1/*
2 * jdhuff.c
3 *
4 * Copyright (C) 1991-1997, Thomas G. Lane.
5 * This file is part of the Independent JPEG Group's software.
6 * For conditions of distribution and use, see the accompanying README file.
7 *
8 * This file contains Huffman entropy decoding routines.
9 *
10 * Much of the complexity here has to do with supporting input suspension.
11 * If the data source module demands suspension, we want to be able to back
12 * up to the start of the current MCU.  To do this, we copy state variables
13 * into local working storage, and update them back to the permanent
14 * storage only upon successful completion of an MCU.
15 */
16
17#define JPEG_INTERNALS
18#include "jinclude.h"
19#include "jpeglib.h"
20#include "jdhuff.h"		/* Declarations shared with jdphuff.c */
21
22LOCAL(boolean) process_restart (j_decompress_ptr cinfo);
23
24
25/*
26 * Expanded entropy decoder object for Huffman decoding.
27 *
28 * The savable_state subrecord contains fields that change within an MCU,
29 * but must not be updated permanently until we complete the MCU.
30 */
31
32typedef struct {
33  int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */
34} savable_state;
35
36/* This macro is to work around compilers with missing or broken
37 * structure assignment.  You'll need to fix this code if you have
38 * such a compiler and you change MAX_COMPS_IN_SCAN.
39 */
40
41#ifndef NO_STRUCT_ASSIGN
42#define ASSIGN_STATE(dest,src)  ((dest) = (src))
43#else
44#if MAX_COMPS_IN_SCAN == 4
45#define ASSIGN_STATE(dest,src)  \
46	((dest).last_dc_val[0] = (src).last_dc_val[0], \
47	 (dest).last_dc_val[1] = (src).last_dc_val[1], \
48	 (dest).last_dc_val[2] = (src).last_dc_val[2], \
49	 (dest).last_dc_val[3] = (src).last_dc_val[3])
50#endif
51#endif
52
53
54typedef struct {
55  struct jpeg_entropy_decoder pub; /* public fields */
56
57  /* These fields are loaded into local variables at start of each MCU.
58   * In case of suspension, we exit WITHOUT updating them.
59   */
60  bitread_perm_state bitstate;	/* Bit buffer at start of MCU */
61  savable_state saved;		/* Other state at start of MCU */
62
63  /* These fields are NOT loaded into local working state. */
64  unsigned int restarts_to_go;	/* MCUs left in this restart interval */
65
66  /* Pointers to derived tables (these workspaces have image lifespan) */
67  d_derived_tbl * dc_derived_tbls[NUM_HUFF_TBLS];
68  d_derived_tbl * ac_derived_tbls[NUM_HUFF_TBLS];
69
70  /* Precalculated info set up by start_pass for use in decode_mcu: */
71
72  /* Pointers to derived tables to be used for each block within an MCU */
73  d_derived_tbl * dc_cur_tbls[D_MAX_BLOCKS_IN_MCU];
74  d_derived_tbl * ac_cur_tbls[D_MAX_BLOCKS_IN_MCU];
75  /* Whether we care about the DC and AC coefficient values for each block */
76  boolean dc_needed[D_MAX_BLOCKS_IN_MCU];
77  boolean ac_needed[D_MAX_BLOCKS_IN_MCU];
78} huff_entropy_decoder;
79
80typedef huff_entropy_decoder * huff_entropy_ptr;
81
82/*
83 * Initialize for a Huffman-compressed scan.
84 */
85
86METHODDEF(void)
87start_pass_huff_decoder (j_decompress_ptr cinfo)
88{
89  huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
90  int ci, blkn, dctbl, actbl;
91  jpeg_component_info * compptr;
92
93  /* Check that the scan parameters Ss, Se, Ah/Al are OK for sequential JPEG.
94   * This ought to be an error condition, but we make it a warning because
95   * there are some baseline files out there with all zeroes in these bytes.
96   */
97  if (cinfo->Ss != 0 || cinfo->Se != DCTSIZE2-1 ||
98      cinfo->Ah != 0 || cinfo->Al != 0)
99    WARNMS(cinfo, JWRN_NOT_SEQUENTIAL);
100
101  for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
102    compptr = cinfo->cur_comp_info[ci];
103    dctbl = compptr->dc_tbl_no;
104    actbl = compptr->ac_tbl_no;
105    /* Compute derived values for Huffman tables */
106    /* We may do this more than once for a table, but it's not expensive */
107    jpeg_make_d_derived_tbl(cinfo, TRUE, dctbl,
108			    & entropy->dc_derived_tbls[dctbl]);
109    jpeg_make_d_derived_tbl(cinfo, FALSE, actbl,
110			    & entropy->ac_derived_tbls[actbl]);
111    /* Initialize DC predictions to 0 */
112    entropy->saved.last_dc_val[ci] = 0;
113  }
114
115  /* Precalculate decoding info for each block in an MCU of this scan */
116  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
117    ci = cinfo->MCU_membership[blkn];
118    compptr = cinfo->cur_comp_info[ci];
119    /* Precalculate which table to use for each block */
120    entropy->dc_cur_tbls[blkn] = entropy->dc_derived_tbls[compptr->dc_tbl_no];
121    entropy->ac_cur_tbls[blkn] = entropy->ac_derived_tbls[compptr->ac_tbl_no];
122    /* Decide whether we really care about the coefficient values */
123    if (compptr->component_needed) {
124      entropy->dc_needed[blkn] = TRUE;
125      /* we don't need the ACs if producing a 1/8th-size image */
126      entropy->ac_needed[blkn] = (compptr->DCT_scaled_size > 1);
127    } else {
128      entropy->dc_needed[blkn] = entropy->ac_needed[blkn] = FALSE;
129    }
130  }
131
132  /* Initialize bitread state variables */
133  entropy->bitstate.bits_left = 0;
134  entropy->bitstate.get_buffer = 0; /* unnecessary, but keeps Purify quiet */
135  entropy->pub.insufficient_data = FALSE;
136
137  /* Initialize restart counter */
138  entropy->restarts_to_go = cinfo->restart_interval;
139}
140
141
142/*
143 * Compute the derived values for a Huffman table.
144 * This routine also performs some validation checks on the table.
145 *
146 * Note this is also used by jdphuff.c.
147 */
148
149GLOBAL(void)
150jpeg_make_d_derived_tbl (j_decompress_ptr cinfo, boolean isDC, int tblno,
151			 d_derived_tbl ** pdtbl)
152{
153  JHUFF_TBL *htbl;
154  d_derived_tbl *dtbl;
155  int p, i, l, si, numsymbols;
156  int lookbits, ctr;
157  char huffsize[257];
158  unsigned int huffcode[257];
159  unsigned int code;
160
161  /* Note that huffsize[] and huffcode[] are filled in code-length order,
162   * paralleling the order of the symbols themselves in htbl->huffval[].
163   */
164
165  /* Find the input Huffman table */
166  if (tblno < 0 || tblno >= NUM_HUFF_TBLS)
167    ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
168  htbl =
169    isDC ? cinfo->dc_huff_tbl_ptrs[tblno] : cinfo->ac_huff_tbl_ptrs[tblno];
170  if (htbl == NULL)
171    ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
172
173  /* Allocate a workspace if we haven't already done so. */
174  if (*pdtbl == NULL)
175    *pdtbl = (d_derived_tbl *)
176      (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
177				  SIZEOF(d_derived_tbl));
178  dtbl = *pdtbl;
179  dtbl->pub = htbl;		/* fill in back link */
180
181  /* Figure C.1: make table of Huffman code length for each symbol */
182
183  p = 0;
184  for (l = 1; l <= 16; l++) {
185    i = (int) htbl->bits[l];
186    if (i < 0 || p + i > 256)	/* protect against table overrun */
187      ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
188    while (i--)
189      huffsize[p++] = (char) l;
190  }
191  huffsize[p] = 0;
192  numsymbols = p;
193
194  /* Figure C.2: generate the codes themselves */
195  /* We also validate that the counts represent a legal Huffman code tree. */
196
197  code = 0;
198  si = huffsize[0];
199  p = 0;
200  while (huffsize[p]) {
201    while (((int) huffsize[p]) == si) {
202      huffcode[p++] = code;
203      code++;
204    }
205    /* code is now 1 more than the last code used for codelength si; but
206     * it must still fit in si bits, since no code is allowed to be all ones.
207     */
208    if (((INT32) code) >= (((INT32) 1) << si))
209      ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
210    code <<= 1;
211    si++;
212  }
213
214  /* Figure F.15: generate decoding tables for bit-sequential decoding */
215
216  p = 0;
217  for (l = 1; l <= 16; l++) {
218    if (htbl->bits[l]) {
219      /* valoffset[l] = huffval[] index of 1st symbol of code length l,
220       * minus the minimum code of length l
221       */
222      dtbl->valoffset[l] = (INT32) p - (INT32) huffcode[p];
223      p += htbl->bits[l];
224      dtbl->maxcode[l] = huffcode[p-1]; /* maximum code of length l */
225    } else {
226      dtbl->maxcode[l] = -1;	/* -1 if no codes of this length */
227    }
228  }
229  dtbl->maxcode[17] = 0xFFFFFL; /* ensures jpeg_huff_decode terminates */
230
231  /* Compute lookahead tables to speed up decoding.
232   * First we set all the table entries to 0, indicating "too long";
233   * then we iterate through the Huffman codes that are short enough and
234   * fill in all the entries that correspond to bit sequences starting
235   * with that code.
236   */
237
238  MEMZERO(dtbl->look_nbits, SIZEOF(dtbl->look_nbits));
239
240  p = 0;
241  for (l = 1; l <= HUFF_LOOKAHEAD; l++) {
242    for (i = 1; i <= (int) htbl->bits[l]; i++, p++) {
243      /* l = current code's length, p = its index in huffcode[] & huffval[]. */
244      /* Generate left-justified code followed by all possible bit sequences */
245      lookbits = huffcode[p] << (HUFF_LOOKAHEAD-l);
246      for (ctr = 1 << (HUFF_LOOKAHEAD-l); ctr > 0; ctr--) {
247	dtbl->look_nbits[lookbits] = l;
248	dtbl->look_sym[lookbits] = htbl->huffval[p];
249	lookbits++;
250      }
251    }
252  }
253
254  /* Validate symbols as being reasonable.
255   * For AC tables, we make no check, but accept all byte values 0..255.
256   * For DC tables, we require the symbols to be in range 0..15.
257   * (Tighter bounds could be applied depending on the data depth and mode,
258   * but this is sufficient to ensure safe decoding.)
259   */
260  if (isDC) {
261    for (i = 0; i < numsymbols; i++) {
262      int sym = htbl->huffval[i];
263      if (sym < 0 || sym > 15)
264	ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
265    }
266  }
267}
268
269
270/*
271 * Out-of-line code for bit fetching (shared with jdphuff.c).
272 * See jdhuff.h for info about usage.
273 * Note: current values of get_buffer and bits_left are passed as parameters,
274 * but are returned in the corresponding fields of the state struct.
275 *
276 * On most machines MIN_GET_BITS should be 25 to allow the full 32-bit width
277 * of get_buffer to be used.  (On machines with wider words, an even larger
278 * buffer could be used.)  However, on some machines 32-bit shifts are
279 * quite slow and take time proportional to the number of places shifted.
280 * (This is true with most PC compilers, for instance.)  In this case it may
281 * be a win to set MIN_GET_BITS to the minimum value of 15.  This reduces the
282 * average shift distance at the cost of more calls to jpeg_fill_bit_buffer.
283 */
284
285#ifdef SLOW_SHIFT_32
286#define MIN_GET_BITS  15	/* minimum allowable value */
287#else
288#define MIN_GET_BITS  (BIT_BUF_SIZE-7)
289#endif
290
291
292GLOBAL(boolean)
293jpeg_fill_bit_buffer (bitread_working_state * state,
294		      register bit_buf_type get_buffer, register int bits_left,
295		      int nbits)
296/* Load up the bit buffer to a depth of at least nbits */
297{
298  /* Copy heavily used state fields into locals (hopefully registers) */
299  register const JOCTET * next_input_byte = state->next_input_byte;
300  register size_t bytes_in_buffer = state->bytes_in_buffer;
301  j_decompress_ptr cinfo = state->cinfo;
302
303  /* Attempt to load at least MIN_GET_BITS bits into get_buffer. */
304  /* (It is assumed that no request will be for more than that many bits.) */
305  /* We fail to do so only if we hit a marker or are forced to suspend. */
306
307  if (cinfo->unread_marker == 0) {	/* cannot advance past a marker */
308    while (bits_left < MIN_GET_BITS) {
309      register int c;
310
311      /* Attempt to read a byte */
312      if (bytes_in_buffer == 0) {
313	if (! (*cinfo->src->fill_input_buffer) (cinfo))
314	  return FALSE;
315	next_input_byte = cinfo->src->next_input_byte;
316	bytes_in_buffer = cinfo->src->bytes_in_buffer;
317      }
318      bytes_in_buffer--;
319      c = GETJOCTET(*next_input_byte++);
320
321      /* If it's 0xFF, check and discard stuffed zero byte */
322      if (c == 0xFF) {
323	/* Loop here to discard any padding FF's on terminating marker,
324	 * so that we can save a valid unread_marker value.  NOTE: we will
325	 * accept multiple FF's followed by a 0 as meaning a single FF data
326	 * byte.  This data pattern is not valid according to the standard.
327	 */
328	do {
329	  if (bytes_in_buffer == 0) {
330	    if (! (*cinfo->src->fill_input_buffer) (cinfo))
331	      return FALSE;
332	    next_input_byte = cinfo->src->next_input_byte;
333	    bytes_in_buffer = cinfo->src->bytes_in_buffer;
334	  }
335	  bytes_in_buffer--;
336	  c = GETJOCTET(*next_input_byte++);
337	} while (c == 0xFF);
338
339	if (c == 0) {
340	  /* Found FF/00, which represents an FF data byte */
341	  c = 0xFF;
342	} else {
343	  /* Oops, it's actually a marker indicating end of compressed data.
344	   * Save the marker code for later use.
345	   * Fine point: it might appear that we should save the marker into
346	   * bitread working state, not straight into permanent state.  But
347	   * once we have hit a marker, we cannot need to suspend within the
348	   * current MCU, because we will read no more bytes from the data
349	   * source.  So it is OK to update permanent state right away.
350	   */
351	  cinfo->unread_marker = c;
352	  /* See if we need to insert some fake zero bits. */
353	  goto no_more_bytes;
354	}
355      }
356
357      /* OK, load c into get_buffer */
358      get_buffer = (get_buffer << 8) | c;
359      bits_left += 8;
360    } /* end while */
361  } else {
362  no_more_bytes:
363    /* We get here if we've read the marker that terminates the compressed
364     * data segment.  There should be enough bits in the buffer register
365     * to satisfy the request; if so, no problem.
366     */
367    if (nbits > bits_left) {
368      /* Uh-oh.  Report corrupted data to user and stuff zeroes into
369       * the data stream, so that we can produce some kind of image.
370       * We use a nonvolatile flag to ensure that only one warning message
371       * appears per data segment.
372       */
373      if (! cinfo->entropy->insufficient_data) {
374	WARNMS(cinfo, JWRN_HIT_MARKER);
375	cinfo->entropy->insufficient_data = TRUE;
376      }
377      /* Fill the buffer with zero bits */
378      get_buffer <<= MIN_GET_BITS - bits_left;
379      bits_left = MIN_GET_BITS;
380    }
381  }
382
383  /* Unload the local registers */
384  state->next_input_byte = next_input_byte;
385  state->bytes_in_buffer = bytes_in_buffer;
386  state->get_buffer = get_buffer;
387  state->bits_left = bits_left;
388
389  return TRUE;
390}
391
392
393/*
394 * Out-of-line code for Huffman code decoding.
395 * See jdhuff.h for info about usage.
396 */
397
398GLOBAL(int)
399jpeg_huff_decode (bitread_working_state * state,
400		  register bit_buf_type get_buffer, register int bits_left,
401		  d_derived_tbl * htbl, int min_bits)
402{
403  register int l = min_bits;
404  register INT32 code;
405
406  /* HUFF_DECODE has determined that the code is at least min_bits */
407  /* bits long, so fetch that many bits in one swoop. */
408
409  CHECK_BIT_BUFFER(*state, l, return -1);
410  code = GET_BITS(l);
411
412  /* Collect the rest of the Huffman code one bit at a time. */
413  /* This is per Figure F.16 in the JPEG spec. */
414
415  while (code > htbl->maxcode[l]) {
416    code <<= 1;
417    CHECK_BIT_BUFFER(*state, 1, return -1);
418    code |= GET_BITS(1);
419    l++;
420  }
421
422  /* Unload the local registers */
423  state->get_buffer = get_buffer;
424  state->bits_left = bits_left;
425
426  /* With garbage input we may reach the sentinel value l = 17. */
427
428  if (l > 16) {
429    WARNMS(state->cinfo, JWRN_HUFF_BAD_CODE);
430    return 0;			/* fake a zero as the safest result */
431  }
432
433  return htbl->pub->huffval[ (int) (code + htbl->valoffset[l]) ];
434}
435
436
437/*
438 * Figure F.12: extend sign bit.
439 * On some machines, a shift and add will be faster than a table lookup.
440 */
441
442#ifdef AVOID_TABLES
443
444#define HUFF_EXTEND(x,s)  ((x) < (1<<((s)-1)) ? (x) + (((-1)<<(s)) + 1) : (x))
445
446#else
447
448#define HUFF_EXTEND(x,s)  ((x) < extend_test[s] ? (x) + extend_offset[s] : (x))
449
450static const int extend_test[16] =   /* entry n is 2**(n-1) */
451  { 0, 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
452    0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000 };
453
454static const int extend_offset[16] = /* entry n is (-1 << n) + 1 */
455  { 0, ((-1)<<1) + 1, ((-1)<<2) + 1, ((-1)<<3) + 1, ((-1)<<4) + 1,
456    ((-1)<<5) + 1, ((-1)<<6) + 1, ((-1)<<7) + 1, ((-1)<<8) + 1,
457    ((-1)<<9) + 1, ((-1)<<10) + 1, ((-1)<<11) + 1, ((-1)<<12) + 1,
458    ((-1)<<13) + 1, ((-1)<<14) + 1, ((-1)<<15) + 1 };
459
460#endif /* AVOID_TABLES */
461
462
463/*
464 * Check for a restart marker & resynchronize decoder.
465 * Returns FALSE if must suspend.
466 */
467
468LOCAL(boolean)
469process_restart (j_decompress_ptr cinfo)
470{
471  huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
472  int ci;
473
474  /* Throw away any unused bits remaining in bit buffer; */
475  /* include any full bytes in next_marker's count of discarded bytes */
476  cinfo->marker->discarded_bytes += entropy->bitstate.bits_left / 8;
477  entropy->bitstate.bits_left = 0;
478
479  /* Advance past the RSTn marker */
480  if (! (*cinfo->marker->read_restart_marker) (cinfo))
481    return FALSE;
482
483  /* Re-initialize DC predictions to 0 */
484  for (ci = 0; ci < cinfo->comps_in_scan; ci++)
485    entropy->saved.last_dc_val[ci] = 0;
486
487  /* Reset restart counter */
488  entropy->restarts_to_go = cinfo->restart_interval;
489
490  /* Reset out-of-data flag, unless read_restart_marker left us smack up
491   * against a marker.  In that case we will end up treating the next data
492   * segment as empty, and we can avoid producing bogus output pixels by
493   * leaving the flag set.
494   */
495  if (cinfo->unread_marker == 0)
496    entropy->pub.insufficient_data = FALSE;
497
498  return TRUE;
499}
500
501/*
502 * Save the current Huffman deocde position and the DC coefficients
503 * for each component into bitstream_offset and dc_info[], respectively.
504 */
505METHODDEF(void)
506get_huffman_decoder_configuration(j_decompress_ptr cinfo,
507        huffman_offset_data *offset)
508{
509  huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
510  short int *dc_info = offset->prev_dc;
511  int i;
512  jpeg_get_huffman_decoder_configuration(cinfo, offset);
513  for (i = 0; i < cinfo->comps_in_scan; i++) {
514    dc_info[i] = entropy->saved.last_dc_val[i];
515  }
516}
517
518/*
519 * Save the current Huffman decoder position and the bit buffer
520 * into bitstream_offset and get_buffer, respectively.
521 */
522GLOBAL(void)
523jpeg_get_huffman_decoder_configuration(j_decompress_ptr cinfo,
524        huffman_offset_data *offset)
525{
526  huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
527
528  if (cinfo->restart_interval) {
529    // We are at the end of a data segment
530    if (entropy->restarts_to_go == 0)
531      if (! process_restart(cinfo))
532	return;
533  }
534
535  // Save restarts_to_go and next_restart_num
536  offset->restarts_to_go = (unsigned short) entropy->restarts_to_go;
537  offset->next_restart_num = cinfo->marker->next_restart_num;
538
539  offset->bitstream_offset =
540      (jget_input_stream_position(cinfo) << LOG_TWO_BIT_BUF_SIZE)
541      + entropy->bitstate.bits_left;
542
543  offset->get_buffer = entropy->bitstate.get_buffer;
544}
545
546/*
547 * Configure the Huffman decoder to decode the image
548 * starting from the bitstream position recorded in offset.
549 */
550METHODDEF(void)
551configure_huffman_decoder(j_decompress_ptr cinfo, huffman_offset_data offset)
552{
553  huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
554  short int *dc_info = offset.prev_dc;
555  int i;
556  jpeg_configure_huffman_decoder(cinfo, offset);
557  for (i = 0; i < cinfo->comps_in_scan; i++) {
558    entropy->saved.last_dc_val[i] = dc_info[i];
559  }
560}
561
562/*
563 * Configure the Huffman decoder reader position and bit buffer.
564 */
565GLOBAL(void)
566jpeg_configure_huffman_decoder(j_decompress_ptr cinfo,
567        huffman_offset_data offset)
568{
569  huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
570
571  // Restore restarts_to_go and next_restart_num
572  cinfo->unread_marker = 0;
573  entropy->restarts_to_go = offset.restarts_to_go;
574  cinfo->marker->next_restart_num = offset.next_restart_num;
575
576  unsigned int bitstream_offset = offset.bitstream_offset;
577  int blkn, i;
578
579  unsigned int byte_offset = bitstream_offset >> LOG_TWO_BIT_BUF_SIZE;
580  unsigned int bit_in_bit_buffer =
581      bitstream_offset & ((1 << LOG_TWO_BIT_BUF_SIZE) - 1);
582
583  jset_input_stream_position_bit(cinfo, byte_offset,
584          bit_in_bit_buffer, offset.get_buffer);
585}
586
587/*
588 * Decode and return one MCU's worth of Huffman-compressed coefficients.
589 * The coefficients are reordered from zigzag order into natural array order,
590 * but are not dequantized.
591 *
592 * The i'th block of the MCU is stored into the block pointed to by
593 * MCU_data[i].  WE ASSUME THIS AREA HAS BEEN ZEROED BY THE CALLER.
594 * (Wholesale zeroing is usually a little faster than retail...)
595 *
596 * Returns FALSE if data source requested suspension.  In that case no
597 * changes have been made to permanent state.  (Exception: some output
598 * coefficients may already have been assigned.  This is harmless for
599 * this module, since we'll just re-assign them on the next call.)
600 */
601
602METHODDEF(boolean)
603decode_mcu (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
604{
605  huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
606  int blkn;
607  BITREAD_STATE_VARS;
608  savable_state state;
609
610  /* Process restart marker if needed; may have to suspend */
611  if (cinfo->restart_interval) {
612    if (entropy->restarts_to_go == 0)
613      if (! process_restart(cinfo))
614	return FALSE;
615  }
616
617  /* If we've run out of data, just leave the MCU set to zeroes.
618   * This way, we return uniform gray for the remainder of the segment.
619   */
620  if (! entropy->pub.insufficient_data) {
621    /* Load up working state */
622    BITREAD_LOAD_STATE(cinfo,entropy->bitstate);
623    ASSIGN_STATE(state, entropy->saved);
624
625    /* Outer loop handles each block in the MCU */
626
627    for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
628      JBLOCKROW block = MCU_data[blkn];
629      d_derived_tbl * dctbl = entropy->dc_cur_tbls[blkn];
630      d_derived_tbl * actbl = entropy->ac_cur_tbls[blkn];
631      register int s, k, r;
632
633      /* Decode a single block's worth of coefficients */
634
635      /* Section F.2.2.1: decode the DC coefficient difference */
636      HUFF_DECODE(s, br_state, dctbl, return FALSE, label1);
637      if (s) {
638	CHECK_BIT_BUFFER(br_state, s, return FALSE);
639	r = GET_BITS(s);
640	s = HUFF_EXTEND(r, s);
641      }
642
643      if (entropy->dc_needed[blkn]) {
644	/* Convert DC difference to actual value, update last_dc_val */
645	int ci = cinfo->MCU_membership[blkn];
646	s += state.last_dc_val[ci];
647	state.last_dc_val[ci] = s;
648	/* Output the DC coefficient (assumes jpeg_natural_order[0] = 0) */
649	(*block)[0] = (JCOEF) s;
650      }
651
652      if (entropy->ac_needed[blkn]) {
653
654	/* Section F.2.2.2: decode the AC coefficients */
655	/* Since zeroes are skipped, output area must be cleared beforehand */
656	for (k = 1; k < DCTSIZE2; k++) {
657	  HUFF_DECODE(s, br_state, actbl, return FALSE, label2);
658
659	  r = s >> 4;
660	  s &= 15;
661
662	  if (s) {
663	    k += r;
664	    CHECK_BIT_BUFFER(br_state, s, return FALSE);
665	    r = GET_BITS(s);
666	    s = HUFF_EXTEND(r, s);
667	    /* Output coefficient in natural (dezigzagged) order.
668	     * Note: the extra entries in jpeg_natural_order[] will save us
669	     * if k >= DCTSIZE2, which could happen if the data is corrupted.
670	     */
671	    (*block)[jpeg_natural_order[k]] = (JCOEF) s;
672	  } else {
673	    if (r != 15)
674	      break;
675	    k += 15;
676	  }
677	}
678
679      } else {
680
681	/* Section F.2.2.2: decode the AC coefficients */
682	/* In this path we just discard the values */
683	for (k = 1; k < DCTSIZE2; k++) {
684	  HUFF_DECODE(s, br_state, actbl, return FALSE, label3);
685
686	  r = s >> 4;
687	  s &= 15;
688
689	  if (s) {
690	    k += r;
691	    CHECK_BIT_BUFFER(br_state, s, return FALSE);
692	    DROP_BITS(s);
693	  } else {
694	    if (r != 15)
695	      break;
696	    k += 15;
697	  }
698	}
699
700      }
701    }
702
703    /* Completed MCU, so update state */
704    BITREAD_SAVE_STATE(cinfo,entropy->bitstate);
705    ASSIGN_STATE(entropy->saved, state);
706  }
707
708  /* Account for restart interval (no-op if not using restarts) */
709  entropy->restarts_to_go--;
710
711  return TRUE;
712}
713
714/*
715 * Decode one MCU's worth of Huffman-compressed coefficients.
716 * The propose of this method is to calculate the
717 * data length of one MCU in Huffman-coded format.
718 * Therefore, all coefficients are discarded.
719 */
720
721METHODDEF(boolean)
722decode_mcu_discard_coef (j_decompress_ptr cinfo)
723{
724  huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
725  int blkn;
726  BITREAD_STATE_VARS;
727  savable_state state;
728
729  /* Process restart marker if needed; may have to suspend */
730  if (cinfo->restart_interval) {
731    if (entropy->restarts_to_go == 0)
732      if (! process_restart(cinfo))
733	return FALSE;
734  }
735
736  if (! entropy->pub.insufficient_data) {
737
738    /* Load up working state */
739    BITREAD_LOAD_STATE(cinfo,entropy->bitstate);
740    ASSIGN_STATE(state, entropy->saved);
741
742    /* Outer loop handles each block in the MCU */
743
744    for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
745      d_derived_tbl * dctbl = entropy->dc_cur_tbls[blkn];
746      d_derived_tbl * actbl = entropy->ac_cur_tbls[blkn];
747      register int s, k, r;
748
749      /* Decode a single block's worth of coefficients */
750
751      /* Section F.2.2.1: decode the DC coefficient difference */
752      HUFF_DECODE(s, br_state, dctbl, return FALSE, label1);
753      if (s) {
754	CHECK_BIT_BUFFER(br_state, s, return FALSE);
755	r = GET_BITS(s);
756	s = HUFF_EXTEND(r, s);
757      }
758
759      /* discard all coefficients */
760      if (entropy->dc_needed[blkn]) {
761	/* Convert DC difference to actual value, update last_dc_val */
762	int ci = cinfo->MCU_membership[blkn];
763	s += state.last_dc_val[ci];
764	state.last_dc_val[ci] = s;
765      }
766      for (k = 1; k < DCTSIZE2; k++) {
767        HUFF_DECODE(s, br_state, actbl, return FALSE, label3);
768
769        r = s >> 4;
770        s &= 15;
771
772        if (s) {
773          k += r;
774          CHECK_BIT_BUFFER(br_state, s, return FALSE);
775          DROP_BITS(s);
776        } else {
777          if (r != 15)
778            break;
779          k += 15;
780        }
781      }
782    }
783
784    /* Completed MCU, so update state */
785    BITREAD_SAVE_STATE(cinfo,entropy->bitstate);
786    ASSIGN_STATE(entropy->saved, state);
787  }
788
789  /* Account for restart interval (no-op if not using restarts) */
790  entropy->restarts_to_go--;
791
792  return TRUE;
793}
794
795
796/*
797 * Module initialization routine for Huffman entropy decoding.
798 */
799
800GLOBAL(void)
801jinit_huff_decoder (j_decompress_ptr cinfo)
802{
803  huff_entropy_ptr entropy;
804  int i;
805
806  entropy = (huff_entropy_ptr)
807    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
808				SIZEOF(huff_entropy_decoder));
809  cinfo->entropy = (struct jpeg_entropy_decoder *) entropy;
810  entropy->pub.start_pass = start_pass_huff_decoder;
811  entropy->pub.decode_mcu = decode_mcu;
812  entropy->pub.decode_mcu_discard_coef = decode_mcu_discard_coef;
813  entropy->pub.configure_huffman_decoder = configure_huffman_decoder;
814  entropy->pub.get_huffman_decoder_configuration =
815        get_huffman_decoder_configuration;
816  entropy->pub.index = NULL;
817
818  /* Mark tables unallocated */
819  for (i = 0; i < NUM_HUFF_TBLS; i++) {
820    entropy->dc_derived_tbls[i] = entropy->ac_derived_tbls[i] = NULL;
821  }
822}
823
824/*
825 * Call after jpeg_read_header
826 */
827GLOBAL(void)
828jpeg_create_huffman_index(j_decompress_ptr cinfo, huffman_index *index)
829{
830  int i, s;
831  index->scan_count = 1;
832  index->total_iMCU_rows = cinfo->total_iMCU_rows;
833  index->scan = (huffman_scan_header*)malloc(index->scan_count
834          * sizeof(huffman_scan_header));
835  index->scan[0].offset = (huffman_offset_data**)malloc(cinfo->total_iMCU_rows
836          * sizeof(huffman_offset_data*));
837  index->scan[0].prev_MCU_offset.bitstream_offset = 0;
838  index->MCU_sample_size = DEFAULT_MCU_SAMPLE_SIZE;
839
840  index->mem_used = sizeof(huffman_scan_header)
841      + cinfo->total_iMCU_rows * sizeof(huffman_offset_data*);
842}
843
844GLOBAL(void)
845jpeg_destroy_huffman_index(huffman_index *index)
846{
847    int i, j;
848    for (i = 0; i < index->scan_count; i++) {
849        for(j = 0; j < index->total_iMCU_rows; j++) {
850            free(index->scan[i].offset[j]);
851        }
852        free(index->scan[i].offset);
853    }
854    free(index->scan);
855}
856
857/*
858 * Set the reader byte position to offset
859 */
860GLOBAL(void)
861jset_input_stream_position(j_decompress_ptr cinfo, int offset)
862{
863  if (cinfo->src->seek_input_data) {
864    cinfo->src->seek_input_data(cinfo, offset);
865  } else {
866    cinfo->src->bytes_in_buffer = cinfo->src->current_offset - offset;
867    cinfo->src->next_input_byte = cinfo->src->start_input_byte + offset;
868  }
869}
870
871/*
872 * Set the reader byte position to offset and bit position to bit_left
873 * with bit buffer set to buf.
874 */
875GLOBAL(void)
876jset_input_stream_position_bit(j_decompress_ptr cinfo,
877        int byte_offset, int bit_left, INT32 buf)
878{
879  huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
880
881  entropy->bitstate.bits_left = bit_left;
882  entropy->bitstate.get_buffer = buf;
883
884  jset_input_stream_position(cinfo, byte_offset);
885}
886
887/*
888 * Get the current reader byte position.
889 */
890GLOBAL(int)
891jget_input_stream_position(j_decompress_ptr cinfo)
892{
893  return cinfo->src->current_offset - cinfo->src->bytes_in_buffer;
894}
895