
62static const UChar gSemicolon = 0x003b;
63
64static const UChar gMinusX[] =                  {0x2D, 0x78, 0};    /* "-x" */
65static const UChar gXDotX[] =                   {0x78, 0x2E, 0x78, 0}; /* "x.x" */
66static const UChar gXDotZero[] =                {0x78, 0x2E, 0x30, 0}; /* "x.0" */
67static const UChar gZeroDotX[] =                {0x30, 0x2E, 0x78, 0}; /* "0.x" */
68
69static const UChar gLessLess[] =                {0x3C, 0x3C, 0};    /* "<<" */
70static const UChar gLessPercent[] =             {0x3C, 0x25, 0};    /* "<%" */
71static const UChar gLessHash[] =                {0x3C, 0x23, 0};    /* "<#" */
72static const UChar gLessZero[] =                {0x3C, 0x30, 0};    /* "<0" */
73static const UChar gGreaterGreater[] =          {0x3E, 0x3E, 0};    /* ">>" */
74static const UChar gGreaterPercent[] =          {0x3E, 0x25, 0};    /* ">%" */
75static const UChar gGreaterHash[] =             {0x3E, 0x23, 0};    /* ">#" */
76static const UChar gGreaterZero[] =             {0x3E, 0x30, 0};    /* ">0" */
77static const UChar gEqualPercent[] =            {0x3D, 0x25, 0};    /* "=%" */
78static const UChar gEqualHash[] =               {0x3D, 0x23, 0};    /* "=#" */
79static const UChar gEqualZero[] =               {0x3D, 0x30, 0};    /* "=0" */
80static const UChar gGreaterGreaterGreater[] =   {0x3E, 0x3E, 0x3E, 0}; /* ">>>" */
81
82static const UChar * const tokenStrings[] = {
83    gLessLess, gLessPercent, gLessHash, gLessZero,
84    gGreaterGreater, gGreaterPercent,gGreaterHash, gGreaterZero,
85    gEqualPercent, gEqualHash, gEqualZero, NULL
86};
87
88void
89NFRule::makeRules(UnicodeString& description,
90                  const NFRuleSet *ruleSet,
91                  const NFRule *predecessor,
92                  const RuleBasedNumberFormat *rbnf,
93                  NFRuleList& rules,
94                  UErrorCode& status)
95{
96    // we know we're making at least one rule, so go ahead and
97    // new it up and initialize its basevalue and divisor
98    // (this also strips the rule descriptor, if any, off the
99    // descripton string)
100    NFRule* rule1 = new NFRule(rbnf);
101    /* test for NULL */
102    if (rule1 == 0) {
103        status = U_MEMORY_ALLOCATION_ERROR;
104        return;
105    }
106    rule1->parseRuleDescriptor(description, status);
107
108    // check the description to see whether there's text enclosed
109    // in brackets
110    int32_t brack1 = description.indexOf(gLeftBracket);
111    int32_t brack2 = description.indexOf(gRightBracket);
112
113    // if the description doesn't contain a matched pair of brackets,
114    // or if it's of a type that doesn't recognize bracketed text,
115    // then leave the description alone, initialize the rule's
116    // rule text and substitutions, and return that rule
117    if (brack1 == -1 || brack2 == -1 || brack1 > brack2
118        || rule1->getType() == kProperFractionRule
119        || rule1->getType() == kNegativeNumberRule) {
120        rule1->ruleText = description;
121        rule1->extractSubstitutions(ruleSet, predecessor, rbnf, status);
122        rules.add(rule1);
123    } else {
124        // if the description does contain a matched pair of brackets,
125        // then it's really shorthand for two rules (with one exception)
126        NFRule* rule2 = NULL;
127        UnicodeString sbuf;
128
129        // we'll actually only split the rule into two rules if its
130        // base value is an even multiple of its divisor (or it's one
131        // of the special rules)
132        if ((rule1->baseValue > 0
133            && (rule1->baseValue % util64_pow(rule1->radix, rule1->exponent)) == 0)
134            || rule1->getType() == kImproperFractionRule
135            || rule1->getType() == kMasterRule) {
136
137            // if it passes that test, new up the second rule.  If the
138            // rule set both rules will belong to is a fraction rule
139            // set, they both have the same base value; otherwise,
140            // increment the original rule's base value ("rule1" actually
141            // goes SECOND in the rule set's rule list)
142            rule2 = new NFRule(rbnf);
143            /* test for NULL */
144            if (rule2 == 0) {
145                status = U_MEMORY_ALLOCATION_ERROR;
146                return;
147            }
148            if (rule1->baseValue >= 0) {
149                rule2->baseValue = rule1->baseValue;
150                if (!ruleSet->isFractionRuleSet()) {
151                    ++rule1->baseValue;
152                }
153            }
154
155            // if the description began with "x.x" and contains bracketed
156            // text, it describes both the improper fraction rule and
157            // the proper fraction rule
158            else if (rule1->getType() == kImproperFractionRule) {
159                rule2->setType(kProperFractionRule);
160            }
161
162            // if the description began with "x.0" and contains bracketed
163            // text, it describes both the master rule and the
164            // improper fraction rule
165            else if (rule1->getType() == kMasterRule) {
166                rule2->baseValue = rule1->baseValue;
167                rule1->setType(kImproperFractionRule);
168            }
169
170            // both rules have the same radix and exponent (i.e., the
171            // same divisor)
172            rule2->radix = rule1->radix;
173            rule2->exponent = rule1->exponent;
174
175            // rule2's rule text omits the stuff in brackets: initalize
176            // its rule text and substitutions accordingly
177            sbuf.append(description, 0, brack1);
178            if (brack2 + 1 < description.length()) {
179                sbuf.append(description, brack2 + 1, description.length() - brack2 - 1);
180            }
181            rule2->ruleText.setTo(sbuf);
182            rule2->extractSubstitutions(ruleSet, predecessor, rbnf, status);
183        }
184
185        // rule1's text includes the text in the brackets but omits
186        // the brackets themselves: initialize _its_ rule text and
187        // substitutions accordingly
188        sbuf.setTo(description, 0, brack1);
189        sbuf.append(description, brack1 + 1, brack2 - brack1 - 1);
190        if (brack2 + 1 < description.length()) {
191            sbuf.append(description, brack2 + 1, description.length() - brack2 - 1);
192        }
193        rule1->ruleText.setTo(sbuf);
194        rule1->extractSubstitutions(ruleSet, predecessor, rbnf, status);
195
196        // if we only have one rule, return it; if we have two, return
197        // a two-element array containing them (notice that rule2 goes
198        // BEFORE rule1 in the list: in all cases, rule2 OMITS the
199        // material in the brackets and rule1 INCLUDES the material
200        // in the brackets)
201        if (rule2 != NULL) {
202            rules.add(rule2);
203        }
204        rules.add(rule1);
205    }
206}
207
208/**
209 * This function parses the rule's rule descriptor (i.e., the base
210 * value and/or other tokens that precede the rule's rule text
211 * in the description) and sets the rule's base value, radix, and
212 * exponent according to the descriptor.  (If the description doesn't
213 * include a rule descriptor, then this function sets everything to
214 * default values and the rule set sets the rule's real base value).
215 * @param description The rule's description
216 * @return If "description" included a rule descriptor, this is
217 * "description" with the descriptor and any trailing whitespace
218 * stripped off.  Otherwise; it's "descriptor" unchangd.
219 */
220void
221NFRule::parseRuleDescriptor(UnicodeString& description, UErrorCode& status)
222{
223    // the description consists of a rule descriptor and a rule body,
224    // separated by a colon.  The rule descriptor is optional.  If
225    // it's omitted, just set the base value to 0.
226    int32_t p = description.indexOf(gColon);
227    if (p == -1) {
228        setBaseValue((int32_t)0, status);
229    } else {
230        // copy the descriptor out into its own string and strip it,
231        // along with any trailing whitespace, out of the original
232        // description
233        UnicodeString descriptor;
234        descriptor.setTo(description, 0, p);
235
236        ++p;
237        while (p < description.length() && PatternProps::isWhiteSpace(description.charAt(p))) {
238            ++p;
239        }
240        description.removeBetween(0, p);
241
242        // check first to see if the rule descriptor matches the token
243        // for one of the special rules.  If it does, set the base
244        // value to the correct identfier value
245        if (0 == descriptor.compare(gMinusX, 2)) {
246            setType(kNegativeNumberRule);
247        }
248        else if (0 == descriptor.compare(gXDotX, 3)) {
249            setType(kImproperFractionRule);
250        }
251        else if (0 == descriptor.compare(gZeroDotX, 3)) {
252            setType(kProperFractionRule);
253        }
254        else if (0 == descriptor.compare(gXDotZero, 3)) {
255            setType(kMasterRule);
256        }
257
258        // if the rule descriptor begins with a digit, it's a descriptor
259        // for a normal rule
260        // since we don't have Long.parseLong, and this isn't much work anyway,
261        // just build up the value as we encounter the digits.
262        else if (descriptor.charAt(0) >= gZero && descriptor.charAt(0) <= gNine) {
263            int64_t val = 0;
264            p = 0;
265            UChar c = gSpace;
266
267            // begin parsing the descriptor: copy digits
268            // into "tempValue", skip periods, commas, and spaces,
269            // stop on a slash or > sign (or at the end of the string),
270            // and throw an exception on any other character
271            int64_t ll_10 = 10;
272            while (p < descriptor.length()) {
273                c = descriptor.charAt(p);
274                if (c >= gZero && c <= gNine) {
275                    val = val * ll_10 + (int32_t)(c - gZero);
276                }
277                else if (c == gSlash || c == gGreaterThan) {
278                    break;
279                }
280                else if (PatternProps::isWhiteSpace(c) || c == gComma || c == gDot) {
281                }
282                else {
283                    // throw new IllegalArgumentException("Illegal character in rule descriptor");
284                    status = U_PARSE_ERROR;
285                    return;
286                }
287                ++p;
288            }
289
290            // we have the base value, so set it
291            setBaseValue(val, status);
292
293            // if we stopped the previous loop on a slash, we're
294            // now parsing the rule's radix.  Again, accumulate digits
295            // in tempValue, skip punctuation, stop on a > mark, and
296            // throw an exception on anything else
297            if (c == gSlash) {
298                val = 0;
299                ++p;
300                int64_t ll_10 = 10;
301                while (p < descriptor.length()) {
302                    c = descriptor.charAt(p);
303                    if (c >= gZero && c <= gNine) {
304                        val = val * ll_10 + (int32_t)(c - gZero);
305                    }
306                    else if (c == gGreaterThan) {
307                        break;
308                    }
309                    else if (PatternProps::isWhiteSpace(c) || c == gComma || c == gDot) {
310                    }
311                    else {
312                        // throw new IllegalArgumentException("Illegal character is rule descriptor");
313                        status = U_PARSE_ERROR;
314                        return;
315                    }
316                    ++p;
317                }
318
319                // tempValue now contain's the rule's radix.  Set it
320                // accordingly, and recalculate the rule's exponent
321                radix = (int32_t)val;
322                if (radix == 0) {
323                    // throw new IllegalArgumentException("Rule can't have radix of 0");
324                    status = U_PARSE_ERROR;
325                }
326
327                exponent = expectedExponent();
328            }
329
330            // if we stopped the previous loop on a > sign, then continue
331            // for as long as we still see > signs.  For each one,
332            // decrement the exponent (unless the exponent is already 0).
333            // If we see another character before reaching the end of
334            // the descriptor, that's also a syntax error.
335            if (c == gGreaterThan) {
336                while (p < descriptor.length()) {
337                    c = descriptor.charAt(p);
338                    if (c == gGreaterThan && exponent > 0) {
339                        --exponent;
340                    } else {
341                        // throw new IllegalArgumentException("Illegal character in rule descriptor");
342                        status = U_PARSE_ERROR;
343                        return;
344                    }
345                    ++p;
346                }
347            }
348        }
349    }
350
351    // finally, if the rule body begins with an apostrophe, strip it off
352    // (this is generally used to put whitespace at the beginning of
353    // a rule's rule text)
354    if (description.length() > 0 && description.charAt(0) == gTick) {
355        description.removeBetween(0, 1);
356    }
357
358    // return the description with all the stuff we've just waded through
359    // stripped off the front.  It now contains just the rule body.
360    // return description;
361}
362
363/**
364* Searches the rule's rule text for the substitution tokens,
365* creates the substitutions, and removes the substitution tokens
366* from the rule's rule text.
367* @param owner The rule set containing this rule
368* @param predecessor The rule preseding this one in "owners" rule list
369* @param ownersOwner The RuleBasedFormat that owns this rule
370*/
371void
372NFRule::extractSubstitutions(const NFRuleSet* ruleSet,
373                             const NFRule* predecessor,
374                             const RuleBasedNumberFormat* rbnf,
375                             UErrorCode& status)
376{
377    if (U_SUCCESS(status)) {
378        sub1 = extractSubstitution(ruleSet, predecessor, rbnf, status);
379        sub2 = extractSubstitution(ruleSet, predecessor, rbnf, status);
380    }
381}
382
383/**
384* Searches the rule's rule text for the first substitution token,
385* creates a substitution based on it, and removes the token from
386* the rule's rule text.
387* @param owner The rule set containing this rule
388* @param predecessor The rule preceding this one in the rule set's
389* rule list
390* @param ownersOwner The RuleBasedNumberFormat that owns this rule
391* @return The newly-created substitution.  This is never null; if
392* the rule text doesn't contain any substitution tokens, this will
393* be a NullSubstitution.
394*/
395NFSubstitution *
396NFRule::extractSubstitution(const NFRuleSet* ruleSet,
397                            const NFRule* predecessor,
398                            const RuleBasedNumberFormat* rbnf,
399                            UErrorCode& status)
400{
401    NFSubstitution* result = NULL;
402
403    // search the rule's rule text for the first two characters of
404    // a substitution token
405    int32_t subStart = indexOfAny(tokenStrings);
406    int32_t subEnd = subStart;
407
408    // if we didn't find one, create a null substitution positioned
409    // at the end of the rule text
410    if (subStart == -1) {
411        return NFSubstitution::makeSubstitution(ruleText.length(), this, predecessor,
412            ruleSet, rbnf, UnicodeString(), status);
413    }
414
415    // special-case the ">>>" token, since searching for the > at the
416    // end will actually find the > in the middle
417    if (ruleText.indexOf(gGreaterGreaterGreater, 3, 0) == subStart) {
418        subEnd = subStart + 2;
419
420        // otherwise the substitution token ends with the same character
421        // it began with
422    } else {
423        UChar c = ruleText.charAt(subStart);
424        subEnd = ruleText.indexOf(c, subStart + 1);
425        // special case for '<%foo<<'
426        if (c == gLessThan && subEnd != -1 && subEnd < ruleText.length() - 1 && ruleText.charAt(subEnd+1) == c) {
427            // ordinals use "=#,##0==%abbrev=" as their rule.  Notice that the '==' in the middle
428            // occurs because of the juxtaposition of two different rules.  The check for '<' is a hack
429            // to get around this.  Having the duplicate at the front would cause problems with
430            // rules like "<<%" to format, say, percents...
431            ++subEnd;
432        }
433   }
434
435    // if we don't find the end of the token (i.e., if we're on a single,
436    // unmatched token character), create a null substitution positioned
437    // at the end of the rule
438    if (subEnd == -1) {
439        return NFSubstitution::makeSubstitution(ruleText.length(), this, predecessor,
440            ruleSet, rbnf, UnicodeString(), status);
441    }
442
443    // if we get here, we have a real substitution token (or at least
444    // some text bounded by substitution token characters).  Use
445    // makeSubstitution() to create the right kind of substitution
446    UnicodeString subToken;
447    subToken.setTo(ruleText, subStart, subEnd + 1 - subStart);
448    result = NFSubstitution::makeSubstitution(subStart, this, predecessor, ruleSet,
449        rbnf, subToken, status);
450
451    // remove the substitution from the rule text
452    ruleText.removeBetween(subStart, subEnd+1);
453
454    return result;
455}
456
457/**
458 * Sets the rule's base value, and causes the radix and exponent
459 * to be recalculated.  This is used during construction when we
460 * don't know the rule's base value until after it's been
461 * constructed.  It should be used at any other time.
462 * @param The new base value for the rule.
463 */
464void
465NFRule::setBaseValue(int64_t newBaseValue, UErrorCode& status)
466{
467    // set the base value
468    baseValue = newBaseValue;
469
470    // if this isn't a special rule, recalculate the radix and exponent
471    // (the radix always defaults to 10; if it's supposed to be something
472    // else, it's cleaned up by the caller and the exponent is
473    // recalculated again-- the only function that does this is
474    // NFRule.parseRuleDescriptor() )
475    if (baseValue >= 1) {
476        radix = 10;
477        exponent = expectedExponent();
478
479        // this function gets called on a fully-constructed rule whose
480        // description didn't specify a base value.  This means it
481        // has substitutions, and some substitutions hold on to copies
482        // of the rule's divisor.  Fix their copies of the divisor.
483        if (sub1 != NULL) {
484            sub1->setDivisor(radix, exponent, status);
485        }
486        if (sub2 != NULL) {
487            sub2->setDivisor(radix, exponent, status);
488        }
489
490        // if this is a special rule, its radix and exponent are basically
491        // ignored.  Set them to "safe" default values
492    } else {
493        radix = 10;
494        exponent = 0;
495    }
496}
497
498/**
499* This calculates the rule's exponent based on its radix and base
500* value.  This will be the highest power the radix can be raised to
501* and still produce a result less than or equal to the base value.
502*/
503int16_t
504NFRule::expectedExponent() const
505{
506    // since the log of 0, or the log base 0 of something, causes an
507    // error, declare the exponent in these cases to be 0 (we also
508    // deal with the special-rule identifiers here)
509    if (radix == 0 || baseValue < 1) {
510        return 0;
511    }
512
513    // we get rounding error in some cases-- for example, log 1000 / log 10
514    // gives us 1.9999999996 instead of 2.  The extra logic here is to take
515    // that into account
516    int16_t tempResult = (int16_t)(uprv_log((double)baseValue) / uprv_log((double)radix));
517    int64_t temp = util64_pow(radix, tempResult + 1);
518    if (temp <= baseValue) {
519        tempResult += 1;
520    }
521    return tempResult;
522}
523
524/**
525 * Searches the rule's rule text for any of the specified strings.
526 * @param strings An array of strings to search the rule's rule
527 * text for
528 * @return The index of the first match in the rule's rule text
529 * (i.e., the first substring in the rule's rule text that matches
530 * _any_ of the strings in "strings").  If none of the strings in
531 * "strings" is found in the rule's rule text, returns -1.
532 */
533int32_t
534NFRule::indexOfAny(const UChar* const strings[]) const
535{
536    int result = -1;
537    for (int i = 0; strings[i]; i++) {
538        int32_t pos = ruleText.indexOf(*strings[i]);
539        if (pos != -1 && (result == -1 || pos < result)) {
540            result = pos;
541        }
542    }
543    return result;
544}
545
546//-----------------------------------------------------------------------
547// boilerplate
548//-----------------------------------------------------------------------
549
550/**
551* Tests two rules for equality.
552* @param that The rule to compare this one against
553* @return True is the two rules are functionally equivalent
554*/
555UBool
556NFRule::operator==(const NFRule& rhs) const
557{
558    return baseValue == rhs.baseValue
559        && radix == rhs.radix
560        && exponent == rhs.exponent
561        && ruleText == rhs.ruleText
562        && *sub1 == *rhs.sub1
563        && *sub2 == *rhs.sub2;
564}
565
566/**
567* Returns a textual representation of the rule.  This won't
568* necessarily be the same as the description that this rule
569* was created with, but it will produce the same result.
570* @return A textual description of the rule
571*/
572static void util_append64(UnicodeString& result, int64_t n)
573{
574    UChar buffer[256];
575    int32_t len = util64_tou(n, buffer, sizeof(buffer));
576    UnicodeString temp(buffer, len);
577    result.append(temp);
578}
579
580void
581NFRule::_appendRuleText(UnicodeString& result) const
582{
583    switch (getType()) {
584    case kNegativeNumberRule: result.append(gMinusX, 2); break;
585    case kImproperFractionRule: result.append(gXDotX, 3); break;
586    case kProperFractionRule: result.append(gZeroDotX, 3); break;
587    case kMasterRule: result.append(gXDotZero, 3); break;
588    default:
589        // for a normal rule, write out its base value, and if the radix is
590        // something other than 10, write out the radix (with the preceding
591        // slash, of course).  Then calculate the expected exponent and if
592        // if isn't the same as the actual exponent, write an appropriate
593        // number of > signs.  Finally, terminate the whole thing with
594        // a colon.
595        util_append64(result, baseValue);
596        if (radix != 10) {
597            result.append(gSlash);
598            util_append64(result, radix);
599        }
600        int numCarets = expectedExponent() - exponent;
601        for (int i = 0; i < numCarets; i++) {
602            result.append(gGreaterThan);
603        }
604        break;
605    }
606    result.append(gColon);
607    result.append(gSpace);
608
609    // if the rule text begins with a space, write an apostrophe
610    // (whitespace after the rule descriptor is ignored; the
611    // apostrophe is used to make the whitespace significant)
612    if (ruleText.charAt(0) == gSpace && sub1->getPos() != 0) {
613        result.append(gTick);
614    }
615
616    // now, write the rule's rule text, inserting appropriate
617    // substitution tokens in the appropriate places
618    UnicodeString ruleTextCopy;
619    ruleTextCopy.setTo(ruleText);
620
621    UnicodeString temp;
622    sub2->toString(temp);
623    ruleTextCopy.insert(sub2->getPos(), temp);
624    sub1->toString(temp);
625    ruleTextCopy.insert(sub1->getPos(), temp);
626
627    result.append(ruleTextCopy);
628
629    // and finally, top the whole thing off with a semicolon and
630    // return the result
631    result.append(gSemicolon);
632}
633
634//-----------------------------------------------------------------------
635// formatting
636//-----------------------------------------------------------------------
637
638/**
639* Formats the number, and inserts the resulting text into
640* toInsertInto.
641* @param number The number being formatted
642* @param toInsertInto The string where the resultant text should
643* be inserted
644* @param pos The position in toInsertInto where the resultant text
645* should be inserted
646*/
647void
648NFRule::doFormat(int64_t number, UnicodeString& toInsertInto, int32_t pos) const
649{
650    // first, insert the rule's rule text into toInsertInto at the
651    // specified position, then insert the results of the substitutions
652    // into the right places in toInsertInto (notice we do the
653    // substitutions in reverse order so that the offsets don't get
654    // messed up)
655    toInsertInto.insert(pos, ruleText);
656    sub2->doSubstitution(number, toInsertInto, pos);
657    sub1->doSubstitution(number, toInsertInto, pos);
658}
659
660/**
661* Formats the number, and inserts the resulting text into
662* toInsertInto.
663* @param number The number being formatted
664* @param toInsertInto The string where the resultant text should
665* be inserted
666* @param pos The position in toInsertInto where the resultant text
667* should be inserted
668*/
669void
670NFRule::doFormat(double number, UnicodeString& toInsertInto, int32_t pos) const
671{
672    // first, insert the rule's rule text into toInsertInto at the
673    // specified position, then insert the results of the substitutions
674    // into the right places in toInsertInto
675    // [again, we have two copies of this routine that do the same thing
676    // so that we don't sacrifice precision in a long by casting it
677    // to a double]
678    toInsertInto.insert(pos, ruleText);
679    sub2->doSubstitution(number, toInsertInto, pos);
680    sub1->doSubstitution(number, toInsertInto, pos);
681}
682
683/**
684* Used by the owning rule set to determine whether to invoke the
685* rollback rule (i.e., whether this rule or the one that precedes
686* it in the rule set's list should be used to format the number)
687* @param The number being formatted
688* @return True if the rule set should use the rule that precedes
689* this one in its list; false if it should use this rule
690*/
691UBool
692NFRule::shouldRollBack(double number) const
693{
694    // we roll back if the rule contains a modulus substitution,
695    // the number being formatted is an even multiple of the rule's
696    // divisor, and the rule's base value is NOT an even multiple
697    // of its divisor
698    // In other words, if the original description had
699    //    100: << hundred[ >>];
700    // that expands into
701    //    100: << hundred;
702    //    101: << hundred >>;
703    // internally.  But when we're formatting 200, if we use the rule
704    // at 101, which would normally apply, we get "two hundred zero".
705    // To prevent this, we roll back and use the rule at 100 instead.
706    // This is the logic that makes this happen: the rule at 101 has
707    // a modulus substitution, its base value isn't an even multiple
708    // of 100, and the value we're trying to format _is_ an even
709    // multiple of 100.  This is called the "rollback rule."
710    if ((sub1->isModulusSubstitution()) || (sub2->isModulusSubstitution())) {
711        int64_t re = util64_pow(radix, exponent);
712        return uprv_fmod(number, (double)re) == 0 && (baseValue % re) != 0;
713    }
714    return FALSE;
715}
716
717//-----------------------------------------------------------------------
718// parsing
719//-----------------------------------------------------------------------
720
721/**
722* Attempts to parse the string with this rule.
723* @param text The string being parsed
724* @param parsePosition On entry, the value is ignored and assumed to
725* be 0. On exit, this has been updated with the position of the first
726* character not consumed by matching the text against this rule
727* (if this rule doesn't match the text at all, the parse position
728* if left unchanged (presumably at 0) and the function returns
729* new Long(0)).
730* @param isFractionRule True if this rule is contained within a
731* fraction rule set.  This is only used if the rule has no
732* substitutions.
733* @return If this rule matched the text, this is the rule's base value
734* combined appropriately with the results of parsing the substitutions.
735* If nothing matched, this is new Long(0) and the parse position is
736* left unchanged.  The result will be an instance of Long if the
737* result is an integer and Double otherwise.  The result is never null.
738*/
739#ifdef RBNF_DEBUG
740#include <stdio.h>
741
742static void dumpUS(FILE* f, const UnicodeString& us) {
743  int len = us.length();
744  char* buf = (char *)uprv_malloc((len+1)*sizeof(char)); //new char[len+1];
745  if (buf != NULL) {
746	  us.extract(0, len, buf);
747	  buf[len] = 0;
748	  fprintf(f, "%s", buf);
749	  uprv_free(buf); //delete[] buf;
750  }
751}
752#endif
753
754UBool
755NFRule::doParse(const UnicodeString& text,
756                ParsePosition& parsePosition,
757                UBool isFractionRule,
758                double upperBound,
759                Formattable& resVal) const
760{
761    // internally we operate on a copy of the string being parsed
762    // (because we're going to change it) and use our own ParsePosition
763    ParsePosition pp;
764    UnicodeString workText(text);
765
766    // check to see whether the text before the first substitution
767    // matches the text at the beginning of the string being
768    // parsed.  If it does, strip that off the front of workText;
769    // otherwise, dump out with a mismatch
770    UnicodeString prefix;
771    prefix.setTo(ruleText, 0, sub1->getPos());
772
773#ifdef RBNF_DEBUG
774    fprintf(stderr, "doParse %x ", this);
775    {
776        UnicodeString rt;
777        _appendRuleText(rt);
778        dumpUS(stderr, rt);
779    }
780
781    fprintf(stderr, " text: '", this);
782    dumpUS(stderr, text);
783    fprintf(stderr, "' prefix: '");
784    dumpUS(stderr, prefix);
785#endif
786    stripPrefix(workText, prefix, pp);
787    int32_t prefixLength = text.length() - workText.length();
788
789#ifdef RBNF_DEBUG
790    fprintf(stderr, "' pl: %d ppi: %d s1p: %d\n", prefixLength, pp.getIndex(), sub1->getPos());
791#endif
792
793    if (pp.getIndex() == 0 && sub1->getPos() != 0) {
794        // commented out because ParsePosition doesn't have error index in 1.1.x
795        // restored for ICU4C port
796        parsePosition.setErrorIndex(pp.getErrorIndex());
797        resVal.setLong(0);
798        return TRUE;
799    }
800
801    // this is the fun part.  The basic guts of the rule-matching
802    // logic is matchToDelimiter(), which is called twice.  The first
803    // time it searches the input string for the rule text BETWEEN
804    // the substitutions and tries to match the intervening text
805    // in the input string with the first substitution.  If that
806    // succeeds, it then calls it again, this time to look for the
807    // rule text after the second substitution and to match the
808    // intervening input text against the second substitution.
809    //
810    // For example, say we have a rule that looks like this:
811    //    first << middle >> last;
812    // and input text that looks like this:
813    //    first one middle two last
814    // First we use stripPrefix() to match "first " in both places and
815    // strip it off the front, leaving
816    //    one middle two last
817    // Then we use matchToDelimiter() to match " middle " and try to
818    // match "one" against a substitution.  If it's successful, we now
819    // have
820    //    two last
821    // We use matchToDelimiter() a second time to match " last" and
822    // try to match "two" against a substitution.  If "two" matches
823    // the substitution, we have a successful parse.
824    //
825    // Since it's possible in many cases to find multiple instances
826    // of each of these pieces of rule text in the input string,
827    // we need to try all the possible combinations of these
828    // locations.  This prevents us from prematurely declaring a mismatch,
829    // and makes sure we match as much input text as we can.
830    int highWaterMark = 0;
831    double result = 0;
832    int start = 0;
833    double tempBaseValue = (double)(baseValue <= 0 ? 0 : baseValue);
834
835    UnicodeString temp;
836    do {
837        // our partial parse result starts out as this rule's base
838        // value.  If it finds a successful match, matchToDelimiter()
839        // will compose this in some way with what it gets back from
840        // the substitution, giving us a new partial parse result
841        pp.setIndex(0);
842
843        temp.setTo(ruleText, sub1->getPos(), sub2->getPos() - sub1->getPos());
844        double partialResult = matchToDelimiter(workText, start, tempBaseValue,
845            temp, pp, sub1,
846            upperBound);
847
848        // if we got a successful match (or were trying to match a
849        // null substitution), pp is now pointing at the first unmatched
850        // character.  Take note of that, and try matchToDelimiter()
851        // on the input text again
852        if (pp.getIndex() != 0 || sub1->isNullSubstitution()) {
853            start = pp.getIndex();
854
855            UnicodeString workText2;
856            workText2.setTo(workText, pp.getIndex(), workText.length() - pp.getIndex());
857            ParsePosition pp2;
858
859            // the second matchToDelimiter() will compose our previous
860            // partial result with whatever it gets back from its
861            // substitution if there's a successful match, giving us
862            // a real result
863            temp.setTo(ruleText, sub2->getPos(), ruleText.length() - sub2->getPos());
864            partialResult = matchToDelimiter(workText2, 0, partialResult,
865                temp, pp2, sub2,
866                upperBound);
867
868            // if we got a successful match on this second
869            // matchToDelimiter() call, update the high-water mark
870            // and result (if necessary)
871            if (pp2.getIndex() != 0 || sub2->isNullSubstitution()) {
872                if (prefixLength + pp.getIndex() + pp2.getIndex() > highWaterMark) {
873                    highWaterMark = prefixLength + pp.getIndex() + pp2.getIndex();
874                    result = partialResult;
875                }
876            }
877            // commented out because ParsePosition doesn't have error index in 1.1.x
878            // restored for ICU4C port
879            else {
880                int32_t temp = pp2.getErrorIndex() + sub1->getPos() + pp.getIndex();
881                if (temp> parsePosition.getErrorIndex()) {
882                    parsePosition.setErrorIndex(temp);
883                }
884            }
885        }
886        // commented out because ParsePosition doesn't have error index in 1.1.x
887        // restored for ICU4C port
888        else {
889            int32_t temp = sub1->getPos() + pp.getErrorIndex();
890            if (temp > parsePosition.getErrorIndex()) {
891                parsePosition.setErrorIndex(temp);
892            }
893        }
894        // keep trying to match things until the outer matchToDelimiter()
895        // call fails to make a match (each time, it picks up where it
896        // left off the previous time)
897    } while (sub1->getPos() != sub2->getPos()
898        && pp.getIndex() > 0
899        && pp.getIndex() < workText.length()
900        && pp.getIndex() != start);
901
902    // update the caller's ParsePosition with our high-water mark
903    // (i.e., it now points at the first character this function
904    // didn't match-- the ParsePosition is therefore unchanged if
905    // we didn't match anything)
906    parsePosition.setIndex(highWaterMark);
907    // commented out because ParsePosition doesn't have error index in 1.1.x
908    // restored for ICU4C port
909    if (highWaterMark > 0) {
910        parsePosition.setErrorIndex(0);
911    }
912
913    // this is a hack for one unusual condition: Normally, whether this
914    // rule belong to a fraction rule set or not is handled by its
915    // substitutions.  But if that rule HAS NO substitutions, then
916    // we have to account for it here.  By definition, if the matching
917    // rule in a fraction rule set has no substitutions, its numerator
918    // is 1, and so the result is the reciprocal of its base value.
919    if (isFractionRule &&
920        highWaterMark > 0 &&
921        sub1->isNullSubstitution()) {
922        result = 1 / result;
923    }
924
925    resVal.setDouble(result);
926    return TRUE; // ??? do we need to worry if it is a long or a double?
927}
928
929/**
930* This function is used by parse() to match the text being parsed
931* against a possible prefix string.  This function
932* matches characters from the beginning of the string being parsed
933* to characters from the prospective prefix.  If they match, pp is
934* updated to the first character not matched, and the result is
935* the unparsed part of the string.  If they don't match, the whole
936* string is returned, and pp is left unchanged.
937* @param text The string being parsed
938* @param prefix The text to match against
939* @param pp On entry, ignored and assumed to be 0.  On exit, points
940* to the first unmatched character (assuming the whole prefix matched),
941* or is unchanged (if the whole prefix didn't match).
942* @return If things match, this is the unparsed part of "text";
943* if they didn't match, this is "text".
944*/
945void
946NFRule::stripPrefix(UnicodeString& text, const UnicodeString& prefix, ParsePosition& pp) const
947{
948    // if the prefix text is empty, dump out without doing anything
949    if (prefix.length() != 0) {
950    	UErrorCode status = U_ZERO_ERROR;
951        // use prefixLength() to match the beginning of
952        // "text" against "prefix".  This function returns the
953        // number of characters from "text" that matched (or 0 if
954        // we didn't match the whole prefix)
955        int32_t pfl = prefixLength(text, prefix, status);
956        if (U_FAILURE(status)) { // Memory allocation error.
957        	return;
958        }
959        if (pfl != 0) {
960            // if we got a successful match, update the parse position
961            // and strip the prefix off of "text"
962            pp.setIndex(pp.getIndex() + pfl);
963            text.remove(0, pfl);
964        }
965    }
966}
967
968/**
969* Used by parse() to match a substitution and any following text.
970* "text" is searched for instances of "delimiter".  For each instance
971* of delimiter, the intervening text is tested to see whether it
972* matches the substitution.  The longest match wins.
973* @param text The string being parsed
974* @param startPos The position in "text" where we should start looking
975* for "delimiter".
976* @param baseValue A partial parse result (often the rule's base value),
977* which is combined with the result from matching the substitution
978* @param delimiter The string to search "text" for.
979* @param pp Ignored and presumed to be 0 on entry.  If there's a match,
980* on exit this will point to the first unmatched character.
981* @param sub If we find "delimiter" in "text", this substitution is used
982* to match the text between the beginning of the string and the
983* position of "delimiter."  (If "delimiter" is the empty string, then
984* this function just matches against this substitution and updates
985* everything accordingly.)
986* @param upperBound When matching the substitution, it will only
987* consider rules with base values lower than this value.
988* @return If there's a match, this is the result of composing
989* baseValue with the result of matching the substitution.  Otherwise,
990* this is new Long(0).  It's never null.  If the result is an integer,
991* this will be an instance of Long; otherwise, it's an instance of
992* Double.
993*
994* !!! note {dlf} in point of fact, in the java code the caller always converts
995* the result to a double, so we might as well return one.
996*/
997double
998NFRule::matchToDelimiter(const UnicodeString& text,
999                         int32_t startPos,
1000                         double _baseValue,
1001                         const UnicodeString& delimiter,
1002                         ParsePosition& pp,
1003                         const NFSubstitution* sub,
1004                         double upperBound) const
1005{
1006	UErrorCode status = U_ZERO_ERROR;
1007    // if "delimiter" contains real (i.e., non-ignorable) text, search
1008    // it for "delimiter" beginning at "start".  If that succeeds, then
1009    // use "sub"'s doParse() method to match the text before the
1010    // instance of "delimiter" we just found.
1011    if (!allIgnorable(delimiter, status)) {
1012    	if (U_FAILURE(status)) { //Memory allocation error.
1013    		return 0;
1014    	}
1015        ParsePosition tempPP;
1016        Formattable result;
1017
1018        // use findText() to search for "delimiter".  It returns a two-
1019        // element array: element 0 is the position of the match, and
1020        // element 1 is the number of characters that matched
1021        // "delimiter".
1022        int32_t dLen;
1023        int32_t dPos = findText(text, delimiter, startPos, &dLen);
1024
1025        // if findText() succeeded, isolate the text preceding the
1026        // match, and use "sub" to match that text
1027        while (dPos >= 0) {
1028            UnicodeString subText;
1029            subText.setTo(text, 0, dPos);
1030            if (subText.length() > 0) {
1031                UBool success = sub->doParse(subText, tempPP, _baseValue, upperBound,
1032#if UCONFIG_NO_COLLATION
1033                    FALSE,
1034#else
1035                    formatter->isLenient(),
1036#endif
1037                    result);
1038
1039                // if the substitution could match all the text up to
1040                // where we found "delimiter", then this function has
1041                // a successful match.  Bump the caller's parse position
1042                // to point to the first character after the text
1043                // that matches "delimiter", and return the result
1044                // we got from parsing the substitution.
1045                if (success && tempPP.getIndex() == dPos) {
1046                    pp.setIndex(dPos + dLen);
1047                    return result.getDouble();
1048                }
1049                // commented out because ParsePosition doesn't have error index in 1.1.x
1050                // restored for ICU4C port
1051                else {
1052                    if (tempPP.getErrorIndex() > 0) {
1053                        pp.setErrorIndex(tempPP.getErrorIndex());
1054                    } else {
1055                        pp.setErrorIndex(tempPP.getIndex());
1056                    }
1057                }
1058            }
1059
1060            // if we didn't match the substitution, search for another
1061            // copy of "delimiter" in "text" and repeat the loop if
1062            // we find it
1063            tempPP.setIndex(0);
1064            dPos = findText(text, delimiter, dPos + dLen, &dLen);
1065        }
1066        // if we make it here, this was an unsuccessful match, and we
1067        // leave pp unchanged and return 0
1068        pp.setIndex(0);
1069        return 0;
1070
1071        // if "delimiter" is empty, or consists only of ignorable characters
1072        // (i.e., is semantically empty), thwe we obviously can't search
1073        // for "delimiter".  Instead, just use "sub" to parse as much of
1074        // "text" as possible.
1075    } else {
1076        ParsePosition tempPP;
1077        Formattable result;
1078
1079        // try to match the whole string against the substitution
1080        UBool success = sub->doParse(text, tempPP, _baseValue, upperBound,
1081#if UCONFIG_NO_COLLATION
1082            FALSE,
1083#else
1084            formatter->isLenient(),
1085#endif
1086            result);
1087        if (success && (tempPP.getIndex() != 0 || sub->isNullSubstitution())) {
1088            // if there's a successful match (or it's a null
1089            // substitution), update pp to point to the first
1090            // character we didn't match, and pass the result from
1091            // sub.doParse() on through to the caller
1092            pp.setIndex(tempPP.getIndex());
1093            return result.getDouble();
1094        }
1095        // commented out because ParsePosition doesn't have error index in 1.1.x
1096        // restored for ICU4C port
1097        else {
1098            pp.setErrorIndex(tempPP.getErrorIndex());
1099        }
1100
1101        // and if we get to here, then nothing matched, so we return
1102        // 0 and leave pp alone
1103        return 0;
1104    }
1105}
1106
1107/**
1108* Used by stripPrefix() to match characters.  If lenient parse mode
1109* is off, this just calls startsWith().  If lenient parse mode is on,
1110* this function uses CollationElementIterators to match characters in
1111* the strings (only primary-order differences are significant in
1112* determining whether there's a match).
1113* @param str The string being tested
1114* @param prefix The text we're hoping to see at the beginning
1115* of "str"
1116* @return If "prefix" is found at the beginning of "str", this
1117* is the number of characters in "str" that were matched (this
1118* isn't necessarily the same as the length of "prefix" when matching
1119* text with a collator).  If there's no match, this is 0.
1120*/
1121int32_t
1122NFRule::prefixLength(const UnicodeString& str, const UnicodeString& prefix, UErrorCode& status) const
1123{
1124    // if we're looking for an empty prefix, it obviously matches
1125    // zero characters.  Just go ahead and return 0.
1126    if (prefix.length() == 0) {
1127        return 0;
1128    }
1129
1130#if !UCONFIG_NO_COLLATION
1131    // go through all this grief if we're in lenient-parse mode
1132    if (formatter->isLenient()) {
1133        // get the formatter's collator and use it to create two
1134        // collation element iterators, one over the target string
1135        // and another over the prefix (right now, we'll throw an
1136        // exception if the collator we get back from the formatter
1137        // isn't a RuleBasedCollator, because RuleBasedCollator defines
1138        // the CollationElementIterator protocol.  Hopefully, this
1139        // will change someday.)
1140        const RuleBasedCollator* collator = formatter->getCollator();
1141        if (collator == NULL) {
1142            status = U_MEMORY_ALLOCATION_ERROR;
1143            return 0;
1144        }
1145        LocalPointer<CollationElementIterator> strIter(collator->createCollationElementIterator(str));
1146        LocalPointer<CollationElementIterator> prefixIter(collator->createCollationElementIterator(prefix));
1147        // Check for memory allocation error.
1148        if (strIter.isNull() || prefixIter.isNull()) {
1149            status = U_MEMORY_ALLOCATION_ERROR;
1150            return 0;
1151        }
1152
1153        UErrorCode err = U_ZERO_ERROR;
1154
1155        // The original code was problematic.  Consider this match:
1156        // prefix = "fifty-"
1157        // string = " fifty-7"
1158        // The intent is to match string up to the '7', by matching 'fifty-' at position 1
1159        // in the string.  Unfortunately, we were getting a match, and then computing where
1160        // the match terminated by rematching the string.  The rematch code was using as an
1161        // initial guess the substring of string between 0 and prefix.length.  Because of
1162        // the leading space and trailing hyphen (both ignorable) this was succeeding, leaving
1163        // the position before the hyphen in the string.  Recursing down, we then parsed the
1164        // remaining string '-7' as numeric.  The resulting number turned out as 43 (50 - 7).
1165        // This was not pretty, especially since the string "fifty-7" parsed just fine.
1166        //
1167        // We have newer APIs now, so we can use calls on the iterator to determine what we
1168        // matched up to.  If we terminate because we hit the last element in the string,
1169        // our match terminates at this length.  If we terminate because we hit the last element
1170        // in the target, our match terminates at one before the element iterator position.
1171
1172        // match collation elements between the strings
1173        int32_t oStr = strIter->next(err);
1174        int32_t oPrefix = prefixIter->next(err);
1175
1176        while (oPrefix != CollationElementIterator::NULLORDER) {
1177            // skip over ignorable characters in the target string
1178            while (CollationElementIterator::primaryOrder(oStr) == 0
1179                && oStr != CollationElementIterator::NULLORDER) {
1180                oStr = strIter->next(err);
1181            }
1182
1183            // skip over ignorable characters in the prefix
1184            while (CollationElementIterator::primaryOrder(oPrefix) == 0
1185                && oPrefix != CollationElementIterator::NULLORDER) {
1186                oPrefix = prefixIter->next(err);
1187            }
1188
1189            // dlf: move this above following test, if we consume the
1190            // entire target, aren't we ok even if the source was also
1191            // entirely consumed?
1192
1193            // if skipping over ignorables brought to the end of
1194            // the prefix, we DID match: drop out of the loop
1195            if (oPrefix == CollationElementIterator::NULLORDER) {
1196                break;
1197            }
1198
1199            // if skipping over ignorables brought us to the end
1200            // of the target string, we didn't match and return 0
1201            if (oStr == CollationElementIterator::NULLORDER) {
1202                return 0;
1203            }
1204
1205            // match collation elements from the two strings
1206            // (considering only primary differences).  If we
1207            // get a mismatch, dump out and return 0
1208            if (CollationElementIterator::primaryOrder(oStr)
1209                != CollationElementIterator::primaryOrder(oPrefix)) {
1210                return 0;
1211
1212                // otherwise, advance to the next character in each string
1213                // and loop (we drop out of the loop when we exhaust
1214                // collation elements in the prefix)
1215            } else {
1216                oStr = strIter->next(err);
1217                oPrefix = prefixIter->next(err);
1218            }
1219        }
1220
1221        int32_t result = strIter->getOffset();
1222        if (oStr != CollationElementIterator::NULLORDER) {
1223            --result; // back over character that we don't want to consume;
1224        }
1225
1226#ifdef RBNF_DEBUG
1227        fprintf(stderr, "prefix length: %d\n", result);
1228#endif
1229        return result;
1230#if 0
1231        //----------------------------------------------------------------
1232        // JDK 1.2-specific API call
1233        // return strIter.getOffset();
1234        //----------------------------------------------------------------
1235        // JDK 1.1 HACK (take out for 1.2-specific code)
1236
1237        // if we make it to here, we have a successful match.  Now we
1238        // have to find out HOW MANY characters from the target string
1239        // matched the prefix (there isn't necessarily a one-to-one
1240        // mapping between collation elements and characters).
1241        // In JDK 1.2, there's a simple getOffset() call we can use.
1242        // In JDK 1.1, on the other hand, we have to go through some
1243        // ugly contortions.  First, use the collator to compare the
1244        // same number of characters from the prefix and target string.
1245        // If they're equal, we're done.
1246        collator->setStrength(Collator::PRIMARY);
1247        if (str.length() >= prefix.length()) {
1248            UnicodeString temp;
1249            temp.setTo(str, 0, prefix.length());
1250            if (collator->equals(temp, prefix)) {
1251#ifdef RBNF_DEBUG
1252                fprintf(stderr, "returning: %d\n", prefix.length());
1253#endif
1254                return prefix.length();
1255            }
1256        }
1257
1258        // if they're not equal, then we have to compare successively
1259        // larger and larger substrings of the target string until we
1260        // get to one that matches the prefix.  At that point, we know
1261        // how many characters matched the prefix, and we can return.
1262        int32_t p = 1;
1263        while (p <= str.length()) {
1264            UnicodeString temp;
1265            temp.setTo(str, 0, p);
1266            if (collator->equals(temp, prefix)) {
1267                return p;
1268            } else {
1269                ++p;
1270            }
1271        }
1272
1273        // SHOULD NEVER GET HERE!!!
1274        return 0;
1275        //----------------------------------------------------------------
1276#endif
1277
1278        // If lenient parsing is turned off, forget all that crap above.
1279        // Just use String.startsWith() and be done with it.
1280  } else
1281#endif
1282  {
1283      if (str.startsWith(prefix)) {
1284          return prefix.length();
1285      } else {
1286          return 0;
1287      }
1288  }
1289}
1290
1291/**
1292* Searches a string for another string.  If lenient parsing is off,
1293* this just calls indexOf().  If lenient parsing is on, this function
1294* uses CollationElementIterator to match characters, and only
1295* primary-order differences are significant in determining whether
1296* there's a match.
1297* @param str The string to search
1298* @param key The string to search "str" for
1299* @param startingAt The index into "str" where the search is to
1300* begin
1301* @return A two-element array of ints.  Element 0 is the position
1302* of the match, or -1 if there was no match.  Element 1 is the
1303* number of characters in "str" that matched (which isn't necessarily
1304* the same as the length of "key")
1305*/
1306int32_t
1307NFRule::findText(const UnicodeString& str,
1308                 const UnicodeString& key,
1309                 int32_t startingAt,
1310                 int32_t* length) const
1311{
1312#if !UCONFIG_NO_COLLATION
1313    // if lenient parsing is turned off, this is easy: just call
1314    // String.indexOf() and we're done
1315    if (!formatter->isLenient()) {
1316        *length = key.length();
1317        return str.indexOf(key, startingAt);
1318
1319        // but if lenient parsing is turned ON, we've got some work
1320        // ahead of us
1321    } else
1322#endif
1323    {
1324        //----------------------------------------------------------------
1325        // JDK 1.1 HACK (take out of 1.2-specific code)
1326
1327        // in JDK 1.2, CollationElementIterator provides us with an
1328        // API to map between character offsets and collation elements
1329        // and we can do this by marching through the string comparing
1330        // collation elements.  We can't do that in JDK 1.1.  Insted,
1331        // we have to go through this horrible slow mess:
1332        int32_t p = startingAt;
1333        int32_t keyLen = 0;
1334
1335        // basically just isolate smaller and smaller substrings of
1336        // the target string (each running to the end of the string,
1337        // and with the first one running from startingAt to the end)
1338        // and then use prefixLength() to see if the search key is at
1339        // the beginning of each substring.  This is excruciatingly
1340        // slow, but it will locate the key and tell use how long the
1341        // matching text was.
1342        UnicodeString temp;
1343        UErrorCode status = U_ZERO_ERROR;
1344        while (p < str.length() && keyLen == 0) {
1345            temp.setTo(str, p, str.length() - p);
1346            keyLen = prefixLength(temp, key, status);
1347            if (U_FAILURE(status)) {
1348            	break;
1349            }
1350            if (keyLen != 0) {
1351                *length = keyLen;
1352                return p;
1353            }
1354            ++p;
1355        }
1356        // if we make it to here, we didn't find it.  Return -1 for the
1357        // location.  The length should be ignored, but set it to 0,
1358        // which should be "safe"
1359        *length = 0;
1360        return -1;
1361
1362        //----------------------------------------------------------------
1363        // JDK 1.2 version of this routine
1364        //RuleBasedCollator collator = (RuleBasedCollator)formatter.getCollator();
1365        //
1366        //CollationElementIterator strIter = collator.getCollationElementIterator(str);
1367        //CollationElementIterator keyIter = collator.getCollationElementIterator(key);
1368        //
1369        //int keyStart = -1;
1370        //
1371        //str.setOffset(startingAt);
1372        //
1373        //int oStr = strIter.next();
1374        //int oKey = keyIter.next();
1375        //while (oKey != CollationElementIterator.NULLORDER) {
1376        //    while (oStr != CollationElementIterator.NULLORDER &&
1377        //                CollationElementIterator.primaryOrder(oStr) == 0)
1378        //        oStr = strIter.next();
1379        //
1380        //    while (oKey != CollationElementIterator.NULLORDER &&
1381        //                CollationElementIterator.primaryOrder(oKey) == 0)
1382        //        oKey = keyIter.next();
1383        //
1384        //    if (oStr == CollationElementIterator.NULLORDER) {
1385        //        return new int[] { -1, 0 };
1386        //    }
1387        //
1388        //    if (oKey == CollationElementIterator.NULLORDER) {
1389        //        break;
1390        //    }
1391        //
1392        //    if (CollationElementIterator.primaryOrder(oStr) ==
1393        //            CollationElementIterator.primaryOrder(oKey)) {
1394        //        keyStart = strIter.getOffset();
1395        //        oStr = strIter.next();
1396        //        oKey = keyIter.next();
1397        //    } else {
1398        //        if (keyStart != -1) {
1399        //            keyStart = -1;
1400        //            keyIter.reset();
1401        //        } else {
1402        //            oStr = strIter.next();
1403        //        }
1404        //    }
1405        //}
1406        //
1407        //if (oKey == CollationElementIterator.NULLORDER) {
1408        //    return new int[] { keyStart, strIter.getOffset() - keyStart };
1409        //} else {
1410        //    return new int[] { -1, 0 };
1411        //}
1412    }
1413}
1414
1415/**
1416* Checks to see whether a string consists entirely of ignorable
1417* characters.
1418* @param str The string to test.
1419* @return true if the string is empty of consists entirely of
1420* characters that the number formatter's collator says are
1421* ignorable at the primary-order level.  false otherwise.
1422*/
1423UBool
1424NFRule::allIgnorable(const UnicodeString& str, UErrorCode& status) const
1425{
1426    // if the string is empty, we can just return true
1427    if (str.length() == 0) {
1428        return TRUE;
1429    }
1430
1431#if !UCONFIG_NO_COLLATION
1432    // if lenient parsing is turned on, walk through the string with
1433    // a collation element iterator and make sure each collation
1434    // element is 0 (ignorable) at the primary level
1435    if (formatter->isLenient()) {
1436        const RuleBasedCollator* collator = formatter->getCollator();
1437        if (collator == NULL) {
1438            status = U_MEMORY_ALLOCATION_ERROR;
1439            return FALSE;
1440        }
1441        LocalPointer<CollationElementIterator> iter(collator->createCollationElementIterator(str));
1442
1443        // Memory allocation error check.
1444        if (iter.isNull()) {
1445            status = U_MEMORY_ALLOCATION_ERROR;
1446            return FALSE;
1447        }
1448
1449        UErrorCode err = U_ZERO_ERROR;
1450        int32_t o = iter->next(err);
1451        while (o != CollationElementIterator::NULLORDER
1452            && CollationElementIterator::primaryOrder(o) == 0) {
1453            o = iter->next(err);
1454        }
1455
1456        return o == CollationElementIterator::NULLORDER;
1457    }
1458#endif
1459
1460    // if lenient parsing is turned off, there is no such thing as
1461    // an ignorable character: return true only if the string is empty
1462    return FALSE;
1463}
1464
1465U_NAMESPACE_END
1466
1467/* U_HAVE_RBNF */
1468#endif
1469