1
2/*
3 *
4 * (C) Copyright IBM Corp. 1998-2013 - All Rights Reserved
5 *
6 */
7
8#ifndef __LEFONTINSTANCE_H
9#define __LEFONTINSTANCE_H
10
11#include "LETypes.h"
12/**
13 * \file
14 * \brief C++ API: Layout Engine Font Instance object
15 */
16
17U_NAMESPACE_BEGIN
18
19/**
20 * Instances of this class are used by <code>LEFontInstance::mapCharsToGlyphs</code> and
21 * <code>LEFontInstance::mapCharToGlyph</code> to adjust character codes before the character
22 * to glyph mapping process. Examples of this are filtering out control characters
23 * and character mirroring - replacing a character which has both a left and a right
24 * hand form with the opposite form.
25 *
26 * @stable ICU 3.2
27 */
28class LECharMapper /* not : public UObject because this is an interface/mixin class */
29{
30public:
31    /**
32     * Destructor.
33     * @stable ICU 3.2
34     */
35    virtual ~LECharMapper();
36
37    /**
38     * This method does the adjustments.
39     *
40     * @param ch - the input character
41     *
42     * @return the adjusted character
43     *
44     * @stable ICU 2.8
45     */
46    virtual LEUnicode32 mapChar(LEUnicode32 ch) const = 0;
47};
48
49/**
50 * This is a forward reference to the class which holds the per-glyph
51 * storage.
52 *
53 * @stable ICU 3.0
54 */
55class LEGlyphStorage;
56
57/**
58 * This is a virtual base class that serves as the interface between a LayoutEngine
59 * and the platform font environment. It allows a LayoutEngine to access font tables, do
60 * character to glyph mapping, and obtain metrics information without knowing any platform
61 * specific details. There are also a few utility methods for converting between points,
62 * pixels and funits. (font design units)
63 *
64 * An instance of an <code>LEFontInstance</code> represents a font at a particular point
65 * size. Each instance can represent either a single physical font, or a composite font.
66 * A composite font is a collection of physical fonts, each of which contains a subset of
67 * the characters contained in the composite font.
68 *
69 * Note: with the exception of <code>getSubFont</code>, the methods in this class only
70 * make sense for a physical font. If you have an <code>LEFontInstance</code> which
71 * represents a composite font you should only call the methods below which have
72 * an <code>LEGlyphID</code>, an <code>LEUnicode</code> or an <code>LEUnicode32</code>
73 * as one of the arguments because these can be used to select a particular subfont.
74 *
75 * Subclasses which implement composite fonts should supply an implementation of these
76 * methods with some default behavior such as returning constant values, or using the
77 * values from the first subfont.
78 *
79 * @stable ICU 3.0
80 */
81class U_LAYOUT_API LEFontInstance : public UObject
82{
83public:
84
85    /**
86     * This virtual destructor is here so that the subclass
87     * destructors can be invoked through the base class.
88     *
89     * @stable ICU 2.8
90     */
91    virtual ~LEFontInstance();
92
93    /**
94     * Get a physical font which can render the given text. For composite fonts,
95     * if there is no single physical font which can render all of the text,
96     * return a physical font which can render an initial substring of the text,
97     * and set the <code>offset</code> parameter to the end of that substring.
98     *
99     * Internally, the LayoutEngine works with runs of text all in the same
100     * font and script, so it is best to call this method with text which is
101     * in a single script, passing the script code in as a hint. If you don't
102     * know the script of the text, you can use zero, which is the script code
103     * for characters used in more than one script.
104     *
105     * The default implementation of this method is intended for instances of
106     * <code>LEFontInstance</code> which represent a physical font. It returns
107     * <code>this</code> and indicates that the entire string can be rendered.
108     *
109     * This method will return a valid <code>LEFontInstance</code> unless you
110     * have passed illegal parameters, or an internal error has been encountered.
111     * For composite fonts, it may return the warning <code>LE_NO_SUBFONT_WARNING</code>
112     * to indicate that the returned font may not be able to render all of
113     * the text. Whenever a valid font is returned, the <code>offset</code> parameter
114     * will be advanced by at least one.
115     *
116     * Subclasses which implement composite fonts must override this method.
117     * Where it makes sense, they should use the script code as a hint to render
118     * characters from the COMMON script in the font which is used for the given
119     * script. For example, if the input text is a series of Arabic words separated
120     * by spaces, and the script code passed in is <code>arabScriptCode</code> you
121     * should return the font used for Arabic characters for all of the input text,
122     * including the spaces. If, on the other hand, the input text contains characters
123     * which cannot be rendered by the font used for Arabic characters, but which can
124     * be rendered by another font, you should return that font for those characters.
125     *
126     * @param chars   - the array of Unicode characters.
127     * @param offset  - a pointer to the starting offset in the text. On exit this
128     *                  will be set the the limit offset of the text which can be
129     *                  rendered using the returned font.
130     * @param limit   - the limit offset for the input text.
131     * @param script  - the script hint.
132     * @param success - set to an error code if the arguments are illegal, or no font
133     *                  can be returned for some reason. May also be set to
134     *                  <code>LE_NO_SUBFONT_WARNING</code> if the subfont which
135     *                  was returned cannot render all of the text.
136     *
137     * @return an <code>LEFontInstance</code> for the sub font which can render the characters, or
138     *         <code>NULL</code> if there is an error.
139     *
140     * @see LEScripts.h
141     *
142     * @stable ICU 3.2
143     */
144    virtual const LEFontInstance *getSubFont(const LEUnicode chars[], le_int32 *offset, le_int32 limit, le_int32 script, LEErrorCode &success) const;
145
146    //
147    // Font file access
148    //
149
150    /**
151     * This method reads a table from the font. Note that in general,
152     * it only makes sense to call this method on an <code>LEFontInstance</code>
153     * which represents a physical font - i.e. one which has been returned by
154     * <code>getSubFont()</code>. This is because each subfont in a composite font
155     * will have different tables, and there's no way to know which subfont to access.
156     *
157     * Subclasses which represent composite fonts should always return <code>NULL</code>.
158     *
159     * Note that implementing this function does not allow for range checking.
160     * Subclasses that desire the safety of range checking must implement the
161     * variation which has a length parameter.
162     *
163     * @param tableTag - the four byte table tag. (e.g. 'cmap')
164     *
165     * @return the address of the table in memory, or <code>NULL</code>
166     *         if the table doesn't exist.
167     *
168     * @stable ICU 2.8
169     */
170    virtual const void *getFontTable(LETag tableTag) const = 0;
171
172    /**
173     * This method reads a table from the font. Note that in general,
174     * it only makes sense to call this method on an <code>LEFontInstance</code>
175     * which represents a physical font - i.e. one which has been returned by
176     * <code>getSubFont()</code>. This is because each subfont in a composite font
177     * will have different tables, and there's no way to know which subfont to access.
178     *
179     * Subclasses which represent composite fonts should always return <code>NULL</code>.
180     *
181     * This version sets a length, for range checking.
182     * Note that range checking can only be accomplished if this function is
183     * implemented in subclasses.
184     *
185     * @param tableTag - the four byte table tag. (e.g. 'cmap')
186     * @param length - ignored on entry, on exit will be the length of the table if known, or -1 if unknown.
187     * @return the address of the table in memory, or <code>NULL</code>
188     *         if the table doesn't exist.
189     * @draft ICU 52
190     */
191    virtual const void* getFontTable(LETag tableTag, size_t &length) const { length=-1; return getFontTable(tableTag); }  /* -1 = unknown length */
192
193    /**
194     * This method is used to determine if the font can
195     * render the given character. This can usually be done
196     * by looking the character up in the font's character
197     * to glyph mapping.
198     *
199     * The default implementation of this method will return
200     * <code>TRUE</code> if <code>mapCharToGlyph(ch)</code>
201     * returns a non-zero value.
202     *
203     * @param ch - the character to be tested
204     *
205     * @return <code>TRUE</code> if the font can render ch.
206     *
207     * @stable ICU 3.2
208     */
209    virtual le_bool canDisplay(LEUnicode32 ch) const;
210
211    /**
212     * This method returns the number of design units in
213     * the font's EM square.
214     *
215     * @return the number of design units pre EM.
216     *
217     * @stable ICU 2.8
218     */
219    virtual le_int32 getUnitsPerEM() const = 0;
220
221    /**
222     * This method maps an array of character codes to an array of glyph
223     * indices, using the font's character to glyph map.
224     *
225     * The default implementation iterates over all of the characters and calls
226     * <code>mapCharToGlyph(ch, mapper)</code> on each one. It also handles surrogate
227     * characters, storing the glyph ID for the high surrogate, and a deleted glyph (0xFFFF)
228     * for the low surrogate.
229     *
230     * Most sublcasses will not need to implement this method.
231     *
232     * @param chars - the character array
233     * @param offset - the index of the first character
234     * @param count - the number of characters
235     * @param reverse - if <code>TRUE</code>, store the glyph indices in reverse order.
236     * @param mapper - the character mapper.
237     * @param filterZeroWidth - <code>TRUE</code> if ZWJ / ZWNJ characters should map to a glyph w/ no contours.
238     * @param glyphStorage - the object which contains the output glyph array
239     *
240     * @see LECharMapper
241     *
242     * @stable ICU 3.6
243     */
244    virtual void mapCharsToGlyphs(const LEUnicode chars[], le_int32 offset, le_int32 count, le_bool reverse, const LECharMapper *mapper, le_bool filterZeroWidth, LEGlyphStorage &glyphStorage) const;
245
246    /**
247     * This method maps a single character to a glyph index, using the
248     * font's character to glyph map. The default implementation of this
249     * method calls the mapper, and then calls <code>mapCharToGlyph(mappedCh)</code>.
250     *
251     * @param ch - the character
252     * @param mapper - the character mapper
253     * @param filterZeroWidth - <code>TRUE</code> if ZWJ / ZWNJ characters should map to a glyph w/ no contours.
254     *
255     * @return the glyph index
256     *
257     * @see LECharMapper
258     *
259     * @stable ICU 3.6
260     */
261    virtual LEGlyphID mapCharToGlyph(LEUnicode32 ch, const LECharMapper *mapper, le_bool filterZeroWidth) const;
262
263    /**
264     * This method maps a single character to a glyph index, using the
265     * font's character to glyph map. The default implementation of this
266     * method calls the mapper, and then calls <code>mapCharToGlyph(mappedCh)</code>.
267     *
268     * @param ch - the character
269     * @param mapper - the character mapper
270     *
271     * @return the glyph index
272     *
273     * @see LECharMapper
274     *
275     * @stable ICU 3.2
276     */
277    virtual LEGlyphID mapCharToGlyph(LEUnicode32 ch, const LECharMapper *mapper) const;
278
279    /**
280     * This method maps a single character to a glyph index, using the
281     * font's character to glyph map. There is no default implementation
282     * of this method because it requires information about the platform
283     * font implementation.
284     *
285     * @param ch - the character
286     *
287     * @return the glyph index
288     *
289     * @stable ICU 3.2
290     */
291    virtual LEGlyphID mapCharToGlyph(LEUnicode32 ch) const = 0;
292
293    //
294    // Metrics
295    //
296
297    /**
298     * This method gets the X and Y advance of a particular glyph, in pixels.
299     *
300     * @param glyph - the glyph index
301     * @param advance - the X and Y pixel values will be stored here
302     *
303     * @stable ICU 3.2
304     */
305    virtual void getGlyphAdvance(LEGlyphID glyph, LEPoint &advance) const = 0;
306
307    /**
308     * This method gets the hinted X and Y pixel coordinates of a particular
309     * point in the outline of the given glyph.
310     *
311     * @param glyph - the glyph index
312     * @param pointNumber - the number of the point
313     * @param point - the point's X and Y pixel values will be stored here
314     *
315     * @return <code>TRUE</code> if the point coordinates could be stored.
316     *
317     * @stable ICU 2.8
318     */
319    virtual le_bool getGlyphPoint(LEGlyphID glyph, le_int32 pointNumber, LEPoint &point) const = 0;
320
321    /**
322     * This method returns the width of the font's EM square
323     * in pixels.
324     *
325     * @return the pixel width of the EM square
326     *
327     * @stable ICU 2.8
328     */
329    virtual float getXPixelsPerEm() const = 0;
330
331    /**
332     * This method returns the height of the font's EM square
333     * in pixels.
334     *
335     * @return the pixel height of the EM square
336     *
337     * @stable ICU 2.8
338     */
339    virtual float getYPixelsPerEm() const = 0;
340
341    /**
342     * This method converts font design units in the
343     * X direction to points.
344     *
345     * @param xUnits - design units in the X direction
346     *
347     * @return points in the X direction
348     *
349     * @stable ICU 3.2
350     */
351    virtual float xUnitsToPoints(float xUnits) const;
352
353    /**
354     * This method converts font design units in the
355     * Y direction to points.
356     *
357     * @param yUnits - design units in the Y direction
358     *
359     * @return points in the Y direction
360     *
361     * @stable ICU 3.2
362     */
363    virtual float yUnitsToPoints(float yUnits) const;
364
365    /**
366     * This method converts font design units to points.
367     *
368     * @param units - X and Y design units
369     * @param points - set to X and Y points
370     *
371     * @stable ICU 3.2
372     */
373    virtual void unitsToPoints(LEPoint &units, LEPoint &points) const;
374
375    /**
376     * This method converts pixels in the
377     * X direction to font design units.
378     *
379     * @param xPixels - pixels in the X direction
380     *
381     * @return font design units in the X direction
382     *
383     * @stable ICU 3.2
384     */
385    virtual float xPixelsToUnits(float xPixels) const;
386
387    /**
388     * This method converts pixels in the
389     * Y direction to font design units.
390     *
391     * @param yPixels - pixels in the Y direction
392     *
393     * @return font design units in the Y direction
394     *
395     * @stable ICU 3.2
396     */
397    virtual float yPixelsToUnits(float yPixels) const;
398
399    /**
400     * This method converts pixels to font design units.
401     *
402     * @param pixels - X and Y pixel
403     * @param units - set to X and Y font design units
404     *
405     * @stable ICU 3.2
406     */
407    virtual void pixelsToUnits(LEPoint &pixels, LEPoint &units) const;
408
409    /**
410     * Get the X scale factor from the font's transform. The default
411     * implementation of <code>transformFunits()</code> will call this method.
412     *
413     * @return the X scale factor.
414     *
415     *
416     * @see transformFunits
417     *
418     * @stable ICU 3.2
419     */
420    virtual float getScaleFactorX() const = 0;
421
422    /**
423     * Get the Y scale factor from the font's transform. The default
424     * implementation of <code>transformFunits()</code> will call this method.
425     *
426     * @return the Yscale factor.
427     *
428     * @see transformFunits
429     *
430     * @stable ICU 3.2
431     */
432    virtual float getScaleFactorY() const = 0;
433
434    /**
435     * This method transforms an X, Y point in font design units to a
436     * pixel coordinate, applying the font's transform. The default
437     * implementation of this method calls <code>getScaleFactorX()</code>
438     * and <code>getScaleFactorY()</code>.
439     *
440     * @param xFunits - the X coordinate in font design units
441     * @param yFunits - the Y coordinate in font design units
442     * @param pixels - the tranformed co-ordinate in pixels
443     *
444     * @see getScaleFactorX
445     * @see getScaleFactorY
446     *
447     * @stable ICU 3.2
448     */
449    virtual void transformFunits(float xFunits, float yFunits, LEPoint &pixels) const;
450
451    /**
452     * This is a convenience method used to convert
453     * values in a 16.16 fixed point format to floating point.
454     *
455     * @param fixed - the fixed point value
456     *
457     * @return the floating point value
458     *
459     * @stable ICU 2.8
460     */
461    static inline float fixedToFloat(le_int32 fixed);
462
463    /**
464     * This is a convenience method used to convert
465     * floating point values to 16.16 fixed point format.
466     *
467     * @param theFloat - the floating point value
468     *
469     * @return the fixed point value
470     *
471     * @stable ICU 2.8
472     */
473    static inline le_int32 floatToFixed(float theFloat);
474
475    //
476    // These methods won't ever be called by the LayoutEngine,
477    // but are useful for clients of <code>LEFontInstance</code> who
478    // need to render text.
479    //
480
481    /**
482     * Get the font's ascent.
483     *
484     * @return the font's ascent, in points. This value
485     * will always be positive.
486     *
487     * @stable ICU 3.2
488     */
489    virtual le_int32 getAscent() const = 0;
490
491    /**
492     * Get the font's descent.
493     *
494     * @return the font's descent, in points. This value
495     * will always be positive.
496     *
497     * @stable ICU 3.2
498     */
499    virtual le_int32 getDescent() const = 0;
500
501    /**
502     * Get the font's leading.
503     *
504     * @return the font's leading, in points. This value
505     * will always be positive.
506     *
507     * @stable ICU 3.2
508     */
509    virtual le_int32 getLeading() const = 0;
510
511    /**
512     * Get the line height required to display text in
513     * this font. The default implementation of this method
514     * returns the sum of the ascent, descent, and leading.
515     *
516     * @return the line height, in points. This vaule will
517     * always be positive.
518     *
519     * @stable ICU 3.2
520     */
521    virtual le_int32 getLineHeight() const;
522
523    /**
524     * ICU "poor man's RTTI", returns a UClassID for the actual class.
525     *
526     * @stable ICU 3.2
527     */
528    virtual UClassID getDynamicClassID() const;
529
530    /**
531     * ICU "poor man's RTTI", returns a UClassID for this class.
532     *
533     * @stable ICU 3.2
534     */
535    static UClassID getStaticClassID();
536
537};
538
539inline float LEFontInstance::fixedToFloat(le_int32 fixed)
540{
541    return (float) (fixed / 65536.0);
542}
543
544inline le_int32 LEFontInstance::floatToFixed(float theFloat)
545{
546    return (le_int32) (theFloat * 65536.0);
547}
548
549U_NAMESPACE_END
550#endif
551