1/*#define CHASE_CHAIN*/
2/*
3 * Copyright (c) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998
4 *	The Regents of the University of California.  All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that: (1) source code distributions
8 * retain the above copyright notice and this paragraph in its entirety, (2)
9 * distributions including binary code include the above copyright notice and
10 * this paragraph in its entirety in the documentation or other materials
11 * provided with the distribution, and (3) all advertising materials mentioning
12 * features or use of this software display the following acknowledgement:
13 * ``This product includes software developed by the University of California,
14 * Lawrence Berkeley Laboratory and its contributors.'' Neither the name of
15 * the University nor the names of its contributors may be used to endorse
16 * or promote products derived from this software without specific prior
17 * written permission.
18 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED
19 * WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
20 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
21 */
22#ifndef lint
23static const char rcsid[] _U_ =
24    "@(#) $Header: /tcpdump/master/libpcap/gencode.c,v 1.309 2008-12-23 20:13:29 guy Exp $ (LBL)";
25#endif
26
27#ifdef HAVE_CONFIG_H
28#include "config.h"
29#endif
30
31#ifdef WIN32
32#include <pcap-stdinc.h>
33#else /* WIN32 */
34#if HAVE_INTTYPES_H
35#include <inttypes.h>
36#elif HAVE_STDINT_H
37#include <stdint.h>
38#endif
39#ifdef HAVE_SYS_BITYPES_H
40#include <sys/bitypes.h>
41#endif
42#include <sys/types.h>
43#include <sys/socket.h>
44#endif /* WIN32 */
45
46/*
47 * XXX - why was this included even on UNIX?
48 */
49#ifdef __MINGW32__
50#include "ip6_misc.h"
51#endif
52
53#ifndef WIN32
54
55#ifdef __NetBSD__
56#include <sys/param.h>
57#endif
58
59#include <netinet/in.h>
60#include <arpa/inet.h>
61
62#endif /* WIN32 */
63
64#include <stdlib.h>
65#include <string.h>
66#include <memory.h>
67#include <setjmp.h>
68#include <stdarg.h>
69
70#ifdef MSDOS
71#include "pcap-dos.h"
72#endif
73
74#include "pcap-int.h"
75
76#include "ethertype.h"
77#include "nlpid.h"
78#include "llc.h"
79#include "gencode.h"
80#include "ieee80211.h"
81#include "atmuni31.h"
82#include "sunatmpos.h"
83#include "ppp.h"
84#include "pcap/sll.h"
85#include "pcap/ipnet.h"
86#include "arcnet.h"
87#if defined(linux) && defined(PF_PACKET) && defined(SO_ATTACH_FILTER)
88#include <linux/types.h>
89#include <linux/if_packet.h>
90#include <linux/filter.h>
91#endif
92#ifdef HAVE_NET_PFVAR_H
93#include <sys/socket.h>
94#include <net/if.h>
95#include <net/pfvar.h>
96#include <net/if_pflog.h>
97#endif
98#ifndef offsetof
99#define offsetof(s, e) ((size_t)&((s *)0)->e)
100#endif
101#ifdef INET6
102#ifndef WIN32
103#include <netdb.h>	/* for "struct addrinfo" */
104#endif /* WIN32 */
105#endif /*INET6*/
106#include <pcap/namedb.h>
107
108#define ETHERMTU	1500
109
110#ifndef IPPROTO_HOPOPTS
111#define IPPROTO_HOPOPTS 0
112#endif
113#ifndef IPPROTO_ROUTING
114#define IPPROTO_ROUTING 43
115#endif
116#ifndef IPPROTO_FRAGMENT
117#define IPPROTO_FRAGMENT 44
118#endif
119#ifndef IPPROTO_DSTOPTS
120#define IPPROTO_DSTOPTS 60
121#endif
122#ifndef IPPROTO_SCTP
123#define IPPROTO_SCTP 132
124#endif
125
126#ifdef HAVE_OS_PROTO_H
127#include "os-proto.h"
128#endif
129
130#define JMP(c) ((c)|BPF_JMP|BPF_K)
131
132/* Locals */
133static jmp_buf top_ctx;
134static pcap_t *bpf_pcap;
135
136/* Hack for updating VLAN, MPLS, and PPPoE offsets. */
137#ifdef WIN32
138static u_int	orig_linktype = (u_int)-1, orig_nl = (u_int)-1, label_stack_depth = (u_int)-1;
139#else
140static u_int	orig_linktype = -1U, orig_nl = -1U, label_stack_depth = -1U;
141#endif
142
143/* XXX */
144static int	pcap_fddipad;
145
146/* VARARGS */
147void
148bpf_error(const char *fmt, ...)
149{
150	va_list ap;
151
152	va_start(ap, fmt);
153	if (bpf_pcap != NULL)
154		(void)vsnprintf(pcap_geterr(bpf_pcap), PCAP_ERRBUF_SIZE,
155		    fmt, ap);
156	va_end(ap);
157	longjmp(top_ctx, 1);
158	/* NOTREACHED */
159}
160
161static void init_linktype(pcap_t *);
162
163static void init_regs(void);
164static int alloc_reg(void);
165static void free_reg(int);
166
167static struct block *root;
168
169/*
170 * Value passed to gen_load_a() to indicate what the offset argument
171 * is relative to.
172 */
173enum e_offrel {
174	OR_PACKET,	/* relative to the beginning of the packet */
175	OR_LINK,	/* relative to the beginning of the link-layer header */
176	OR_MACPL,	/* relative to the end of the MAC-layer header */
177	OR_NET,		/* relative to the network-layer header */
178	OR_NET_NOSNAP,	/* relative to the network-layer header, with no SNAP header at the link layer */
179	OR_TRAN_IPV4,	/* relative to the transport-layer header, with IPv4 network layer */
180	OR_TRAN_IPV6	/* relative to the transport-layer header, with IPv6 network layer */
181};
182
183#ifdef INET6
184/*
185 * As errors are handled by a longjmp, anything allocated must be freed
186 * in the longjmp handler, so it must be reachable from that handler.
187 * One thing that's allocated is the result of pcap_nametoaddrinfo();
188 * it must be freed with freeaddrinfo().  This variable points to any
189 * addrinfo structure that would need to be freed.
190 */
191static struct addrinfo *ai;
192#endif
193
194/*
195 * We divy out chunks of memory rather than call malloc each time so
196 * we don't have to worry about leaking memory.  It's probably
197 * not a big deal if all this memory was wasted but if this ever
198 * goes into a library that would probably not be a good idea.
199 *
200 * XXX - this *is* in a library....
201 */
202#define NCHUNKS 16
203#define CHUNK0SIZE 1024
204struct chunk {
205	u_int n_left;
206	void *m;
207};
208
209static struct chunk chunks[NCHUNKS];
210static int cur_chunk;
211
212static void *newchunk(u_int);
213static void freechunks(void);
214static inline struct block *new_block(int);
215static inline struct slist *new_stmt(int);
216static struct block *gen_retblk(int);
217static inline void syntax(void);
218
219static void backpatch(struct block *, struct block *);
220static void merge(struct block *, struct block *);
221static struct block *gen_cmp(enum e_offrel, u_int, u_int, bpf_int32);
222static struct block *gen_cmp_gt(enum e_offrel, u_int, u_int, bpf_int32);
223static struct block *gen_cmp_ge(enum e_offrel, u_int, u_int, bpf_int32);
224static struct block *gen_cmp_lt(enum e_offrel, u_int, u_int, bpf_int32);
225static struct block *gen_cmp_le(enum e_offrel, u_int, u_int, bpf_int32);
226static struct block *gen_mcmp(enum e_offrel, u_int, u_int, bpf_int32,
227    bpf_u_int32);
228static struct block *gen_bcmp(enum e_offrel, u_int, u_int, const u_char *);
229static struct block *gen_ncmp(enum e_offrel, bpf_u_int32, bpf_u_int32,
230    bpf_u_int32, bpf_u_int32, int, bpf_int32);
231static struct slist *gen_load_llrel(u_int, u_int);
232static struct slist *gen_load_macplrel(u_int, u_int);
233static struct slist *gen_load_a(enum e_offrel, u_int, u_int);
234static struct slist *gen_loadx_iphdrlen(void);
235static struct block *gen_uncond(int);
236static inline struct block *gen_true(void);
237static inline struct block *gen_false(void);
238static struct block *gen_ether_linktype(int);
239static struct block *gen_ipnet_linktype(int);
240static struct block *gen_linux_sll_linktype(int);
241static struct slist *gen_load_prism_llprefixlen(void);
242static struct slist *gen_load_avs_llprefixlen(void);
243static struct slist *gen_load_radiotap_llprefixlen(void);
244static struct slist *gen_load_ppi_llprefixlen(void);
245static void insert_compute_vloffsets(struct block *);
246static struct slist *gen_llprefixlen(void);
247static struct slist *gen_off_macpl(void);
248static int ethertype_to_ppptype(int);
249static struct block *gen_linktype(int);
250static struct block *gen_snap(bpf_u_int32, bpf_u_int32);
251static struct block *gen_llc_linktype(int);
252static struct block *gen_hostop(bpf_u_int32, bpf_u_int32, int, int, u_int, u_int);
253#ifdef INET6
254static struct block *gen_hostop6(struct in6_addr *, struct in6_addr *, int, int, u_int, u_int);
255#endif
256static struct block *gen_ahostop(const u_char *, int);
257static struct block *gen_ehostop(const u_char *, int);
258static struct block *gen_fhostop(const u_char *, int);
259static struct block *gen_thostop(const u_char *, int);
260static struct block *gen_wlanhostop(const u_char *, int);
261static struct block *gen_ipfchostop(const u_char *, int);
262static struct block *gen_dnhostop(bpf_u_int32, int);
263static struct block *gen_mpls_linktype(int);
264static struct block *gen_host(bpf_u_int32, bpf_u_int32, int, int, int);
265#ifdef INET6
266static struct block *gen_host6(struct in6_addr *, struct in6_addr *, int, int, int);
267#endif
268#ifndef INET6
269static struct block *gen_gateway(const u_char *, bpf_u_int32 **, int, int);
270#endif
271static struct block *gen_ipfrag(void);
272static struct block *gen_portatom(int, bpf_int32);
273static struct block *gen_portrangeatom(int, bpf_int32, bpf_int32);
274static struct block *gen_portatom6(int, bpf_int32);
275static struct block *gen_portrangeatom6(int, bpf_int32, bpf_int32);
276struct block *gen_portop(int, int, int);
277static struct block *gen_port(int, int, int);
278struct block *gen_portrangeop(int, int, int, int);
279static struct block *gen_portrange(int, int, int, int);
280struct block *gen_portop6(int, int, int);
281static struct block *gen_port6(int, int, int);
282struct block *gen_portrangeop6(int, int, int, int);
283static struct block *gen_portrange6(int, int, int, int);
284static int lookup_proto(const char *, int);
285static struct block *gen_protochain(int, int, int);
286static struct block *gen_proto(int, int, int);
287static struct slist *xfer_to_x(struct arth *);
288static struct slist *xfer_to_a(struct arth *);
289static struct block *gen_mac_multicast(int);
290static struct block *gen_len(int, int);
291static struct block *gen_check_802_11_data_frame(void);
292
293static struct block *gen_ppi_dlt_check(void);
294static struct block *gen_msg_abbrev(int type);
295
296static void *
297newchunk(n)
298	u_int n;
299{
300	struct chunk *cp;
301	int k;
302	size_t size;
303
304#ifndef __NetBSD__
305	/* XXX Round up to nearest long. */
306	n = (n + sizeof(long) - 1) & ~(sizeof(long) - 1);
307#else
308	/* XXX Round up to structure boundary. */
309	n = ALIGN(n);
310#endif
311
312	cp = &chunks[cur_chunk];
313	if (n > cp->n_left) {
314		++cp, k = ++cur_chunk;
315		if (k >= NCHUNKS)
316			bpf_error("out of memory");
317		size = CHUNK0SIZE << k;
318		cp->m = (void *)malloc(size);
319		if (cp->m == NULL)
320			bpf_error("out of memory");
321		memset((char *)cp->m, 0, size);
322		cp->n_left = size;
323		if (n > size)
324			bpf_error("out of memory");
325	}
326	cp->n_left -= n;
327	return (void *)((char *)cp->m + cp->n_left);
328}
329
330static void
331freechunks()
332{
333	int i;
334
335	cur_chunk = 0;
336	for (i = 0; i < NCHUNKS; ++i)
337		if (chunks[i].m != NULL) {
338			free(chunks[i].m);
339			chunks[i].m = NULL;
340		}
341}
342
343/*
344 * A strdup whose allocations are freed after code generation is over.
345 */
346char *
347sdup(s)
348	register const char *s;
349{
350	int n = strlen(s) + 1;
351	char *cp = newchunk(n);
352
353	strlcpy(cp, s, n);
354	return (cp);
355}
356
357static inline struct block *
358new_block(code)
359	int code;
360{
361	struct block *p;
362
363	p = (struct block *)newchunk(sizeof(*p));
364	p->s.code = code;
365	p->head = p;
366
367	return p;
368}
369
370static inline struct slist *
371new_stmt(code)
372	int code;
373{
374	struct slist *p;
375
376	p = (struct slist *)newchunk(sizeof(*p));
377	p->s.code = code;
378
379	return p;
380}
381
382static struct block *
383gen_retblk(v)
384	int v;
385{
386	struct block *b = new_block(BPF_RET|BPF_K);
387
388	b->s.k = v;
389	return b;
390}
391
392static inline void
393syntax()
394{
395	bpf_error("syntax error in filter expression");
396}
397
398static bpf_u_int32 netmask;
399static int snaplen;
400int no_optimize;
401#ifdef WIN32
402static int
403pcap_compile_unsafe(pcap_t *p, struct bpf_program *program,
404	     const char *buf, int optimize, bpf_u_int32 mask);
405
406int
407pcap_compile(pcap_t *p, struct bpf_program *program,
408	     const char *buf, int optimize, bpf_u_int32 mask)
409{
410	int result;
411
412	EnterCriticalSection(&g_PcapCompileCriticalSection);
413
414	result = pcap_compile_unsafe(p, program, buf, optimize, mask);
415
416	LeaveCriticalSection(&g_PcapCompileCriticalSection);
417
418	return result;
419}
420
421static int
422pcap_compile_unsafe(pcap_t *p, struct bpf_program *program,
423	     const char *buf, int optimize, bpf_u_int32 mask)
424#else /* WIN32 */
425int
426pcap_compile(pcap_t *p, struct bpf_program *program,
427	     const char *buf, int optimize, bpf_u_int32 mask)
428#endif /* WIN32 */
429{
430	extern int n_errors;
431	const char * volatile xbuf = buf;
432	u_int len;
433
434	/*
435	 * If this pcap_t hasn't been activated, it doesn't have a
436	 * link-layer type, so we can't use it.
437	 */
438	if (!p->activated) {
439		snprintf(p->errbuf, PCAP_ERRBUF_SIZE,
440		    "not-yet-activated pcap_t passed to pcap_compile");
441		return (-1);
442	}
443	no_optimize = 0;
444	n_errors = 0;
445	root = NULL;
446	bpf_pcap = p;
447	init_regs();
448	if (setjmp(top_ctx)) {
449#ifdef INET6
450		if (ai != NULL) {
451			freeaddrinfo(ai);
452			ai = NULL;
453		}
454#endif
455		lex_cleanup();
456		freechunks();
457		return (-1);
458	}
459
460	netmask = mask;
461
462	snaplen = pcap_snapshot(p);
463	if (snaplen == 0) {
464		snprintf(p->errbuf, PCAP_ERRBUF_SIZE,
465			 "snaplen of 0 rejects all packets");
466		return -1;
467	}
468
469	lex_init(xbuf ? xbuf : "");
470	init_linktype(p);
471	(void)pcap_parse();
472
473	if (n_errors)
474		syntax();
475
476	if (root == NULL)
477		root = gen_retblk(snaplen);
478
479	if (optimize && !no_optimize) {
480		bpf_optimize(&root);
481		if (root == NULL ||
482		    (root->s.code == (BPF_RET|BPF_K) && root->s.k == 0))
483			bpf_error("expression rejects all packets");
484	}
485	program->bf_insns = icode_to_fcode(root, &len);
486	program->bf_len = len;
487
488	lex_cleanup();
489	freechunks();
490	return (0);
491}
492
493/*
494 * entry point for using the compiler with no pcap open
495 * pass in all the stuff that is needed explicitly instead.
496 */
497int
498pcap_compile_nopcap(int snaplen_arg, int linktype_arg,
499		    struct bpf_program *program,
500	     const char *buf, int optimize, bpf_u_int32 mask)
501{
502	pcap_t *p;
503	int ret;
504
505	p = pcap_open_dead(linktype_arg, snaplen_arg);
506	if (p == NULL)
507		return (-1);
508	ret = pcap_compile(p, program, buf, optimize, mask);
509	pcap_close(p);
510	return (ret);
511}
512
513/*
514 * Clean up a "struct bpf_program" by freeing all the memory allocated
515 * in it.
516 */
517void
518pcap_freecode(struct bpf_program *program)
519{
520	program->bf_len = 0;
521	if (program->bf_insns != NULL) {
522		free((char *)program->bf_insns);
523		program->bf_insns = NULL;
524	}
525}
526
527/*
528 * Backpatch the blocks in 'list' to 'target'.  The 'sense' field indicates
529 * which of the jt and jf fields has been resolved and which is a pointer
530 * back to another unresolved block (or nil).  At least one of the fields
531 * in each block is already resolved.
532 */
533static void
534backpatch(list, target)
535	struct block *list, *target;
536{
537	struct block *next;
538
539	while (list) {
540		if (!list->sense) {
541			next = JT(list);
542			JT(list) = target;
543		} else {
544			next = JF(list);
545			JF(list) = target;
546		}
547		list = next;
548	}
549}
550
551/*
552 * Merge the lists in b0 and b1, using the 'sense' field to indicate
553 * which of jt and jf is the link.
554 */
555static void
556merge(b0, b1)
557	struct block *b0, *b1;
558{
559	register struct block **p = &b0;
560
561	/* Find end of list. */
562	while (*p)
563		p = !((*p)->sense) ? &JT(*p) : &JF(*p);
564
565	/* Concatenate the lists. */
566	*p = b1;
567}
568
569void
570finish_parse(p)
571	struct block *p;
572{
573	struct block *ppi_dlt_check;
574
575	/*
576	 * Insert before the statements of the first (root) block any
577	 * statements needed to load the lengths of any variable-length
578	 * headers into registers.
579	 *
580	 * XXX - a fancier strategy would be to insert those before the
581	 * statements of all blocks that use those lengths and that
582	 * have no predecessors that use them, so that we only compute
583	 * the lengths if we need them.  There might be even better
584	 * approaches than that.
585	 *
586	 * However, those strategies would be more complicated, and
587	 * as we don't generate code to compute a length if the
588	 * program has no tests that use the length, and as most
589	 * tests will probably use those lengths, we would just
590	 * postpone computing the lengths so that it's not done
591	 * for tests that fail early, and it's not clear that's
592	 * worth the effort.
593	 */
594	insert_compute_vloffsets(p->head);
595
596	/*
597	 * For DLT_PPI captures, generate a check of the per-packet
598	 * DLT value to make sure it's DLT_IEEE802_11.
599	 */
600	ppi_dlt_check = gen_ppi_dlt_check();
601	if (ppi_dlt_check != NULL)
602		gen_and(ppi_dlt_check, p);
603
604	backpatch(p, gen_retblk(snaplen));
605	p->sense = !p->sense;
606	backpatch(p, gen_retblk(0));
607	root = p->head;
608}
609
610void
611gen_and(b0, b1)
612	struct block *b0, *b1;
613{
614	backpatch(b0, b1->head);
615	b0->sense = !b0->sense;
616	b1->sense = !b1->sense;
617	merge(b1, b0);
618	b1->sense = !b1->sense;
619	b1->head = b0->head;
620}
621
622void
623gen_or(b0, b1)
624	struct block *b0, *b1;
625{
626	b0->sense = !b0->sense;
627	backpatch(b0, b1->head);
628	b0->sense = !b0->sense;
629	merge(b1, b0);
630	b1->head = b0->head;
631}
632
633void
634gen_not(b)
635	struct block *b;
636{
637	b->sense = !b->sense;
638}
639
640static struct block *
641gen_cmp(offrel, offset, size, v)
642	enum e_offrel offrel;
643	u_int offset, size;
644	bpf_int32 v;
645{
646	return gen_ncmp(offrel, offset, size, 0xffffffff, BPF_JEQ, 0, v);
647}
648
649static struct block *
650gen_cmp_gt(offrel, offset, size, v)
651	enum e_offrel offrel;
652	u_int offset, size;
653	bpf_int32 v;
654{
655	return gen_ncmp(offrel, offset, size, 0xffffffff, BPF_JGT, 0, v);
656}
657
658static struct block *
659gen_cmp_ge(offrel, offset, size, v)
660	enum e_offrel offrel;
661	u_int offset, size;
662	bpf_int32 v;
663{
664	return gen_ncmp(offrel, offset, size, 0xffffffff, BPF_JGE, 0, v);
665}
666
667static struct block *
668gen_cmp_lt(offrel, offset, size, v)
669	enum e_offrel offrel;
670	u_int offset, size;
671	bpf_int32 v;
672{
673	return gen_ncmp(offrel, offset, size, 0xffffffff, BPF_JGE, 1, v);
674}
675
676static struct block *
677gen_cmp_le(offrel, offset, size, v)
678	enum e_offrel offrel;
679	u_int offset, size;
680	bpf_int32 v;
681{
682	return gen_ncmp(offrel, offset, size, 0xffffffff, BPF_JGT, 1, v);
683}
684
685static struct block *
686gen_mcmp(offrel, offset, size, v, mask)
687	enum e_offrel offrel;
688	u_int offset, size;
689	bpf_int32 v;
690	bpf_u_int32 mask;
691{
692	return gen_ncmp(offrel, offset, size, mask, BPF_JEQ, 0, v);
693}
694
695static struct block *
696gen_bcmp(offrel, offset, size, v)
697	enum e_offrel offrel;
698	register u_int offset, size;
699	register const u_char *v;
700{
701	register struct block *b, *tmp;
702
703	b = NULL;
704	while (size >= 4) {
705		register const u_char *p = &v[size - 4];
706		bpf_int32 w = ((bpf_int32)p[0] << 24) |
707		    ((bpf_int32)p[1] << 16) | ((bpf_int32)p[2] << 8) | p[3];
708
709		tmp = gen_cmp(offrel, offset + size - 4, BPF_W, w);
710		if (b != NULL)
711			gen_and(b, tmp);
712		b = tmp;
713		size -= 4;
714	}
715	while (size >= 2) {
716		register const u_char *p = &v[size - 2];
717		bpf_int32 w = ((bpf_int32)p[0] << 8) | p[1];
718
719		tmp = gen_cmp(offrel, offset + size - 2, BPF_H, w);
720		if (b != NULL)
721			gen_and(b, tmp);
722		b = tmp;
723		size -= 2;
724	}
725	if (size > 0) {
726		tmp = gen_cmp(offrel, offset, BPF_B, (bpf_int32)v[0]);
727		if (b != NULL)
728			gen_and(b, tmp);
729		b = tmp;
730	}
731	return b;
732}
733
734/*
735 * AND the field of size "size" at offset "offset" relative to the header
736 * specified by "offrel" with "mask", and compare it with the value "v"
737 * with the test specified by "jtype"; if "reverse" is true, the test
738 * should test the opposite of "jtype".
739 */
740static struct block *
741gen_ncmp(offrel, offset, size, mask, jtype, reverse, v)
742	enum e_offrel offrel;
743	bpf_int32 v;
744	bpf_u_int32 offset, size, mask, jtype;
745	int reverse;
746{
747	struct slist *s, *s2;
748	struct block *b;
749
750	s = gen_load_a(offrel, offset, size);
751
752	if (mask != 0xffffffff) {
753		s2 = new_stmt(BPF_ALU|BPF_AND|BPF_K);
754		s2->s.k = mask;
755		sappend(s, s2);
756	}
757
758	b = new_block(JMP(jtype));
759	b->stmts = s;
760	b->s.k = v;
761	if (reverse && (jtype == BPF_JGT || jtype == BPF_JGE))
762		gen_not(b);
763	return b;
764}
765
766/*
767 * Various code constructs need to know the layout of the data link
768 * layer.  These variables give the necessary offsets from the beginning
769 * of the packet data.
770 */
771
772/*
773 * This is the offset of the beginning of the link-layer header from
774 * the beginning of the raw packet data.
775 *
776 * It's usually 0, except for 802.11 with a fixed-length radio header.
777 * (For 802.11 with a variable-length radio header, we have to generate
778 * code to compute that offset; off_ll is 0 in that case.)
779 */
780static u_int off_ll;
781
782/*
783 * If there's a variable-length header preceding the link-layer header,
784 * "reg_off_ll" is the register number for a register containing the
785 * length of that header, and therefore the offset of the link-layer
786 * header from the beginning of the raw packet data.  Otherwise,
787 * "reg_off_ll" is -1.
788 */
789static int reg_off_ll;
790
791/*
792 * This is the offset of the beginning of the MAC-layer header from
793 * the beginning of the link-layer header.
794 * It's usually 0, except for ATM LANE, where it's the offset, relative
795 * to the beginning of the raw packet data, of the Ethernet header, and
796 * for Ethernet with various additional information.
797 */
798static u_int off_mac;
799
800/*
801 * This is the offset of the beginning of the MAC-layer payload,
802 * from the beginning of the raw packet data.
803 *
804 * I.e., it's the sum of the length of the link-layer header (without,
805 * for example, any 802.2 LLC header, so it's the MAC-layer
806 * portion of that header), plus any prefix preceding the
807 * link-layer header.
808 */
809static u_int off_macpl;
810
811/*
812 * This is 1 if the offset of the beginning of the MAC-layer payload
813 * from the beginning of the link-layer header is variable-length.
814 */
815static int off_macpl_is_variable;
816
817/*
818 * If the link layer has variable_length headers, "reg_off_macpl"
819 * is the register number for a register containing the length of the
820 * link-layer header plus the length of any variable-length header
821 * preceding the link-layer header.  Otherwise, "reg_off_macpl"
822 * is -1.
823 */
824static int reg_off_macpl;
825
826/*
827 * "off_linktype" is the offset to information in the link-layer header
828 * giving the packet type.  This offset is relative to the beginning
829 * of the link-layer header (i.e., it doesn't include off_ll).
830 *
831 * For Ethernet, it's the offset of the Ethernet type field.
832 *
833 * For link-layer types that always use 802.2 headers, it's the
834 * offset of the LLC header.
835 *
836 * For PPP, it's the offset of the PPP type field.
837 *
838 * For Cisco HDLC, it's the offset of the CHDLC type field.
839 *
840 * For BSD loopback, it's the offset of the AF_ value.
841 *
842 * For Linux cooked sockets, it's the offset of the type field.
843 *
844 * It's set to -1 for no encapsulation, in which case, IP is assumed.
845 */
846static u_int off_linktype;
847
848/*
849 * TRUE if "pppoes" appeared in the filter; it causes link-layer type
850 * checks to check the PPP header, assumed to follow a LAN-style link-
851 * layer header and a PPPoE session header.
852 */
853static int is_pppoes = 0;
854
855/*
856 * TRUE if the link layer includes an ATM pseudo-header.
857 */
858static int is_atm = 0;
859
860/*
861 * TRUE if "lane" appeared in the filter; it causes us to generate
862 * code that assumes LANE rather than LLC-encapsulated traffic in SunATM.
863 */
864static int is_lane = 0;
865
866/*
867 * These are offsets for the ATM pseudo-header.
868 */
869static u_int off_vpi;
870static u_int off_vci;
871static u_int off_proto;
872
873/*
874 * These are offsets for the MTP2 fields.
875 */
876static u_int off_li;
877static u_int off_li_hsl;
878
879/*
880 * These are offsets for the MTP3 fields.
881 */
882static u_int off_sio;
883static u_int off_opc;
884static u_int off_dpc;
885static u_int off_sls;
886
887/*
888 * This is the offset of the first byte after the ATM pseudo_header,
889 * or -1 if there is no ATM pseudo-header.
890 */
891static u_int off_payload;
892
893/*
894 * These are offsets to the beginning of the network-layer header.
895 * They are relative to the beginning of the MAC-layer payload (i.e.,
896 * they don't include off_ll or off_macpl).
897 *
898 * If the link layer never uses 802.2 LLC:
899 *
900 *	"off_nl" and "off_nl_nosnap" are the same.
901 *
902 * If the link layer always uses 802.2 LLC:
903 *
904 *	"off_nl" is the offset if there's a SNAP header following
905 *	the 802.2 header;
906 *
907 *	"off_nl_nosnap" is the offset if there's no SNAP header.
908 *
909 * If the link layer is Ethernet:
910 *
911 *	"off_nl" is the offset if the packet is an Ethernet II packet
912 *	(we assume no 802.3+802.2+SNAP);
913 *
914 *	"off_nl_nosnap" is the offset if the packet is an 802.3 packet
915 *	with an 802.2 header following it.
916 */
917static u_int off_nl;
918static u_int off_nl_nosnap;
919
920static int linktype;
921
922static void
923init_linktype(p)
924	pcap_t *p;
925{
926	linktype = pcap_datalink(p);
927	pcap_fddipad = p->fddipad;
928
929	/*
930	 * Assume it's not raw ATM with a pseudo-header, for now.
931	 */
932	off_mac = 0;
933	is_atm = 0;
934	is_lane = 0;
935	off_vpi = -1;
936	off_vci = -1;
937	off_proto = -1;
938	off_payload = -1;
939
940	/*
941	 * And that we're not doing PPPoE.
942	 */
943	is_pppoes = 0;
944
945	/*
946	 * And assume we're not doing SS7.
947	 */
948	off_li = -1;
949	off_li_hsl = -1;
950	off_sio = -1;
951	off_opc = -1;
952	off_dpc = -1;
953	off_sls = -1;
954
955	/*
956	 * Also assume it's not 802.11.
957	 */
958	off_ll = 0;
959	off_macpl = 0;
960	off_macpl_is_variable = 0;
961
962	orig_linktype = -1;
963	orig_nl = -1;
964        label_stack_depth = 0;
965
966	reg_off_ll = -1;
967	reg_off_macpl = -1;
968
969	switch (linktype) {
970
971	case DLT_ARCNET:
972		off_linktype = 2;
973		off_macpl = 6;
974		off_nl = 0;		/* XXX in reality, variable! */
975		off_nl_nosnap = 0;	/* no 802.2 LLC */
976		return;
977
978	case DLT_ARCNET_LINUX:
979		off_linktype = 4;
980		off_macpl = 8;
981		off_nl = 0;		/* XXX in reality, variable! */
982		off_nl_nosnap = 0;	/* no 802.2 LLC */
983		return;
984
985	case DLT_EN10MB:
986		off_linktype = 12;
987		off_macpl = 14;		/* Ethernet header length */
988		off_nl = 0;		/* Ethernet II */
989		off_nl_nosnap = 3;	/* 802.3+802.2 */
990		return;
991
992	case DLT_SLIP:
993		/*
994		 * SLIP doesn't have a link level type.  The 16 byte
995		 * header is hacked into our SLIP driver.
996		 */
997		off_linktype = -1;
998		off_macpl = 16;
999		off_nl = 0;
1000		off_nl_nosnap = 0;	/* no 802.2 LLC */
1001		return;
1002
1003	case DLT_SLIP_BSDOS:
1004		/* XXX this may be the same as the DLT_PPP_BSDOS case */
1005		off_linktype = -1;
1006		/* XXX end */
1007		off_macpl = 24;
1008		off_nl = 0;
1009		off_nl_nosnap = 0;	/* no 802.2 LLC */
1010		return;
1011
1012	case DLT_NULL:
1013	case DLT_LOOP:
1014		off_linktype = 0;
1015		off_macpl = 4;
1016		off_nl = 0;
1017		off_nl_nosnap = 0;	/* no 802.2 LLC */
1018		return;
1019
1020	case DLT_ENC:
1021		off_linktype = 0;
1022		off_macpl = 12;
1023		off_nl = 0;
1024		off_nl_nosnap = 0;	/* no 802.2 LLC */
1025		return;
1026
1027	case DLT_PPP:
1028	case DLT_PPP_PPPD:
1029	case DLT_C_HDLC:		/* BSD/OS Cisco HDLC */
1030	case DLT_PPP_SERIAL:		/* NetBSD sync/async serial PPP */
1031		off_linktype = 2;
1032		off_macpl = 4;
1033		off_nl = 0;
1034		off_nl_nosnap = 0;	/* no 802.2 LLC */
1035		return;
1036
1037	case DLT_PPP_ETHER:
1038		/*
1039		 * This does no include the Ethernet header, and
1040		 * only covers session state.
1041		 */
1042		off_linktype = 6;
1043		off_macpl = 8;
1044		off_nl = 0;
1045		off_nl_nosnap = 0;	/* no 802.2 LLC */
1046		return;
1047
1048	case DLT_PPP_BSDOS:
1049		off_linktype = 5;
1050		off_macpl = 24;
1051		off_nl = 0;
1052		off_nl_nosnap = 0;	/* no 802.2 LLC */
1053		return;
1054
1055	case DLT_FDDI:
1056		/*
1057		 * FDDI doesn't really have a link-level type field.
1058		 * We set "off_linktype" to the offset of the LLC header.
1059		 *
1060		 * To check for Ethernet types, we assume that SSAP = SNAP
1061		 * is being used and pick out the encapsulated Ethernet type.
1062		 * XXX - should we generate code to check for SNAP?
1063		 */
1064		off_linktype = 13;
1065		off_linktype += pcap_fddipad;
1066		off_macpl = 13;		/* FDDI MAC header length */
1067		off_macpl += pcap_fddipad;
1068		off_nl = 8;		/* 802.2+SNAP */
1069		off_nl_nosnap = 3;	/* 802.2 */
1070		return;
1071
1072	case DLT_IEEE802:
1073		/*
1074		 * Token Ring doesn't really have a link-level type field.
1075		 * We set "off_linktype" to the offset of the LLC header.
1076		 *
1077		 * To check for Ethernet types, we assume that SSAP = SNAP
1078		 * is being used and pick out the encapsulated Ethernet type.
1079		 * XXX - should we generate code to check for SNAP?
1080		 *
1081		 * XXX - the header is actually variable-length.
1082		 * Some various Linux patched versions gave 38
1083		 * as "off_linktype" and 40 as "off_nl"; however,
1084		 * if a token ring packet has *no* routing
1085		 * information, i.e. is not source-routed, the correct
1086		 * values are 20 and 22, as they are in the vanilla code.
1087		 *
1088		 * A packet is source-routed iff the uppermost bit
1089		 * of the first byte of the source address, at an
1090		 * offset of 8, has the uppermost bit set.  If the
1091		 * packet is source-routed, the total number of bytes
1092		 * of routing information is 2 plus bits 0x1F00 of
1093		 * the 16-bit value at an offset of 14 (shifted right
1094		 * 8 - figure out which byte that is).
1095		 */
1096		off_linktype = 14;
1097		off_macpl = 14;		/* Token Ring MAC header length */
1098		off_nl = 8;		/* 802.2+SNAP */
1099		off_nl_nosnap = 3;	/* 802.2 */
1100		return;
1101
1102	case DLT_IEEE802_11:
1103	case DLT_PRISM_HEADER:
1104	case DLT_IEEE802_11_RADIO_AVS:
1105	case DLT_IEEE802_11_RADIO:
1106		/*
1107		 * 802.11 doesn't really have a link-level type field.
1108		 * We set "off_linktype" to the offset of the LLC header.
1109		 *
1110		 * To check for Ethernet types, we assume that SSAP = SNAP
1111		 * is being used and pick out the encapsulated Ethernet type.
1112		 * XXX - should we generate code to check for SNAP?
1113		 *
1114		 * We also handle variable-length radio headers here.
1115		 * The Prism header is in theory variable-length, but in
1116		 * practice it's always 144 bytes long.  However, some
1117		 * drivers on Linux use ARPHRD_IEEE80211_PRISM, but
1118		 * sometimes or always supply an AVS header, so we
1119		 * have to check whether the radio header is a Prism
1120		 * header or an AVS header, so, in practice, it's
1121		 * variable-length.
1122		 */
1123		off_linktype = 24;
1124		off_macpl = 0;		/* link-layer header is variable-length */
1125		off_macpl_is_variable = 1;
1126		off_nl = 8;		/* 802.2+SNAP */
1127		off_nl_nosnap = 3;	/* 802.2 */
1128		return;
1129
1130	case DLT_PPI:
1131		/*
1132		 * At the moment we treat PPI the same way that we treat
1133		 * normal Radiotap encoded packets. The difference is in
1134		 * the function that generates the code at the beginning
1135		 * to compute the header length.  Since this code generator
1136		 * of PPI supports bare 802.11 encapsulation only (i.e.
1137		 * the encapsulated DLT should be DLT_IEEE802_11) we
1138		 * generate code to check for this too.
1139		 */
1140		off_linktype = 24;
1141		off_macpl = 0;		/* link-layer header is variable-length */
1142		off_macpl_is_variable = 1;
1143		off_nl = 8;		/* 802.2+SNAP */
1144		off_nl_nosnap = 3;	/* 802.2 */
1145		return;
1146
1147	case DLT_ATM_RFC1483:
1148	case DLT_ATM_CLIP:	/* Linux ATM defines this */
1149		/*
1150		 * assume routed, non-ISO PDUs
1151		 * (i.e., LLC = 0xAA-AA-03, OUT = 0x00-00-00)
1152		 *
1153		 * XXX - what about ISO PDUs, e.g. CLNP, ISIS, ESIS,
1154		 * or PPP with the PPP NLPID (e.g., PPPoA)?  The
1155		 * latter would presumably be treated the way PPPoE
1156		 * should be, so you can do "pppoe and udp port 2049"
1157		 * or "pppoa and tcp port 80" and have it check for
1158		 * PPPo{A,E} and a PPP protocol of IP and....
1159		 */
1160		off_linktype = 0;
1161		off_macpl = 0;		/* packet begins with LLC header */
1162		off_nl = 8;		/* 802.2+SNAP */
1163		off_nl_nosnap = 3;	/* 802.2 */
1164		return;
1165
1166	case DLT_SUNATM:
1167		/*
1168		 * Full Frontal ATM; you get AALn PDUs with an ATM
1169		 * pseudo-header.
1170		 */
1171		is_atm = 1;
1172		off_vpi = SUNATM_VPI_POS;
1173		off_vci = SUNATM_VCI_POS;
1174		off_proto = PROTO_POS;
1175		off_mac = -1;	/* assume LLC-encapsulated, so no MAC-layer header */
1176		off_payload = SUNATM_PKT_BEGIN_POS;
1177		off_linktype = off_payload;
1178		off_macpl = off_payload;	/* if LLC-encapsulated */
1179		off_nl = 8;		/* 802.2+SNAP */
1180		off_nl_nosnap = 3;	/* 802.2 */
1181		return;
1182
1183	case DLT_RAW:
1184	case DLT_IPV4:
1185	case DLT_IPV6:
1186		off_linktype = -1;
1187		off_macpl = 0;
1188		off_nl = 0;
1189		off_nl_nosnap = 0;	/* no 802.2 LLC */
1190		return;
1191
1192	case DLT_LINUX_SLL:	/* fake header for Linux cooked socket */
1193		off_linktype = 14;
1194		off_macpl = 16;
1195		off_nl = 0;
1196		off_nl_nosnap = 0;	/* no 802.2 LLC */
1197		return;
1198
1199	case DLT_LTALK:
1200		/*
1201		 * LocalTalk does have a 1-byte type field in the LLAP header,
1202		 * but really it just indicates whether there is a "short" or
1203		 * "long" DDP packet following.
1204		 */
1205		off_linktype = -1;
1206		off_macpl = 0;
1207		off_nl = 0;
1208		off_nl_nosnap = 0;	/* no 802.2 LLC */
1209		return;
1210
1211	case DLT_IP_OVER_FC:
1212		/*
1213		 * RFC 2625 IP-over-Fibre-Channel doesn't really have a
1214		 * link-level type field.  We set "off_linktype" to the
1215		 * offset of the LLC header.
1216		 *
1217		 * To check for Ethernet types, we assume that SSAP = SNAP
1218		 * is being used and pick out the encapsulated Ethernet type.
1219		 * XXX - should we generate code to check for SNAP? RFC
1220		 * 2625 says SNAP should be used.
1221		 */
1222		off_linktype = 16;
1223		off_macpl = 16;
1224		off_nl = 8;		/* 802.2+SNAP */
1225		off_nl_nosnap = 3;	/* 802.2 */
1226		return;
1227
1228	case DLT_FRELAY:
1229		/*
1230		 * XXX - we should set this to handle SNAP-encapsulated
1231		 * frames (NLPID of 0x80).
1232		 */
1233		off_linktype = -1;
1234		off_macpl = 0;
1235		off_nl = 0;
1236		off_nl_nosnap = 0;	/* no 802.2 LLC */
1237		return;
1238
1239                /*
1240                 * the only BPF-interesting FRF.16 frames are non-control frames;
1241                 * Frame Relay has a variable length link-layer
1242                 * so lets start with offset 4 for now and increments later on (FIXME);
1243                 */
1244	case DLT_MFR:
1245		off_linktype = -1;
1246		off_macpl = 0;
1247		off_nl = 4;
1248		off_nl_nosnap = 0;	/* XXX - for now -> no 802.2 LLC */
1249		return;
1250
1251	case DLT_APPLE_IP_OVER_IEEE1394:
1252		off_linktype = 16;
1253		off_macpl = 18;
1254		off_nl = 0;
1255		off_nl_nosnap = 0;	/* no 802.2 LLC */
1256		return;
1257
1258	case DLT_SYMANTEC_FIREWALL:
1259		off_linktype = 6;
1260		off_macpl = 44;
1261		off_nl = 0;		/* Ethernet II */
1262		off_nl_nosnap = 0;	/* XXX - what does it do with 802.3 packets? */
1263		return;
1264
1265#ifdef HAVE_NET_PFVAR_H
1266	case DLT_PFLOG:
1267		off_linktype = 0;
1268		off_macpl = PFLOG_HDRLEN;
1269		off_nl = 0;
1270		off_nl_nosnap = 0;	/* no 802.2 LLC */
1271		return;
1272#endif
1273
1274        case DLT_JUNIPER_MFR:
1275        case DLT_JUNIPER_MLFR:
1276        case DLT_JUNIPER_MLPPP:
1277        case DLT_JUNIPER_PPP:
1278        case DLT_JUNIPER_CHDLC:
1279        case DLT_JUNIPER_FRELAY:
1280                off_linktype = 4;
1281		off_macpl = 4;
1282		off_nl = 0;
1283		off_nl_nosnap = -1;	/* no 802.2 LLC */
1284                return;
1285
1286	case DLT_JUNIPER_ATM1:
1287		off_linktype = 4;	/* in reality variable between 4-8 */
1288		off_macpl = 4;	/* in reality variable between 4-8 */
1289		off_nl = 0;
1290		off_nl_nosnap = 10;
1291		return;
1292
1293	case DLT_JUNIPER_ATM2:
1294		off_linktype = 8;	/* in reality variable between 8-12 */
1295		off_macpl = 8;	/* in reality variable between 8-12 */
1296		off_nl = 0;
1297		off_nl_nosnap = 10;
1298		return;
1299
1300		/* frames captured on a Juniper PPPoE service PIC
1301		 * contain raw ethernet frames */
1302	case DLT_JUNIPER_PPPOE:
1303        case DLT_JUNIPER_ETHER:
1304        	off_macpl = 14;
1305		off_linktype = 16;
1306		off_nl = 18;		/* Ethernet II */
1307		off_nl_nosnap = 21;	/* 802.3+802.2 */
1308		return;
1309
1310	case DLT_JUNIPER_PPPOE_ATM:
1311		off_linktype = 4;
1312		off_macpl = 6;
1313		off_nl = 0;
1314		off_nl_nosnap = -1;	/* no 802.2 LLC */
1315		return;
1316
1317	case DLT_JUNIPER_GGSN:
1318		off_linktype = 6;
1319		off_macpl = 12;
1320		off_nl = 0;
1321		off_nl_nosnap = -1;	/* no 802.2 LLC */
1322		return;
1323
1324	case DLT_JUNIPER_ES:
1325		off_linktype = 6;
1326		off_macpl = -1;		/* not really a network layer but raw IP addresses */
1327		off_nl = -1;		/* not really a network layer but raw IP addresses */
1328		off_nl_nosnap = -1;	/* no 802.2 LLC */
1329		return;
1330
1331	case DLT_JUNIPER_MONITOR:
1332		off_linktype = 12;
1333		off_macpl = 12;
1334		off_nl = 0;		/* raw IP/IP6 header */
1335		off_nl_nosnap = -1;	/* no 802.2 LLC */
1336		return;
1337
1338	case DLT_BACNET_MS_TP:
1339		off_linktype = -1;
1340		off_macpl = -1;
1341		off_nl = -1;
1342		off_nl_nosnap = -1;
1343		return;
1344
1345	case DLT_JUNIPER_SERVICES:
1346		off_linktype = 12;
1347		off_macpl = -1;		/* L3 proto location dep. on cookie type */
1348		off_nl = -1;		/* L3 proto location dep. on cookie type */
1349		off_nl_nosnap = -1;	/* no 802.2 LLC */
1350		return;
1351
1352	case DLT_JUNIPER_VP:
1353		off_linktype = 18;
1354		off_macpl = -1;
1355		off_nl = -1;
1356		off_nl_nosnap = -1;
1357		return;
1358
1359	case DLT_JUNIPER_ST:
1360		off_linktype = 18;
1361		off_macpl = -1;
1362		off_nl = -1;
1363		off_nl_nosnap = -1;
1364		return;
1365
1366	case DLT_JUNIPER_ISM:
1367		off_linktype = 8;
1368		off_macpl = -1;
1369		off_nl = -1;
1370		off_nl_nosnap = -1;
1371		return;
1372
1373	case DLT_JUNIPER_VS:
1374	case DLT_JUNIPER_SRX_E2E:
1375	case DLT_JUNIPER_FIBRECHANNEL:
1376	case DLT_JUNIPER_ATM_CEMIC:
1377		off_linktype = 8;
1378		off_macpl = -1;
1379		off_nl = -1;
1380		off_nl_nosnap = -1;
1381		return;
1382
1383	case DLT_MTP2:
1384		off_li = 2;
1385		off_li_hsl = 4;
1386		off_sio = 3;
1387		off_opc = 4;
1388		off_dpc = 4;
1389		off_sls = 7;
1390		off_linktype = -1;
1391		off_macpl = -1;
1392		off_nl = -1;
1393		off_nl_nosnap = -1;
1394		return;
1395
1396	case DLT_MTP2_WITH_PHDR:
1397		off_li = 6;
1398		off_li_hsl = 8;
1399		off_sio = 7;
1400		off_opc = 8;
1401		off_dpc = 8;
1402		off_sls = 11;
1403		off_linktype = -1;
1404		off_macpl = -1;
1405		off_nl = -1;
1406		off_nl_nosnap = -1;
1407		return;
1408
1409	case DLT_ERF:
1410		off_li = 22;
1411		off_li_hsl = 24;
1412		off_sio = 23;
1413		off_opc = 24;
1414		off_dpc = 24;
1415		off_sls = 27;
1416		off_linktype = -1;
1417		off_macpl = -1;
1418		off_nl = -1;
1419		off_nl_nosnap = -1;
1420		return;
1421
1422	case DLT_PFSYNC:
1423		off_linktype = -1;
1424		off_macpl = 4;
1425		off_nl = 0;
1426		off_nl_nosnap = 0;
1427		return;
1428
1429	case DLT_AX25_KISS:
1430		/*
1431		 * Currently, only raw "link[N:M]" filtering is supported.
1432		 */
1433		off_linktype = -1;	/* variable, min 15, max 71 steps of 7 */
1434		off_macpl = -1;
1435		off_nl = -1;		/* variable, min 16, max 71 steps of 7 */
1436		off_nl_nosnap = -1;	/* no 802.2 LLC */
1437		off_mac = 1;		/* step over the kiss length byte */
1438		return;
1439
1440	case DLT_IPNET:
1441		off_linktype = 1;
1442		off_macpl = 24;		/* ipnet header length */
1443		off_nl = 0;
1444		off_nl_nosnap = -1;
1445		return;
1446
1447	case DLT_NETANALYZER:
1448		off_mac = 4;		/* MAC header is past 4-byte pseudo-header */
1449		off_linktype = 16;	/* includes 4-byte pseudo-header */
1450		off_macpl = 18;		/* pseudo-header+Ethernet header length */
1451		off_nl = 0;		/* Ethernet II */
1452		off_nl_nosnap = 3;	/* 802.3+802.2 */
1453		return;
1454
1455	case DLT_NETANALYZER_TRANSPARENT:
1456		off_mac = 12;		/* MAC header is past 4-byte pseudo-header, preamble, and SFD */
1457		off_linktype = 24;	/* includes 4-byte pseudo-header+preamble+SFD */
1458		off_macpl = 26;		/* pseudo-header+preamble+SFD+Ethernet header length */
1459		off_nl = 0;		/* Ethernet II */
1460		off_nl_nosnap = 3;	/* 802.3+802.2 */
1461		return;
1462
1463	default:
1464		/*
1465		 * For values in the range in which we've assigned new
1466		 * DLT_ values, only raw "link[N:M]" filtering is supported.
1467		 */
1468		if (linktype >= DLT_MATCHING_MIN &&
1469		    linktype <= DLT_MATCHING_MAX) {
1470			off_linktype = -1;
1471			off_macpl = -1;
1472			off_nl = -1;
1473			off_nl_nosnap = -1;
1474			return;
1475		}
1476
1477	}
1478	bpf_error("unknown data link type %d", linktype);
1479	/* NOTREACHED */
1480}
1481
1482/*
1483 * Load a value relative to the beginning of the link-layer header.
1484 * The link-layer header doesn't necessarily begin at the beginning
1485 * of the packet data; there might be a variable-length prefix containing
1486 * radio information.
1487 */
1488static struct slist *
1489gen_load_llrel(offset, size)
1490	u_int offset, size;
1491{
1492	struct slist *s, *s2;
1493
1494	s = gen_llprefixlen();
1495
1496	/*
1497	 * If "s" is non-null, it has code to arrange that the X register
1498	 * contains the length of the prefix preceding the link-layer
1499	 * header.
1500	 *
1501	 * Otherwise, the length of the prefix preceding the link-layer
1502	 * header is "off_ll".
1503	 */
1504	if (s != NULL) {
1505		/*
1506		 * There's a variable-length prefix preceding the
1507		 * link-layer header.  "s" points to a list of statements
1508		 * that put the length of that prefix into the X register.
1509		 * do an indirect load, to use the X register as an offset.
1510		 */
1511		s2 = new_stmt(BPF_LD|BPF_IND|size);
1512		s2->s.k = offset;
1513		sappend(s, s2);
1514	} else {
1515		/*
1516		 * There is no variable-length header preceding the
1517		 * link-layer header; add in off_ll, which, if there's
1518		 * a fixed-length header preceding the link-layer header,
1519		 * is the length of that header.
1520		 */
1521		s = new_stmt(BPF_LD|BPF_ABS|size);
1522		s->s.k = offset + off_ll;
1523	}
1524	return s;
1525}
1526
1527/*
1528 * Load a value relative to the beginning of the MAC-layer payload.
1529 */
1530static struct slist *
1531gen_load_macplrel(offset, size)
1532	u_int offset, size;
1533{
1534	struct slist *s, *s2;
1535
1536	s = gen_off_macpl();
1537
1538	/*
1539	 * If s is non-null, the offset of the MAC-layer payload is
1540	 * variable, and s points to a list of instructions that
1541	 * arrange that the X register contains that offset.
1542	 *
1543	 * Otherwise, the offset of the MAC-layer payload is constant,
1544	 * and is in off_macpl.
1545	 */
1546	if (s != NULL) {
1547		/*
1548		 * The offset of the MAC-layer payload is in the X
1549		 * register.  Do an indirect load, to use the X register
1550		 * as an offset.
1551		 */
1552		s2 = new_stmt(BPF_LD|BPF_IND|size);
1553		s2->s.k = offset;
1554		sappend(s, s2);
1555	} else {
1556		/*
1557		 * The offset of the MAC-layer payload is constant,
1558		 * and is in off_macpl; load the value at that offset
1559		 * plus the specified offset.
1560		 */
1561		s = new_stmt(BPF_LD|BPF_ABS|size);
1562		s->s.k = off_macpl + offset;
1563	}
1564	return s;
1565}
1566
1567/*
1568 * Load a value relative to the beginning of the specified header.
1569 */
1570static struct slist *
1571gen_load_a(offrel, offset, size)
1572	enum e_offrel offrel;
1573	u_int offset, size;
1574{
1575	struct slist *s, *s2;
1576
1577	switch (offrel) {
1578
1579	case OR_PACKET:
1580                s = new_stmt(BPF_LD|BPF_ABS|size);
1581                s->s.k = offset;
1582		break;
1583
1584	case OR_LINK:
1585		s = gen_load_llrel(offset, size);
1586		break;
1587
1588	case OR_MACPL:
1589		s = gen_load_macplrel(offset, size);
1590		break;
1591
1592	case OR_NET:
1593		s = gen_load_macplrel(off_nl + offset, size);
1594		break;
1595
1596	case OR_NET_NOSNAP:
1597		s = gen_load_macplrel(off_nl_nosnap + offset, size);
1598		break;
1599
1600	case OR_TRAN_IPV4:
1601		/*
1602		 * Load the X register with the length of the IPv4 header
1603		 * (plus the offset of the link-layer header, if it's
1604		 * preceded by a variable-length header such as a radio
1605		 * header), in bytes.
1606		 */
1607		s = gen_loadx_iphdrlen();
1608
1609		/*
1610		 * Load the item at {offset of the MAC-layer payload} +
1611		 * {offset, relative to the start of the MAC-layer
1612		 * paylod, of the IPv4 header} + {length of the IPv4 header} +
1613		 * {specified offset}.
1614		 *
1615		 * (If the offset of the MAC-layer payload is variable,
1616		 * it's included in the value in the X register, and
1617		 * off_macpl is 0.)
1618		 */
1619		s2 = new_stmt(BPF_LD|BPF_IND|size);
1620		s2->s.k = off_macpl + off_nl + offset;
1621		sappend(s, s2);
1622		break;
1623
1624	case OR_TRAN_IPV6:
1625		s = gen_load_macplrel(off_nl + 40 + offset, size);
1626		break;
1627
1628	default:
1629		abort();
1630		return NULL;
1631	}
1632	return s;
1633}
1634
1635/*
1636 * Generate code to load into the X register the sum of the length of
1637 * the IPv4 header and any variable-length header preceding the link-layer
1638 * header.
1639 */
1640static struct slist *
1641gen_loadx_iphdrlen()
1642{
1643	struct slist *s, *s2;
1644
1645	s = gen_off_macpl();
1646	if (s != NULL) {
1647		/*
1648		 * There's a variable-length prefix preceding the
1649		 * link-layer header, or the link-layer header is itself
1650		 * variable-length.  "s" points to a list of statements
1651		 * that put the offset of the MAC-layer payload into
1652		 * the X register.
1653		 *
1654		 * The 4*([k]&0xf) addressing mode can't be used, as we
1655		 * don't have a constant offset, so we have to load the
1656		 * value in question into the A register and add to it
1657		 * the value from the X register.
1658		 */
1659		s2 = new_stmt(BPF_LD|BPF_IND|BPF_B);
1660		s2->s.k = off_nl;
1661		sappend(s, s2);
1662		s2 = new_stmt(BPF_ALU|BPF_AND|BPF_K);
1663		s2->s.k = 0xf;
1664		sappend(s, s2);
1665		s2 = new_stmt(BPF_ALU|BPF_LSH|BPF_K);
1666		s2->s.k = 2;
1667		sappend(s, s2);
1668
1669		/*
1670		 * The A register now contains the length of the
1671		 * IP header.  We need to add to it the offset of
1672		 * the MAC-layer payload, which is still in the X
1673		 * register, and move the result into the X register.
1674		 */
1675		sappend(s, new_stmt(BPF_ALU|BPF_ADD|BPF_X));
1676		sappend(s, new_stmt(BPF_MISC|BPF_TAX));
1677	} else {
1678		/*
1679		 * There is no variable-length header preceding the
1680		 * link-layer header, and the link-layer header is
1681		 * fixed-length; load the length of the IPv4 header,
1682		 * which is at an offset of off_nl from the beginning
1683		 * of the MAC-layer payload, and thus at an offset
1684		 * of off_mac_pl + off_nl from the beginning of the
1685		 * raw packet data.
1686		 */
1687		s = new_stmt(BPF_LDX|BPF_MSH|BPF_B);
1688		s->s.k = off_macpl + off_nl;
1689	}
1690	return s;
1691}
1692
1693static struct block *
1694gen_uncond(rsense)
1695	int rsense;
1696{
1697	struct block *b;
1698	struct slist *s;
1699
1700	s = new_stmt(BPF_LD|BPF_IMM);
1701	s->s.k = !rsense;
1702	b = new_block(JMP(BPF_JEQ));
1703	b->stmts = s;
1704
1705	return b;
1706}
1707
1708static inline struct block *
1709gen_true()
1710{
1711	return gen_uncond(1);
1712}
1713
1714static inline struct block *
1715gen_false()
1716{
1717	return gen_uncond(0);
1718}
1719
1720/*
1721 * Byte-swap a 32-bit number.
1722 * ("htonl()" or "ntohl()" won't work - we want to byte-swap even on
1723 * big-endian platforms.)
1724 */
1725#define	SWAPLONG(y) \
1726((((y)&0xff)<<24) | (((y)&0xff00)<<8) | (((y)&0xff0000)>>8) | (((y)>>24)&0xff))
1727
1728/*
1729 * Generate code to match a particular packet type.
1730 *
1731 * "proto" is an Ethernet type value, if > ETHERMTU, or an LLC SAP
1732 * value, if <= ETHERMTU.  We use that to determine whether to
1733 * match the type/length field or to check the type/length field for
1734 * a value <= ETHERMTU to see whether it's a type field and then do
1735 * the appropriate test.
1736 */
1737static struct block *
1738gen_ether_linktype(proto)
1739	register int proto;
1740{
1741	struct block *b0, *b1;
1742
1743	switch (proto) {
1744
1745	case LLCSAP_ISONS:
1746	case LLCSAP_IP:
1747	case LLCSAP_NETBEUI:
1748		/*
1749		 * OSI protocols and NetBEUI always use 802.2 encapsulation,
1750		 * so we check the DSAP and SSAP.
1751		 *
1752		 * LLCSAP_IP checks for IP-over-802.2, rather
1753		 * than IP-over-Ethernet or IP-over-SNAP.
1754		 *
1755		 * XXX - should we check both the DSAP and the
1756		 * SSAP, like this, or should we check just the
1757		 * DSAP, as we do for other types <= ETHERMTU
1758		 * (i.e., other SAP values)?
1759		 */
1760		b0 = gen_cmp_gt(OR_LINK, off_linktype, BPF_H, ETHERMTU);
1761		gen_not(b0);
1762		b1 = gen_cmp(OR_MACPL, 0, BPF_H, (bpf_int32)
1763			     ((proto << 8) | proto));
1764		gen_and(b0, b1);
1765		return b1;
1766
1767	case LLCSAP_IPX:
1768		/*
1769		 * Check for;
1770		 *
1771		 *	Ethernet_II frames, which are Ethernet
1772		 *	frames with a frame type of ETHERTYPE_IPX;
1773		 *
1774		 *	Ethernet_802.3 frames, which are 802.3
1775		 *	frames (i.e., the type/length field is
1776		 *	a length field, <= ETHERMTU, rather than
1777		 *	a type field) with the first two bytes
1778		 *	after the Ethernet/802.3 header being
1779		 *	0xFFFF;
1780		 *
1781		 *	Ethernet_802.2 frames, which are 802.3
1782		 *	frames with an 802.2 LLC header and
1783		 *	with the IPX LSAP as the DSAP in the LLC
1784		 *	header;
1785		 *
1786		 *	Ethernet_SNAP frames, which are 802.3
1787		 *	frames with an LLC header and a SNAP
1788		 *	header and with an OUI of 0x000000
1789		 *	(encapsulated Ethernet) and a protocol
1790		 *	ID of ETHERTYPE_IPX in the SNAP header.
1791		 *
1792		 * XXX - should we generate the same code both
1793		 * for tests for LLCSAP_IPX and for ETHERTYPE_IPX?
1794		 */
1795
1796		/*
1797		 * This generates code to check both for the
1798		 * IPX LSAP (Ethernet_802.2) and for Ethernet_802.3.
1799		 */
1800		b0 = gen_cmp(OR_MACPL, 0, BPF_B, (bpf_int32)LLCSAP_IPX);
1801		b1 = gen_cmp(OR_MACPL, 0, BPF_H, (bpf_int32)0xFFFF);
1802		gen_or(b0, b1);
1803
1804		/*
1805		 * Now we add code to check for SNAP frames with
1806		 * ETHERTYPE_IPX, i.e. Ethernet_SNAP.
1807		 */
1808		b0 = gen_snap(0x000000, ETHERTYPE_IPX);
1809		gen_or(b0, b1);
1810
1811		/*
1812		 * Now we generate code to check for 802.3
1813		 * frames in general.
1814		 */
1815		b0 = gen_cmp_gt(OR_LINK, off_linktype, BPF_H, ETHERMTU);
1816		gen_not(b0);
1817
1818		/*
1819		 * Now add the check for 802.3 frames before the
1820		 * check for Ethernet_802.2 and Ethernet_802.3,
1821		 * as those checks should only be done on 802.3
1822		 * frames, not on Ethernet frames.
1823		 */
1824		gen_and(b0, b1);
1825
1826		/*
1827		 * Now add the check for Ethernet_II frames, and
1828		 * do that before checking for the other frame
1829		 * types.
1830		 */
1831		b0 = gen_cmp(OR_LINK, off_linktype, BPF_H,
1832		    (bpf_int32)ETHERTYPE_IPX);
1833		gen_or(b0, b1);
1834		return b1;
1835
1836	case ETHERTYPE_ATALK:
1837	case ETHERTYPE_AARP:
1838		/*
1839		 * EtherTalk (AppleTalk protocols on Ethernet link
1840		 * layer) may use 802.2 encapsulation.
1841		 */
1842
1843		/*
1844		 * Check for 802.2 encapsulation (EtherTalk phase 2?);
1845		 * we check for an Ethernet type field less than
1846		 * 1500, which means it's an 802.3 length field.
1847		 */
1848		b0 = gen_cmp_gt(OR_LINK, off_linktype, BPF_H, ETHERMTU);
1849		gen_not(b0);
1850
1851		/*
1852		 * 802.2-encapsulated ETHERTYPE_ATALK packets are
1853		 * SNAP packets with an organization code of
1854		 * 0x080007 (Apple, for Appletalk) and a protocol
1855		 * type of ETHERTYPE_ATALK (Appletalk).
1856		 *
1857		 * 802.2-encapsulated ETHERTYPE_AARP packets are
1858		 * SNAP packets with an organization code of
1859		 * 0x000000 (encapsulated Ethernet) and a protocol
1860		 * type of ETHERTYPE_AARP (Appletalk ARP).
1861		 */
1862		if (proto == ETHERTYPE_ATALK)
1863			b1 = gen_snap(0x080007, ETHERTYPE_ATALK);
1864		else	/* proto == ETHERTYPE_AARP */
1865			b1 = gen_snap(0x000000, ETHERTYPE_AARP);
1866		gen_and(b0, b1);
1867
1868		/*
1869		 * Check for Ethernet encapsulation (Ethertalk
1870		 * phase 1?); we just check for the Ethernet
1871		 * protocol type.
1872		 */
1873		b0 = gen_cmp(OR_LINK, off_linktype, BPF_H, (bpf_int32)proto);
1874
1875		gen_or(b0, b1);
1876		return b1;
1877
1878	default:
1879		if (proto <= ETHERMTU) {
1880			/*
1881			 * This is an LLC SAP value, so the frames
1882			 * that match would be 802.2 frames.
1883			 * Check that the frame is an 802.2 frame
1884			 * (i.e., that the length/type field is
1885			 * a length field, <= ETHERMTU) and
1886			 * then check the DSAP.
1887			 */
1888			b0 = gen_cmp_gt(OR_LINK, off_linktype, BPF_H, ETHERMTU);
1889			gen_not(b0);
1890			b1 = gen_cmp(OR_LINK, off_linktype + 2, BPF_B,
1891			    (bpf_int32)proto);
1892			gen_and(b0, b1);
1893			return b1;
1894		} else {
1895			/*
1896			 * This is an Ethernet type, so compare
1897			 * the length/type field with it (if
1898			 * the frame is an 802.2 frame, the length
1899			 * field will be <= ETHERMTU, and, as
1900			 * "proto" is > ETHERMTU, this test
1901			 * will fail and the frame won't match,
1902			 * which is what we want).
1903			 */
1904			return gen_cmp(OR_LINK, off_linktype, BPF_H,
1905			    (bpf_int32)proto);
1906		}
1907	}
1908}
1909
1910/*
1911 * "proto" is an Ethernet type value and for IPNET, if it is not IPv4
1912 * or IPv6 then we have an error.
1913 */
1914static struct block *
1915gen_ipnet_linktype(proto)
1916	register int proto;
1917{
1918	switch (proto) {
1919
1920	case ETHERTYPE_IP:
1921		return gen_cmp(OR_LINK, off_linktype, BPF_B,
1922		    (bpf_int32)IPH_AF_INET);
1923		/* NOTREACHED */
1924
1925	case ETHERTYPE_IPV6:
1926		return gen_cmp(OR_LINK, off_linktype, BPF_B,
1927		    (bpf_int32)IPH_AF_INET6);
1928		/* NOTREACHED */
1929
1930	default:
1931		break;
1932	}
1933
1934	return gen_false();
1935}
1936
1937/*
1938 * Generate code to match a particular packet type.
1939 *
1940 * "proto" is an Ethernet type value, if > ETHERMTU, or an LLC SAP
1941 * value, if <= ETHERMTU.  We use that to determine whether to
1942 * match the type field or to check the type field for the special
1943 * LINUX_SLL_P_802_2 value and then do the appropriate test.
1944 */
1945static struct block *
1946gen_linux_sll_linktype(proto)
1947	register int proto;
1948{
1949	struct block *b0, *b1;
1950
1951	switch (proto) {
1952
1953	case LLCSAP_ISONS:
1954	case LLCSAP_IP:
1955	case LLCSAP_NETBEUI:
1956		/*
1957		 * OSI protocols and NetBEUI always use 802.2 encapsulation,
1958		 * so we check the DSAP and SSAP.
1959		 *
1960		 * LLCSAP_IP checks for IP-over-802.2, rather
1961		 * than IP-over-Ethernet or IP-over-SNAP.
1962		 *
1963		 * XXX - should we check both the DSAP and the
1964		 * SSAP, like this, or should we check just the
1965		 * DSAP, as we do for other types <= ETHERMTU
1966		 * (i.e., other SAP values)?
1967		 */
1968		b0 = gen_cmp(OR_LINK, off_linktype, BPF_H, LINUX_SLL_P_802_2);
1969		b1 = gen_cmp(OR_MACPL, 0, BPF_H, (bpf_int32)
1970			     ((proto << 8) | proto));
1971		gen_and(b0, b1);
1972		return b1;
1973
1974	case LLCSAP_IPX:
1975		/*
1976		 *	Ethernet_II frames, which are Ethernet
1977		 *	frames with a frame type of ETHERTYPE_IPX;
1978		 *
1979		 *	Ethernet_802.3 frames, which have a frame
1980		 *	type of LINUX_SLL_P_802_3;
1981		 *
1982		 *	Ethernet_802.2 frames, which are 802.3
1983		 *	frames with an 802.2 LLC header (i.e, have
1984		 *	a frame type of LINUX_SLL_P_802_2) and
1985		 *	with the IPX LSAP as the DSAP in the LLC
1986		 *	header;
1987		 *
1988		 *	Ethernet_SNAP frames, which are 802.3
1989		 *	frames with an LLC header and a SNAP
1990		 *	header and with an OUI of 0x000000
1991		 *	(encapsulated Ethernet) and a protocol
1992		 *	ID of ETHERTYPE_IPX in the SNAP header.
1993		 *
1994		 * First, do the checks on LINUX_SLL_P_802_2
1995		 * frames; generate the check for either
1996		 * Ethernet_802.2 or Ethernet_SNAP frames, and
1997		 * then put a check for LINUX_SLL_P_802_2 frames
1998		 * before it.
1999		 */
2000		b0 = gen_cmp(OR_MACPL, 0, BPF_B, (bpf_int32)LLCSAP_IPX);
2001		b1 = gen_snap(0x000000, ETHERTYPE_IPX);
2002		gen_or(b0, b1);
2003		b0 = gen_cmp(OR_LINK, off_linktype, BPF_H, LINUX_SLL_P_802_2);
2004		gen_and(b0, b1);
2005
2006		/*
2007		 * Now check for 802.3 frames and OR that with
2008		 * the previous test.
2009		 */
2010		b0 = gen_cmp(OR_LINK, off_linktype, BPF_H, LINUX_SLL_P_802_3);
2011		gen_or(b0, b1);
2012
2013		/*
2014		 * Now add the check for Ethernet_II frames, and
2015		 * do that before checking for the other frame
2016		 * types.
2017		 */
2018		b0 = gen_cmp(OR_LINK, off_linktype, BPF_H,
2019		    (bpf_int32)ETHERTYPE_IPX);
2020		gen_or(b0, b1);
2021		return b1;
2022
2023	case ETHERTYPE_ATALK:
2024	case ETHERTYPE_AARP:
2025		/*
2026		 * EtherTalk (AppleTalk protocols on Ethernet link
2027		 * layer) may use 802.2 encapsulation.
2028		 */
2029
2030		/*
2031		 * Check for 802.2 encapsulation (EtherTalk phase 2?);
2032		 * we check for the 802.2 protocol type in the
2033		 * "Ethernet type" field.
2034		 */
2035		b0 = gen_cmp(OR_LINK, off_linktype, BPF_H, LINUX_SLL_P_802_2);
2036
2037		/*
2038		 * 802.2-encapsulated ETHERTYPE_ATALK packets are
2039		 * SNAP packets with an organization code of
2040		 * 0x080007 (Apple, for Appletalk) and a protocol
2041		 * type of ETHERTYPE_ATALK (Appletalk).
2042		 *
2043		 * 802.2-encapsulated ETHERTYPE_AARP packets are
2044		 * SNAP packets with an organization code of
2045		 * 0x000000 (encapsulated Ethernet) and a protocol
2046		 * type of ETHERTYPE_AARP (Appletalk ARP).
2047		 */
2048		if (proto == ETHERTYPE_ATALK)
2049			b1 = gen_snap(0x080007, ETHERTYPE_ATALK);
2050		else	/* proto == ETHERTYPE_AARP */
2051			b1 = gen_snap(0x000000, ETHERTYPE_AARP);
2052		gen_and(b0, b1);
2053
2054		/*
2055		 * Check for Ethernet encapsulation (Ethertalk
2056		 * phase 1?); we just check for the Ethernet
2057		 * protocol type.
2058		 */
2059		b0 = gen_cmp(OR_LINK, off_linktype, BPF_H, (bpf_int32)proto);
2060
2061		gen_or(b0, b1);
2062		return b1;
2063
2064	default:
2065		if (proto <= ETHERMTU) {
2066			/*
2067			 * This is an LLC SAP value, so the frames
2068			 * that match would be 802.2 frames.
2069			 * Check for the 802.2 protocol type
2070			 * in the "Ethernet type" field, and
2071			 * then check the DSAP.
2072			 */
2073			b0 = gen_cmp(OR_LINK, off_linktype, BPF_H,
2074			    LINUX_SLL_P_802_2);
2075			b1 = gen_cmp(OR_LINK, off_macpl, BPF_B,
2076			     (bpf_int32)proto);
2077			gen_and(b0, b1);
2078			return b1;
2079		} else {
2080			/*
2081			 * This is an Ethernet type, so compare
2082			 * the length/type field with it (if
2083			 * the frame is an 802.2 frame, the length
2084			 * field will be <= ETHERMTU, and, as
2085			 * "proto" is > ETHERMTU, this test
2086			 * will fail and the frame won't match,
2087			 * which is what we want).
2088			 */
2089			return gen_cmp(OR_LINK, off_linktype, BPF_H,
2090			    (bpf_int32)proto);
2091		}
2092	}
2093}
2094
2095static struct slist *
2096gen_load_prism_llprefixlen()
2097{
2098	struct slist *s1, *s2;
2099	struct slist *sjeq_avs_cookie;
2100	struct slist *sjcommon;
2101
2102	/*
2103	 * This code is not compatible with the optimizer, as
2104	 * we are generating jmp instructions within a normal
2105	 * slist of instructions
2106	 */
2107	no_optimize = 1;
2108
2109	/*
2110	 * Generate code to load the length of the radio header into
2111	 * the register assigned to hold that length, if one has been
2112	 * assigned.  (If one hasn't been assigned, no code we've
2113	 * generated uses that prefix, so we don't need to generate any
2114	 * code to load it.)
2115	 *
2116	 * Some Linux drivers use ARPHRD_IEEE80211_PRISM but sometimes
2117	 * or always use the AVS header rather than the Prism header.
2118	 * We load a 4-byte big-endian value at the beginning of the
2119	 * raw packet data, and see whether, when masked with 0xFFFFF000,
2120	 * it's equal to 0x80211000.  If so, that indicates that it's
2121	 * an AVS header (the masked-out bits are the version number).
2122	 * Otherwise, it's a Prism header.
2123	 *
2124	 * XXX - the Prism header is also, in theory, variable-length,
2125	 * but no known software generates headers that aren't 144
2126	 * bytes long.
2127	 */
2128	if (reg_off_ll != -1) {
2129		/*
2130		 * Load the cookie.
2131		 */
2132		s1 = new_stmt(BPF_LD|BPF_W|BPF_ABS);
2133		s1->s.k = 0;
2134
2135		/*
2136		 * AND it with 0xFFFFF000.
2137		 */
2138		s2 = new_stmt(BPF_ALU|BPF_AND|BPF_K);
2139		s2->s.k = 0xFFFFF000;
2140		sappend(s1, s2);
2141
2142		/*
2143		 * Compare with 0x80211000.
2144		 */
2145		sjeq_avs_cookie = new_stmt(JMP(BPF_JEQ));
2146		sjeq_avs_cookie->s.k = 0x80211000;
2147		sappend(s1, sjeq_avs_cookie);
2148
2149		/*
2150		 * If it's AVS:
2151		 *
2152		 * The 4 bytes at an offset of 4 from the beginning of
2153		 * the AVS header are the length of the AVS header.
2154		 * That field is big-endian.
2155		 */
2156		s2 = new_stmt(BPF_LD|BPF_W|BPF_ABS);
2157		s2->s.k = 4;
2158		sappend(s1, s2);
2159		sjeq_avs_cookie->s.jt = s2;
2160
2161		/*
2162		 * Now jump to the code to allocate a register
2163		 * into which to save the header length and
2164		 * store the length there.  (The "jump always"
2165		 * instruction needs to have the k field set;
2166		 * it's added to the PC, so, as we're jumping
2167		 * over a single instruction, it should be 1.)
2168		 */
2169		sjcommon = new_stmt(JMP(BPF_JA));
2170		sjcommon->s.k = 1;
2171		sappend(s1, sjcommon);
2172
2173		/*
2174		 * Now for the code that handles the Prism header.
2175		 * Just load the length of the Prism header (144)
2176		 * into the A register.  Have the test for an AVS
2177		 * header branch here if we don't have an AVS header.
2178		 */
2179		s2 = new_stmt(BPF_LD|BPF_W|BPF_IMM);
2180		s2->s.k = 144;
2181		sappend(s1, s2);
2182		sjeq_avs_cookie->s.jf = s2;
2183
2184		/*
2185		 * Now allocate a register to hold that value and store
2186		 * it.  The code for the AVS header will jump here after
2187		 * loading the length of the AVS header.
2188		 */
2189		s2 = new_stmt(BPF_ST);
2190		s2->s.k = reg_off_ll;
2191		sappend(s1, s2);
2192		sjcommon->s.jf = s2;
2193
2194		/*
2195		 * Now move it into the X register.
2196		 */
2197		s2 = new_stmt(BPF_MISC|BPF_TAX);
2198		sappend(s1, s2);
2199
2200		return (s1);
2201	} else
2202		return (NULL);
2203}
2204
2205static struct slist *
2206gen_load_avs_llprefixlen()
2207{
2208	struct slist *s1, *s2;
2209
2210	/*
2211	 * Generate code to load the length of the AVS header into
2212	 * the register assigned to hold that length, if one has been
2213	 * assigned.  (If one hasn't been assigned, no code we've
2214	 * generated uses that prefix, so we don't need to generate any
2215	 * code to load it.)
2216	 */
2217	if (reg_off_ll != -1) {
2218		/*
2219		 * The 4 bytes at an offset of 4 from the beginning of
2220		 * the AVS header are the length of the AVS header.
2221		 * That field is big-endian.
2222		 */
2223		s1 = new_stmt(BPF_LD|BPF_W|BPF_ABS);
2224		s1->s.k = 4;
2225
2226		/*
2227		 * Now allocate a register to hold that value and store
2228		 * it.
2229		 */
2230		s2 = new_stmt(BPF_ST);
2231		s2->s.k = reg_off_ll;
2232		sappend(s1, s2);
2233
2234		/*
2235		 * Now move it into the X register.
2236		 */
2237		s2 = new_stmt(BPF_MISC|BPF_TAX);
2238		sappend(s1, s2);
2239
2240		return (s1);
2241	} else
2242		return (NULL);
2243}
2244
2245static struct slist *
2246gen_load_radiotap_llprefixlen()
2247{
2248	struct slist *s1, *s2;
2249
2250	/*
2251	 * Generate code to load the length of the radiotap header into
2252	 * the register assigned to hold that length, if one has been
2253	 * assigned.  (If one hasn't been assigned, no code we've
2254	 * generated uses that prefix, so we don't need to generate any
2255	 * code to load it.)
2256	 */
2257	if (reg_off_ll != -1) {
2258		/*
2259		 * The 2 bytes at offsets of 2 and 3 from the beginning
2260		 * of the radiotap header are the length of the radiotap
2261		 * header; unfortunately, it's little-endian, so we have
2262		 * to load it a byte at a time and construct the value.
2263		 */
2264
2265		/*
2266		 * Load the high-order byte, at an offset of 3, shift it
2267		 * left a byte, and put the result in the X register.
2268		 */
2269		s1 = new_stmt(BPF_LD|BPF_B|BPF_ABS);
2270		s1->s.k = 3;
2271		s2 = new_stmt(BPF_ALU|BPF_LSH|BPF_K);
2272		sappend(s1, s2);
2273		s2->s.k = 8;
2274		s2 = new_stmt(BPF_MISC|BPF_TAX);
2275		sappend(s1, s2);
2276
2277		/*
2278		 * Load the next byte, at an offset of 2, and OR the
2279		 * value from the X register into it.
2280		 */
2281		s2 = new_stmt(BPF_LD|BPF_B|BPF_ABS);
2282		sappend(s1, s2);
2283		s2->s.k = 2;
2284		s2 = new_stmt(BPF_ALU|BPF_OR|BPF_X);
2285		sappend(s1, s2);
2286
2287		/*
2288		 * Now allocate a register to hold that value and store
2289		 * it.
2290		 */
2291		s2 = new_stmt(BPF_ST);
2292		s2->s.k = reg_off_ll;
2293		sappend(s1, s2);
2294
2295		/*
2296		 * Now move it into the X register.
2297		 */
2298		s2 = new_stmt(BPF_MISC|BPF_TAX);
2299		sappend(s1, s2);
2300
2301		return (s1);
2302	} else
2303		return (NULL);
2304}
2305
2306/*
2307 * At the moment we treat PPI as normal Radiotap encoded
2308 * packets. The difference is in the function that generates
2309 * the code at the beginning to compute the header length.
2310 * Since this code generator of PPI supports bare 802.11
2311 * encapsulation only (i.e. the encapsulated DLT should be
2312 * DLT_IEEE802_11) we generate code to check for this too;
2313 * that's done in finish_parse().
2314 */
2315static struct slist *
2316gen_load_ppi_llprefixlen()
2317{
2318	struct slist *s1, *s2;
2319
2320	/*
2321	 * Generate code to load the length of the radiotap header
2322	 * into the register assigned to hold that length, if one has
2323	 * been assigned.
2324	 */
2325	if (reg_off_ll != -1) {
2326		/*
2327		 * The 2 bytes at offsets of 2 and 3 from the beginning
2328		 * of the radiotap header are the length of the radiotap
2329		 * header; unfortunately, it's little-endian, so we have
2330		 * to load it a byte at a time and construct the value.
2331		 */
2332
2333		/*
2334		 * Load the high-order byte, at an offset of 3, shift it
2335		 * left a byte, and put the result in the X register.
2336		 */
2337		s1 = new_stmt(BPF_LD|BPF_B|BPF_ABS);
2338		s1->s.k = 3;
2339		s2 = new_stmt(BPF_ALU|BPF_LSH|BPF_K);
2340		sappend(s1, s2);
2341		s2->s.k = 8;
2342		s2 = new_stmt(BPF_MISC|BPF_TAX);
2343		sappend(s1, s2);
2344
2345		/*
2346		 * Load the next byte, at an offset of 2, and OR the
2347		 * value from the X register into it.
2348		 */
2349		s2 = new_stmt(BPF_LD|BPF_B|BPF_ABS);
2350		sappend(s1, s2);
2351		s2->s.k = 2;
2352		s2 = new_stmt(BPF_ALU|BPF_OR|BPF_X);
2353		sappend(s1, s2);
2354
2355		/*
2356		 * Now allocate a register to hold that value and store
2357		 * it.
2358		 */
2359		s2 = new_stmt(BPF_ST);
2360		s2->s.k = reg_off_ll;
2361		sappend(s1, s2);
2362
2363		/*
2364		 * Now move it into the X register.
2365		 */
2366		s2 = new_stmt(BPF_MISC|BPF_TAX);
2367		sappend(s1, s2);
2368
2369		return (s1);
2370	} else
2371		return (NULL);
2372}
2373
2374/*
2375 * Load a value relative to the beginning of the link-layer header after the 802.11
2376 * header, i.e. LLC_SNAP.
2377 * The link-layer header doesn't necessarily begin at the beginning
2378 * of the packet data; there might be a variable-length prefix containing
2379 * radio information.
2380 */
2381static struct slist *
2382gen_load_802_11_header_len(struct slist *s, struct slist *snext)
2383{
2384	struct slist *s2;
2385	struct slist *sjset_data_frame_1;
2386	struct slist *sjset_data_frame_2;
2387	struct slist *sjset_qos;
2388	struct slist *sjset_radiotap_flags;
2389	struct slist *sjset_radiotap_tsft;
2390	struct slist *sjset_tsft_datapad, *sjset_notsft_datapad;
2391	struct slist *s_roundup;
2392
2393	if (reg_off_macpl == -1) {
2394		/*
2395		 * No register has been assigned to the offset of
2396		 * the MAC-layer payload, which means nobody needs
2397		 * it; don't bother computing it - just return
2398		 * what we already have.
2399		 */
2400		return (s);
2401	}
2402
2403	/*
2404	 * This code is not compatible with the optimizer, as
2405	 * we are generating jmp instructions within a normal
2406	 * slist of instructions
2407	 */
2408	no_optimize = 1;
2409
2410	/*
2411	 * If "s" is non-null, it has code to arrange that the X register
2412	 * contains the length of the prefix preceding the link-layer
2413	 * header.
2414	 *
2415	 * Otherwise, the length of the prefix preceding the link-layer
2416	 * header is "off_ll".
2417	 */
2418	if (s == NULL) {
2419		/*
2420		 * There is no variable-length header preceding the
2421		 * link-layer header.
2422		 *
2423		 * Load the length of the fixed-length prefix preceding
2424		 * the link-layer header (if any) into the X register,
2425		 * and store it in the reg_off_macpl register.
2426		 * That length is off_ll.
2427		 */
2428		s = new_stmt(BPF_LDX|BPF_IMM);
2429		s->s.k = off_ll;
2430	}
2431
2432	/*
2433	 * The X register contains the offset of the beginning of the
2434	 * link-layer header; add 24, which is the minimum length
2435	 * of the MAC header for a data frame, to that, and store it
2436	 * in reg_off_macpl, and then load the Frame Control field,
2437	 * which is at the offset in the X register, with an indexed load.
2438	 */
2439	s2 = new_stmt(BPF_MISC|BPF_TXA);
2440	sappend(s, s2);
2441	s2 = new_stmt(BPF_ALU|BPF_ADD|BPF_K);
2442	s2->s.k = 24;
2443	sappend(s, s2);
2444	s2 = new_stmt(BPF_ST);
2445	s2->s.k = reg_off_macpl;
2446	sappend(s, s2);
2447
2448	s2 = new_stmt(BPF_LD|BPF_IND|BPF_B);
2449	s2->s.k = 0;
2450	sappend(s, s2);
2451
2452	/*
2453	 * Check the Frame Control field to see if this is a data frame;
2454	 * a data frame has the 0x08 bit (b3) in that field set and the
2455	 * 0x04 bit (b2) clear.
2456	 */
2457	sjset_data_frame_1 = new_stmt(JMP(BPF_JSET));
2458	sjset_data_frame_1->s.k = 0x08;
2459	sappend(s, sjset_data_frame_1);
2460
2461	/*
2462	 * If b3 is set, test b2, otherwise go to the first statement of
2463	 * the rest of the program.
2464	 */
2465	sjset_data_frame_1->s.jt = sjset_data_frame_2 = new_stmt(JMP(BPF_JSET));
2466	sjset_data_frame_2->s.k = 0x04;
2467	sappend(s, sjset_data_frame_2);
2468	sjset_data_frame_1->s.jf = snext;
2469
2470	/*
2471	 * If b2 is not set, this is a data frame; test the QoS bit.
2472	 * Otherwise, go to the first statement of the rest of the
2473	 * program.
2474	 */
2475	sjset_data_frame_2->s.jt = snext;
2476	sjset_data_frame_2->s.jf = sjset_qos = new_stmt(JMP(BPF_JSET));
2477	sjset_qos->s.k = 0x80;	/* QoS bit */
2478	sappend(s, sjset_qos);
2479
2480	/*
2481	 * If it's set, add 2 to reg_off_macpl, to skip the QoS
2482	 * field.
2483	 * Otherwise, go to the first statement of the rest of the
2484	 * program.
2485	 */
2486	sjset_qos->s.jt = s2 = new_stmt(BPF_LD|BPF_MEM);
2487	s2->s.k = reg_off_macpl;
2488	sappend(s, s2);
2489	s2 = new_stmt(BPF_ALU|BPF_ADD|BPF_IMM);
2490	s2->s.k = 2;
2491	sappend(s, s2);
2492	s2 = new_stmt(BPF_ST);
2493	s2->s.k = reg_off_macpl;
2494	sappend(s, s2);
2495
2496	/*
2497	 * If we have a radiotap header, look at it to see whether
2498	 * there's Atheros padding between the MAC-layer header
2499	 * and the payload.
2500	 *
2501	 * Note: all of the fields in the radiotap header are
2502	 * little-endian, so we byte-swap all of the values
2503	 * we test against, as they will be loaded as big-endian
2504	 * values.
2505	 */
2506	if (linktype == DLT_IEEE802_11_RADIO) {
2507		/*
2508		 * Is the IEEE80211_RADIOTAP_FLAGS bit (0x0000002) set
2509		 * in the presence flag?
2510		 */
2511		sjset_qos->s.jf = s2 = new_stmt(BPF_LD|BPF_ABS|BPF_W);
2512		s2->s.k = 4;
2513		sappend(s, s2);
2514
2515		sjset_radiotap_flags = new_stmt(JMP(BPF_JSET));
2516		sjset_radiotap_flags->s.k = SWAPLONG(0x00000002);
2517		sappend(s, sjset_radiotap_flags);
2518
2519		/*
2520		 * If not, skip all of this.
2521		 */
2522		sjset_radiotap_flags->s.jf = snext;
2523
2524		/*
2525		 * Otherwise, is the IEEE80211_RADIOTAP_TSFT bit set?
2526		 */
2527		sjset_radiotap_tsft = sjset_radiotap_flags->s.jt =
2528		    new_stmt(JMP(BPF_JSET));
2529		sjset_radiotap_tsft->s.k = SWAPLONG(0x00000001);
2530		sappend(s, sjset_radiotap_tsft);
2531
2532		/*
2533		 * If IEEE80211_RADIOTAP_TSFT is set, the flags field is
2534		 * at an offset of 16 from the beginning of the raw packet
2535		 * data (8 bytes for the radiotap header and 8 bytes for
2536		 * the TSFT field).
2537		 *
2538		 * Test whether the IEEE80211_RADIOTAP_F_DATAPAD bit (0x20)
2539		 * is set.
2540		 */
2541		sjset_radiotap_tsft->s.jt = s2 = new_stmt(BPF_LD|BPF_ABS|BPF_B);
2542		s2->s.k = 16;
2543		sappend(s, s2);
2544
2545		sjset_tsft_datapad = new_stmt(JMP(BPF_JSET));
2546		sjset_tsft_datapad->s.k = 0x20;
2547		sappend(s, sjset_tsft_datapad);
2548
2549		/*
2550		 * If IEEE80211_RADIOTAP_TSFT is not set, the flags field is
2551		 * at an offset of 8 from the beginning of the raw packet
2552		 * data (8 bytes for the radiotap header).
2553		 *
2554		 * Test whether the IEEE80211_RADIOTAP_F_DATAPAD bit (0x20)
2555		 * is set.
2556		 */
2557		sjset_radiotap_tsft->s.jf = s2 = new_stmt(BPF_LD|BPF_ABS|BPF_B);
2558		s2->s.k = 8;
2559		sappend(s, s2);
2560
2561		sjset_notsft_datapad = new_stmt(JMP(BPF_JSET));
2562		sjset_notsft_datapad->s.k = 0x20;
2563		sappend(s, sjset_notsft_datapad);
2564
2565		/*
2566		 * In either case, if IEEE80211_RADIOTAP_F_DATAPAD is
2567		 * set, round the length of the 802.11 header to
2568		 * a multiple of 4.  Do that by adding 3 and then
2569		 * dividing by and multiplying by 4, which we do by
2570		 * ANDing with ~3.
2571		 */
2572		s_roundup = new_stmt(BPF_LD|BPF_MEM);
2573		s_roundup->s.k = reg_off_macpl;
2574		sappend(s, s_roundup);
2575		s2 = new_stmt(BPF_ALU|BPF_ADD|BPF_IMM);
2576		s2->s.k = 3;
2577		sappend(s, s2);
2578		s2 = new_stmt(BPF_ALU|BPF_AND|BPF_IMM);
2579		s2->s.k = ~3;
2580		sappend(s, s2);
2581		s2 = new_stmt(BPF_ST);
2582		s2->s.k = reg_off_macpl;
2583		sappend(s, s2);
2584
2585		sjset_tsft_datapad->s.jt = s_roundup;
2586		sjset_tsft_datapad->s.jf = snext;
2587		sjset_notsft_datapad->s.jt = s_roundup;
2588		sjset_notsft_datapad->s.jf = snext;
2589	} else
2590		sjset_qos->s.jf = snext;
2591
2592	return s;
2593}
2594
2595static void
2596insert_compute_vloffsets(b)
2597	struct block *b;
2598{
2599	struct slist *s;
2600
2601	/*
2602	 * For link-layer types that have a variable-length header
2603	 * preceding the link-layer header, generate code to load
2604	 * the offset of the link-layer header into the register
2605	 * assigned to that offset, if any.
2606	 */
2607	switch (linktype) {
2608
2609	case DLT_PRISM_HEADER:
2610		s = gen_load_prism_llprefixlen();
2611		break;
2612
2613	case DLT_IEEE802_11_RADIO_AVS:
2614		s = gen_load_avs_llprefixlen();
2615		break;
2616
2617	case DLT_IEEE802_11_RADIO:
2618		s = gen_load_radiotap_llprefixlen();
2619		break;
2620
2621	case DLT_PPI:
2622		s = gen_load_ppi_llprefixlen();
2623		break;
2624
2625	default:
2626		s = NULL;
2627		break;
2628	}
2629
2630	/*
2631	 * For link-layer types that have a variable-length link-layer
2632	 * header, generate code to load the offset of the MAC-layer
2633	 * payload into the register assigned to that offset, if any.
2634	 */
2635	switch (linktype) {
2636
2637	case DLT_IEEE802_11:
2638	case DLT_PRISM_HEADER:
2639	case DLT_IEEE802_11_RADIO_AVS:
2640	case DLT_IEEE802_11_RADIO:
2641	case DLT_PPI:
2642		s = gen_load_802_11_header_len(s, b->stmts);
2643		break;
2644	}
2645
2646	/*
2647	 * If we have any offset-loading code, append all the
2648	 * existing statements in the block to those statements,
2649	 * and make the resulting list the list of statements
2650	 * for the block.
2651	 */
2652	if (s != NULL) {
2653		sappend(s, b->stmts);
2654		b->stmts = s;
2655	}
2656}
2657
2658static struct block *
2659gen_ppi_dlt_check(void)
2660{
2661	struct slist *s_load_dlt;
2662	struct block *b;
2663
2664	if (linktype == DLT_PPI)
2665	{
2666		/* Create the statements that check for the DLT
2667		 */
2668		s_load_dlt = new_stmt(BPF_LD|BPF_W|BPF_ABS);
2669		s_load_dlt->s.k = 4;
2670
2671		b = new_block(JMP(BPF_JEQ));
2672
2673		b->stmts = s_load_dlt;
2674		b->s.k = SWAPLONG(DLT_IEEE802_11);
2675	}
2676	else
2677	{
2678		b = NULL;
2679	}
2680
2681	return b;
2682}
2683
2684static struct slist *
2685gen_prism_llprefixlen(void)
2686{
2687	struct slist *s;
2688
2689	if (reg_off_ll == -1) {
2690		/*
2691		 * We haven't yet assigned a register for the length
2692		 * of the radio header; allocate one.
2693		 */
2694		reg_off_ll = alloc_reg();
2695	}
2696
2697	/*
2698	 * Load the register containing the radio length
2699	 * into the X register.
2700	 */
2701	s = new_stmt(BPF_LDX|BPF_MEM);
2702	s->s.k = reg_off_ll;
2703	return s;
2704}
2705
2706static struct slist *
2707gen_avs_llprefixlen(void)
2708{
2709	struct slist *s;
2710
2711	if (reg_off_ll == -1) {
2712		/*
2713		 * We haven't yet assigned a register for the length
2714		 * of the AVS header; allocate one.
2715		 */
2716		reg_off_ll = alloc_reg();
2717	}
2718
2719	/*
2720	 * Load the register containing the AVS length
2721	 * into the X register.
2722	 */
2723	s = new_stmt(BPF_LDX|BPF_MEM);
2724	s->s.k = reg_off_ll;
2725	return s;
2726}
2727
2728static struct slist *
2729gen_radiotap_llprefixlen(void)
2730{
2731	struct slist *s;
2732
2733	if (reg_off_ll == -1) {
2734		/*
2735		 * We haven't yet assigned a register for the length
2736		 * of the radiotap header; allocate one.
2737		 */
2738		reg_off_ll = alloc_reg();
2739	}
2740
2741	/*
2742	 * Load the register containing the radiotap length
2743	 * into the X register.
2744	 */
2745	s = new_stmt(BPF_LDX|BPF_MEM);
2746	s->s.k = reg_off_ll;
2747	return s;
2748}
2749
2750/*
2751 * At the moment we treat PPI as normal Radiotap encoded
2752 * packets. The difference is in the function that generates
2753 * the code at the beginning to compute the header length.
2754 * Since this code generator of PPI supports bare 802.11
2755 * encapsulation only (i.e. the encapsulated DLT should be
2756 * DLT_IEEE802_11) we generate code to check for this too.
2757 */
2758static struct slist *
2759gen_ppi_llprefixlen(void)
2760{
2761	struct slist *s;
2762
2763	if (reg_off_ll == -1) {
2764		/*
2765		 * We haven't yet assigned a register for the length
2766		 * of the radiotap header; allocate one.
2767		 */
2768		reg_off_ll = alloc_reg();
2769	}
2770
2771	/*
2772	 * Load the register containing the PPI length
2773	 * into the X register.
2774	 */
2775	s = new_stmt(BPF_LDX|BPF_MEM);
2776	s->s.k = reg_off_ll;
2777	return s;
2778}
2779
2780/*
2781 * Generate code to compute the link-layer header length, if necessary,
2782 * putting it into the X register, and to return either a pointer to a
2783 * "struct slist" for the list of statements in that code, or NULL if
2784 * no code is necessary.
2785 */
2786static struct slist *
2787gen_llprefixlen(void)
2788{
2789	switch (linktype) {
2790
2791	case DLT_PRISM_HEADER:
2792		return gen_prism_llprefixlen();
2793
2794	case DLT_IEEE802_11_RADIO_AVS:
2795		return gen_avs_llprefixlen();
2796
2797	case DLT_IEEE802_11_RADIO:
2798		return gen_radiotap_llprefixlen();
2799
2800	case DLT_PPI:
2801		return gen_ppi_llprefixlen();
2802
2803	default:
2804		return NULL;
2805	}
2806}
2807
2808/*
2809 * Generate code to load the register containing the offset of the
2810 * MAC-layer payload into the X register; if no register for that offset
2811 * has been allocated, allocate it first.
2812 */
2813static struct slist *
2814gen_off_macpl(void)
2815{
2816	struct slist *s;
2817
2818	if (off_macpl_is_variable) {
2819		if (reg_off_macpl == -1) {
2820			/*
2821			 * We haven't yet assigned a register for the offset
2822			 * of the MAC-layer payload; allocate one.
2823			 */
2824			reg_off_macpl = alloc_reg();
2825		}
2826
2827		/*
2828		 * Load the register containing the offset of the MAC-layer
2829		 * payload into the X register.
2830		 */
2831		s = new_stmt(BPF_LDX|BPF_MEM);
2832		s->s.k = reg_off_macpl;
2833		return s;
2834	} else {
2835		/*
2836		 * That offset isn't variable, so we don't need to
2837		 * generate any code.
2838		 */
2839		return NULL;
2840	}
2841}
2842
2843/*
2844 * Map an Ethernet type to the equivalent PPP type.
2845 */
2846static int
2847ethertype_to_ppptype(proto)
2848	int proto;
2849{
2850	switch (proto) {
2851
2852	case ETHERTYPE_IP:
2853		proto = PPP_IP;
2854		break;
2855
2856	case ETHERTYPE_IPV6:
2857		proto = PPP_IPV6;
2858		break;
2859
2860	case ETHERTYPE_DN:
2861		proto = PPP_DECNET;
2862		break;
2863
2864	case ETHERTYPE_ATALK:
2865		proto = PPP_APPLE;
2866		break;
2867
2868	case ETHERTYPE_NS:
2869		proto = PPP_NS;
2870		break;
2871
2872	case LLCSAP_ISONS:
2873		proto = PPP_OSI;
2874		break;
2875
2876	case LLCSAP_8021D:
2877		/*
2878		 * I'm assuming the "Bridging PDU"s that go
2879		 * over PPP are Spanning Tree Protocol
2880		 * Bridging PDUs.
2881		 */
2882		proto = PPP_BRPDU;
2883		break;
2884
2885	case LLCSAP_IPX:
2886		proto = PPP_IPX;
2887		break;
2888	}
2889	return (proto);
2890}
2891
2892/*
2893 * Generate code to match a particular packet type by matching the
2894 * link-layer type field or fields in the 802.2 LLC header.
2895 *
2896 * "proto" is an Ethernet type value, if > ETHERMTU, or an LLC SAP
2897 * value, if <= ETHERMTU.
2898 */
2899static struct block *
2900gen_linktype(proto)
2901	register int proto;
2902{
2903	struct block *b0, *b1, *b2;
2904
2905	/* are we checking MPLS-encapsulated packets? */
2906	if (label_stack_depth > 0) {
2907		switch (proto) {
2908		case ETHERTYPE_IP:
2909		case PPP_IP:
2910			/* FIXME add other L3 proto IDs */
2911			return gen_mpls_linktype(Q_IP);
2912
2913		case ETHERTYPE_IPV6:
2914		case PPP_IPV6:
2915			/* FIXME add other L3 proto IDs */
2916			return gen_mpls_linktype(Q_IPV6);
2917
2918		default:
2919			bpf_error("unsupported protocol over mpls");
2920			/* NOTREACHED */
2921		}
2922	}
2923
2924	/*
2925	 * Are we testing PPPoE packets?
2926	 */
2927	if (is_pppoes) {
2928		/*
2929		 * The PPPoE session header is part of the
2930		 * MAC-layer payload, so all references
2931		 * should be relative to the beginning of
2932		 * that payload.
2933		 */
2934
2935		/*
2936		 * We use Ethernet protocol types inside libpcap;
2937		 * map them to the corresponding PPP protocol types.
2938		 */
2939		proto = ethertype_to_ppptype(proto);
2940		return gen_cmp(OR_MACPL, off_linktype, BPF_H, (bpf_int32)proto);
2941	}
2942
2943	switch (linktype) {
2944
2945	case DLT_EN10MB:
2946	case DLT_NETANALYZER:
2947	case DLT_NETANALYZER_TRANSPARENT:
2948		return gen_ether_linktype(proto);
2949		/*NOTREACHED*/
2950		break;
2951
2952	case DLT_C_HDLC:
2953		switch (proto) {
2954
2955		case LLCSAP_ISONS:
2956			proto = (proto << 8 | LLCSAP_ISONS);
2957			/* fall through */
2958
2959		default:
2960			return gen_cmp(OR_LINK, off_linktype, BPF_H,
2961			    (bpf_int32)proto);
2962			/*NOTREACHED*/
2963			break;
2964		}
2965		break;
2966
2967	case DLT_IEEE802_11:
2968	case DLT_PRISM_HEADER:
2969	case DLT_IEEE802_11_RADIO_AVS:
2970	case DLT_IEEE802_11_RADIO:
2971	case DLT_PPI:
2972		/*
2973		 * Check that we have a data frame.
2974		 */
2975		b0 = gen_check_802_11_data_frame();
2976
2977		/*
2978		 * Now check for the specified link-layer type.
2979		 */
2980		b1 = gen_llc_linktype(proto);
2981		gen_and(b0, b1);
2982		return b1;
2983		/*NOTREACHED*/
2984		break;
2985
2986	case DLT_FDDI:
2987		/*
2988		 * XXX - check for asynchronous frames, as per RFC 1103.
2989		 */
2990		return gen_llc_linktype(proto);
2991		/*NOTREACHED*/
2992		break;
2993
2994	case DLT_IEEE802:
2995		/*
2996		 * XXX - check for LLC PDUs, as per IEEE 802.5.
2997		 */
2998		return gen_llc_linktype(proto);
2999		/*NOTREACHED*/
3000		break;
3001
3002	case DLT_ATM_RFC1483:
3003	case DLT_ATM_CLIP:
3004	case DLT_IP_OVER_FC:
3005		return gen_llc_linktype(proto);
3006		/*NOTREACHED*/
3007		break;
3008
3009	case DLT_SUNATM:
3010		/*
3011		 * If "is_lane" is set, check for a LANE-encapsulated
3012		 * version of this protocol, otherwise check for an
3013		 * LLC-encapsulated version of this protocol.
3014		 *
3015		 * We assume LANE means Ethernet, not Token Ring.
3016		 */
3017		if (is_lane) {
3018			/*
3019			 * Check that the packet doesn't begin with an
3020			 * LE Control marker.  (We've already generated
3021			 * a test for LANE.)
3022			 */
3023			b0 = gen_cmp(OR_LINK, SUNATM_PKT_BEGIN_POS, BPF_H,
3024			    0xFF00);
3025			gen_not(b0);
3026
3027			/*
3028			 * Now generate an Ethernet test.
3029			 */
3030			b1 = gen_ether_linktype(proto);
3031			gen_and(b0, b1);
3032			return b1;
3033		} else {
3034			/*
3035			 * Check for LLC encapsulation and then check the
3036			 * protocol.
3037			 */
3038			b0 = gen_atmfield_code(A_PROTOTYPE, PT_LLC, BPF_JEQ, 0);
3039			b1 = gen_llc_linktype(proto);
3040			gen_and(b0, b1);
3041			return b1;
3042		}
3043		/*NOTREACHED*/
3044		break;
3045
3046	case DLT_LINUX_SLL:
3047		return gen_linux_sll_linktype(proto);
3048		/*NOTREACHED*/
3049		break;
3050
3051	case DLT_SLIP:
3052	case DLT_SLIP_BSDOS:
3053	case DLT_RAW:
3054		/*
3055		 * These types don't provide any type field; packets
3056		 * are always IPv4 or IPv6.
3057		 *
3058		 * XXX - for IPv4, check for a version number of 4, and,
3059		 * for IPv6, check for a version number of 6?
3060		 */
3061		switch (proto) {
3062
3063		case ETHERTYPE_IP:
3064			/* Check for a version number of 4. */
3065			return gen_mcmp(OR_LINK, 0, BPF_B, 0x40, 0xF0);
3066
3067		case ETHERTYPE_IPV6:
3068			/* Check for a version number of 6. */
3069			return gen_mcmp(OR_LINK, 0, BPF_B, 0x60, 0xF0);
3070
3071		default:
3072			return gen_false();		/* always false */
3073		}
3074		/*NOTREACHED*/
3075		break;
3076
3077	case DLT_IPV4:
3078		/*
3079		 * Raw IPv4, so no type field.
3080		 */
3081		if (proto == ETHERTYPE_IP)
3082			return gen_true();		/* always true */
3083
3084		/* Checking for something other than IPv4; always false */
3085		return gen_false();
3086		/*NOTREACHED*/
3087		break;
3088
3089	case DLT_IPV6:
3090		/*
3091		 * Raw IPv6, so no type field.
3092		 */
3093		if (proto == ETHERTYPE_IPV6)
3094			return gen_true();		/* always true */
3095
3096		/* Checking for something other than IPv6; always false */
3097		return gen_false();
3098		/*NOTREACHED*/
3099		break;
3100
3101	case DLT_PPP:
3102	case DLT_PPP_PPPD:
3103	case DLT_PPP_SERIAL:
3104	case DLT_PPP_ETHER:
3105		/*
3106		 * We use Ethernet protocol types inside libpcap;
3107		 * map them to the corresponding PPP protocol types.
3108		 */
3109		proto = ethertype_to_ppptype(proto);
3110		return gen_cmp(OR_LINK, off_linktype, BPF_H, (bpf_int32)proto);
3111		/*NOTREACHED*/
3112		break;
3113
3114	case DLT_PPP_BSDOS:
3115		/*
3116		 * We use Ethernet protocol types inside libpcap;
3117		 * map them to the corresponding PPP protocol types.
3118		 */
3119		switch (proto) {
3120
3121		case ETHERTYPE_IP:
3122			/*
3123			 * Also check for Van Jacobson-compressed IP.
3124			 * XXX - do this for other forms of PPP?
3125			 */
3126			b0 = gen_cmp(OR_LINK, off_linktype, BPF_H, PPP_IP);
3127			b1 = gen_cmp(OR_LINK, off_linktype, BPF_H, PPP_VJC);
3128			gen_or(b0, b1);
3129			b0 = gen_cmp(OR_LINK, off_linktype, BPF_H, PPP_VJNC);
3130			gen_or(b1, b0);
3131			return b0;
3132
3133		default:
3134			proto = ethertype_to_ppptype(proto);
3135			return gen_cmp(OR_LINK, off_linktype, BPF_H,
3136				(bpf_int32)proto);
3137		}
3138		/*NOTREACHED*/
3139		break;
3140
3141	case DLT_NULL:
3142	case DLT_LOOP:
3143	case DLT_ENC:
3144		/*
3145		 * For DLT_NULL, the link-layer header is a 32-bit
3146		 * word containing an AF_ value in *host* byte order,
3147		 * and for DLT_ENC, the link-layer header begins
3148		 * with a 32-bit work containing an AF_ value in
3149		 * host byte order.
3150		 *
3151		 * In addition, if we're reading a saved capture file,
3152		 * the host byte order in the capture may not be the
3153		 * same as the host byte order on this machine.
3154		 *
3155		 * For DLT_LOOP, the link-layer header is a 32-bit
3156		 * word containing an AF_ value in *network* byte order.
3157		 *
3158		 * XXX - AF_ values may, unfortunately, be platform-
3159		 * dependent; for example, FreeBSD's AF_INET6 is 24
3160		 * whilst NetBSD's and OpenBSD's is 26.
3161		 *
3162		 * This means that, when reading a capture file, just
3163		 * checking for our AF_INET6 value won't work if the
3164		 * capture file came from another OS.
3165		 */
3166		switch (proto) {
3167
3168		case ETHERTYPE_IP:
3169			proto = AF_INET;
3170			break;
3171
3172#ifdef INET6
3173		case ETHERTYPE_IPV6:
3174			proto = AF_INET6;
3175			break;
3176#endif
3177
3178		default:
3179			/*
3180			 * Not a type on which we support filtering.
3181			 * XXX - support those that have AF_ values
3182			 * #defined on this platform, at least?
3183			 */
3184			return gen_false();
3185		}
3186
3187		if (linktype == DLT_NULL || linktype == DLT_ENC) {
3188			/*
3189			 * The AF_ value is in host byte order, but
3190			 * the BPF interpreter will convert it to
3191			 * network byte order.
3192			 *
3193			 * If this is a save file, and it's from a
3194			 * machine with the opposite byte order to
3195			 * ours, we byte-swap the AF_ value.
3196			 *
3197			 * Then we run it through "htonl()", and
3198			 * generate code to compare against the result.
3199			 */
3200			if (bpf_pcap->rfile != NULL && bpf_pcap->swapped)
3201				proto = SWAPLONG(proto);
3202			proto = htonl(proto);
3203		}
3204		return (gen_cmp(OR_LINK, 0, BPF_W, (bpf_int32)proto));
3205
3206#ifdef HAVE_NET_PFVAR_H
3207	case DLT_PFLOG:
3208		/*
3209		 * af field is host byte order in contrast to the rest of
3210		 * the packet.
3211		 */
3212		if (proto == ETHERTYPE_IP)
3213			return (gen_cmp(OR_LINK, offsetof(struct pfloghdr, af),
3214			    BPF_B, (bpf_int32)AF_INET));
3215		else if (proto == ETHERTYPE_IPV6)
3216			return (gen_cmp(OR_LINK, offsetof(struct pfloghdr, af),
3217			    BPF_B, (bpf_int32)AF_INET6));
3218		else
3219			return gen_false();
3220		/*NOTREACHED*/
3221		break;
3222#endif /* HAVE_NET_PFVAR_H */
3223
3224	case DLT_ARCNET:
3225	case DLT_ARCNET_LINUX:
3226		/*
3227		 * XXX should we check for first fragment if the protocol
3228		 * uses PHDS?
3229		 */
3230		switch (proto) {
3231
3232		default:
3233			return gen_false();
3234
3235		case ETHERTYPE_IPV6:
3236			return (gen_cmp(OR_LINK, off_linktype, BPF_B,
3237				(bpf_int32)ARCTYPE_INET6));
3238
3239		case ETHERTYPE_IP:
3240			b0 = gen_cmp(OR_LINK, off_linktype, BPF_B,
3241				     (bpf_int32)ARCTYPE_IP);
3242			b1 = gen_cmp(OR_LINK, off_linktype, BPF_B,
3243				     (bpf_int32)ARCTYPE_IP_OLD);
3244			gen_or(b0, b1);
3245			return (b1);
3246
3247		case ETHERTYPE_ARP:
3248			b0 = gen_cmp(OR_LINK, off_linktype, BPF_B,
3249				     (bpf_int32)ARCTYPE_ARP);
3250			b1 = gen_cmp(OR_LINK, off_linktype, BPF_B,
3251				     (bpf_int32)ARCTYPE_ARP_OLD);
3252			gen_or(b0, b1);
3253			return (b1);
3254
3255		case ETHERTYPE_REVARP:
3256			return (gen_cmp(OR_LINK, off_linktype, BPF_B,
3257					(bpf_int32)ARCTYPE_REVARP));
3258
3259		case ETHERTYPE_ATALK:
3260			return (gen_cmp(OR_LINK, off_linktype, BPF_B,
3261					(bpf_int32)ARCTYPE_ATALK));
3262		}
3263		/*NOTREACHED*/
3264		break;
3265
3266	case DLT_LTALK:
3267		switch (proto) {
3268		case ETHERTYPE_ATALK:
3269			return gen_true();
3270		default:
3271			return gen_false();
3272		}
3273		/*NOTREACHED*/
3274		break;
3275
3276	case DLT_FRELAY:
3277		/*
3278		 * XXX - assumes a 2-byte Frame Relay header with
3279		 * DLCI and flags.  What if the address is longer?
3280		 */
3281		switch (proto) {
3282
3283		case ETHERTYPE_IP:
3284			/*
3285			 * Check for the special NLPID for IP.
3286			 */
3287			return gen_cmp(OR_LINK, 2, BPF_H, (0x03<<8) | 0xcc);
3288
3289		case ETHERTYPE_IPV6:
3290			/*
3291			 * Check for the special NLPID for IPv6.
3292			 */
3293			return gen_cmp(OR_LINK, 2, BPF_H, (0x03<<8) | 0x8e);
3294
3295		case LLCSAP_ISONS:
3296			/*
3297			 * Check for several OSI protocols.
3298			 *
3299			 * Frame Relay packets typically have an OSI
3300			 * NLPID at the beginning; we check for each
3301			 * of them.
3302			 *
3303			 * What we check for is the NLPID and a frame
3304			 * control field of UI, i.e. 0x03 followed
3305			 * by the NLPID.
3306			 */
3307			b0 = gen_cmp(OR_LINK, 2, BPF_H, (0x03<<8) | ISO8473_CLNP);
3308			b1 = gen_cmp(OR_LINK, 2, BPF_H, (0x03<<8) | ISO9542_ESIS);
3309			b2 = gen_cmp(OR_LINK, 2, BPF_H, (0x03<<8) | ISO10589_ISIS);
3310			gen_or(b1, b2);
3311			gen_or(b0, b2);
3312			return b2;
3313
3314		default:
3315			return gen_false();
3316		}
3317		/*NOTREACHED*/
3318		break;
3319
3320	case DLT_MFR:
3321		bpf_error("Multi-link Frame Relay link-layer type filtering not implemented");
3322
3323        case DLT_JUNIPER_MFR:
3324        case DLT_JUNIPER_MLFR:
3325        case DLT_JUNIPER_MLPPP:
3326	case DLT_JUNIPER_ATM1:
3327	case DLT_JUNIPER_ATM2:
3328	case DLT_JUNIPER_PPPOE:
3329	case DLT_JUNIPER_PPPOE_ATM:
3330        case DLT_JUNIPER_GGSN:
3331        case DLT_JUNIPER_ES:
3332        case DLT_JUNIPER_MONITOR:
3333        case DLT_JUNIPER_SERVICES:
3334        case DLT_JUNIPER_ETHER:
3335        case DLT_JUNIPER_PPP:
3336        case DLT_JUNIPER_FRELAY:
3337        case DLT_JUNIPER_CHDLC:
3338        case DLT_JUNIPER_VP:
3339        case DLT_JUNIPER_ST:
3340        case DLT_JUNIPER_ISM:
3341        case DLT_JUNIPER_VS:
3342        case DLT_JUNIPER_SRX_E2E:
3343        case DLT_JUNIPER_FIBRECHANNEL:
3344	case DLT_JUNIPER_ATM_CEMIC:
3345
3346		/* just lets verify the magic number for now -
3347		 * on ATM we may have up to 6 different encapsulations on the wire
3348		 * and need a lot of heuristics to figure out that the payload
3349		 * might be;
3350		 *
3351		 * FIXME encapsulation specific BPF_ filters
3352		 */
3353		return gen_mcmp(OR_LINK, 0, BPF_W, 0x4d474300, 0xffffff00); /* compare the magic number */
3354
3355	case DLT_BACNET_MS_TP:
3356		return gen_mcmp(OR_LINK, 0, BPF_W, 0x55FF0000, 0xffff0000);
3357
3358	case DLT_IPNET:
3359		return gen_ipnet_linktype(proto);
3360
3361	case DLT_LINUX_IRDA:
3362		bpf_error("IrDA link-layer type filtering not implemented");
3363
3364	case DLT_DOCSIS:
3365		bpf_error("DOCSIS link-layer type filtering not implemented");
3366
3367	case DLT_MTP2:
3368	case DLT_MTP2_WITH_PHDR:
3369		bpf_error("MTP2 link-layer type filtering not implemented");
3370
3371	case DLT_ERF:
3372		bpf_error("ERF link-layer type filtering not implemented");
3373
3374	case DLT_PFSYNC:
3375		bpf_error("PFSYNC link-layer type filtering not implemented");
3376
3377	case DLT_LINUX_LAPD:
3378		bpf_error("LAPD link-layer type filtering not implemented");
3379
3380	case DLT_USB:
3381	case DLT_USB_LINUX:
3382	case DLT_USB_LINUX_MMAPPED:
3383		bpf_error("USB link-layer type filtering not implemented");
3384
3385	case DLT_BLUETOOTH_HCI_H4:
3386	case DLT_BLUETOOTH_HCI_H4_WITH_PHDR:
3387		bpf_error("Bluetooth link-layer type filtering not implemented");
3388
3389	case DLT_CAN20B:
3390	case DLT_CAN_SOCKETCAN:
3391		bpf_error("CAN link-layer type filtering not implemented");
3392
3393	case DLT_IEEE802_15_4:
3394	case DLT_IEEE802_15_4_LINUX:
3395	case DLT_IEEE802_15_4_NONASK_PHY:
3396	case DLT_IEEE802_15_4_NOFCS:
3397		bpf_error("IEEE 802.15.4 link-layer type filtering not implemented");
3398
3399	case DLT_IEEE802_16_MAC_CPS_RADIO:
3400		bpf_error("IEEE 802.16 link-layer type filtering not implemented");
3401
3402	case DLT_SITA:
3403		bpf_error("SITA link-layer type filtering not implemented");
3404
3405	case DLT_RAIF1:
3406		bpf_error("RAIF1 link-layer type filtering not implemented");
3407
3408	case DLT_IPMB:
3409		bpf_error("IPMB link-layer type filtering not implemented");
3410
3411	case DLT_AX25_KISS:
3412		bpf_error("AX.25 link-layer type filtering not implemented");
3413	}
3414
3415	/*
3416	 * All the types that have no encapsulation should either be
3417	 * handled as DLT_SLIP, DLT_SLIP_BSDOS, and DLT_RAW are, if
3418	 * all packets are IP packets, or should be handled in some
3419	 * special case, if none of them are (if some are and some
3420	 * aren't, the lack of encapsulation is a problem, as we'd
3421	 * have to find some other way of determining the packet type).
3422	 *
3423	 * Therefore, if "off_linktype" is -1, there's an error.
3424	 */
3425	if (off_linktype == (u_int)-1)
3426		abort();
3427
3428	/*
3429	 * Any type not handled above should always have an Ethernet
3430	 * type at an offset of "off_linktype".
3431	 */
3432	return gen_cmp(OR_LINK, off_linktype, BPF_H, (bpf_int32)proto);
3433}
3434
3435/*
3436 * Check for an LLC SNAP packet with a given organization code and
3437 * protocol type; we check the entire contents of the 802.2 LLC and
3438 * snap headers, checking for DSAP and SSAP of SNAP and a control
3439 * field of 0x03 in the LLC header, and for the specified organization
3440 * code and protocol type in the SNAP header.
3441 */
3442static struct block *
3443gen_snap(orgcode, ptype)
3444	bpf_u_int32 orgcode;
3445	bpf_u_int32 ptype;
3446{
3447	u_char snapblock[8];
3448
3449	snapblock[0] = LLCSAP_SNAP;	/* DSAP = SNAP */
3450	snapblock[1] = LLCSAP_SNAP;	/* SSAP = SNAP */
3451	snapblock[2] = 0x03;		/* control = UI */
3452	snapblock[3] = (orgcode >> 16);	/* upper 8 bits of organization code */
3453	snapblock[4] = (orgcode >> 8);	/* middle 8 bits of organization code */
3454	snapblock[5] = (orgcode >> 0);	/* lower 8 bits of organization code */
3455	snapblock[6] = (ptype >> 8);	/* upper 8 bits of protocol type */
3456	snapblock[7] = (ptype >> 0);	/* lower 8 bits of protocol type */
3457	return gen_bcmp(OR_MACPL, 0, 8, snapblock);
3458}
3459
3460/*
3461 * Generate code to match a particular packet type, for link-layer types
3462 * using 802.2 LLC headers.
3463 *
3464 * This is *NOT* used for Ethernet; "gen_ether_linktype()" is used
3465 * for that - it handles the D/I/X Ethernet vs. 802.3+802.2 issues.
3466 *
3467 * "proto" is an Ethernet type value, if > ETHERMTU, or an LLC SAP
3468 * value, if <= ETHERMTU.  We use that to determine whether to
3469 * match the DSAP or both DSAP and LSAP or to check the OUI and
3470 * protocol ID in a SNAP header.
3471 */
3472static struct block *
3473gen_llc_linktype(proto)
3474	int proto;
3475{
3476	/*
3477	 * XXX - handle token-ring variable-length header.
3478	 */
3479	switch (proto) {
3480
3481	case LLCSAP_IP:
3482	case LLCSAP_ISONS:
3483	case LLCSAP_NETBEUI:
3484		/*
3485		 * XXX - should we check both the DSAP and the
3486		 * SSAP, like this, or should we check just the
3487		 * DSAP, as we do for other types <= ETHERMTU
3488		 * (i.e., other SAP values)?
3489		 */
3490		return gen_cmp(OR_MACPL, 0, BPF_H, (bpf_u_int32)
3491			     ((proto << 8) | proto));
3492
3493	case LLCSAP_IPX:
3494		/*
3495		 * XXX - are there ever SNAP frames for IPX on
3496		 * non-Ethernet 802.x networks?
3497		 */
3498		return gen_cmp(OR_MACPL, 0, BPF_B,
3499		    (bpf_int32)LLCSAP_IPX);
3500
3501	case ETHERTYPE_ATALK:
3502		/*
3503		 * 802.2-encapsulated ETHERTYPE_ATALK packets are
3504		 * SNAP packets with an organization code of
3505		 * 0x080007 (Apple, for Appletalk) and a protocol
3506		 * type of ETHERTYPE_ATALK (Appletalk).
3507		 *
3508		 * XXX - check for an organization code of
3509		 * encapsulated Ethernet as well?
3510		 */
3511		return gen_snap(0x080007, ETHERTYPE_ATALK);
3512
3513	default:
3514		/*
3515		 * XXX - we don't have to check for IPX 802.3
3516		 * here, but should we check for the IPX Ethertype?
3517		 */
3518		if (proto <= ETHERMTU) {
3519			/*
3520			 * This is an LLC SAP value, so check
3521			 * the DSAP.
3522			 */
3523			return gen_cmp(OR_MACPL, 0, BPF_B, (bpf_int32)proto);
3524		} else {
3525			/*
3526			 * This is an Ethernet type; we assume that it's
3527			 * unlikely that it'll appear in the right place
3528			 * at random, and therefore check only the
3529			 * location that would hold the Ethernet type
3530			 * in a SNAP frame with an organization code of
3531			 * 0x000000 (encapsulated Ethernet).
3532			 *
3533			 * XXX - if we were to check for the SNAP DSAP and
3534			 * LSAP, as per XXX, and were also to check for an
3535			 * organization code of 0x000000 (encapsulated
3536			 * Ethernet), we'd do
3537			 *
3538			 *	return gen_snap(0x000000, proto);
3539			 *
3540			 * here; for now, we don't, as per the above.
3541			 * I don't know whether it's worth the extra CPU
3542			 * time to do the right check or not.
3543			 */
3544			return gen_cmp(OR_MACPL, 6, BPF_H, (bpf_int32)proto);
3545		}
3546	}
3547}
3548
3549static struct block *
3550gen_hostop(addr, mask, dir, proto, src_off, dst_off)
3551	bpf_u_int32 addr;
3552	bpf_u_int32 mask;
3553	int dir, proto;
3554	u_int src_off, dst_off;
3555{
3556	struct block *b0, *b1;
3557	u_int offset;
3558
3559	switch (dir) {
3560
3561	case Q_SRC:
3562		offset = src_off;
3563		break;
3564
3565	case Q_DST:
3566		offset = dst_off;
3567		break;
3568
3569	case Q_AND:
3570		b0 = gen_hostop(addr, mask, Q_SRC, proto, src_off, dst_off);
3571		b1 = gen_hostop(addr, mask, Q_DST, proto, src_off, dst_off);
3572		gen_and(b0, b1);
3573		return b1;
3574
3575	case Q_OR:
3576	case Q_DEFAULT:
3577		b0 = gen_hostop(addr, mask, Q_SRC, proto, src_off, dst_off);
3578		b1 = gen_hostop(addr, mask, Q_DST, proto, src_off, dst_off);
3579		gen_or(b0, b1);
3580		return b1;
3581
3582	default:
3583		abort();
3584	}
3585	b0 = gen_linktype(proto);
3586	b1 = gen_mcmp(OR_NET, offset, BPF_W, (bpf_int32)addr, mask);
3587	gen_and(b0, b1);
3588	return b1;
3589}
3590
3591#ifdef INET6
3592static struct block *
3593gen_hostop6(addr, mask, dir, proto, src_off, dst_off)
3594	struct in6_addr *addr;
3595	struct in6_addr *mask;
3596	int dir, proto;
3597	u_int src_off, dst_off;
3598{
3599	struct block *b0, *b1;
3600	u_int offset;
3601	u_int32_t *a, *m;
3602
3603	switch (dir) {
3604
3605	case Q_SRC:
3606		offset = src_off;
3607		break;
3608
3609	case Q_DST:
3610		offset = dst_off;
3611		break;
3612
3613	case Q_AND:
3614		b0 = gen_hostop6(addr, mask, Q_SRC, proto, src_off, dst_off);
3615		b1 = gen_hostop6(addr, mask, Q_DST, proto, src_off, dst_off);
3616		gen_and(b0, b1);
3617		return b1;
3618
3619	case Q_OR:
3620	case Q_DEFAULT:
3621		b0 = gen_hostop6(addr, mask, Q_SRC, proto, src_off, dst_off);
3622		b1 = gen_hostop6(addr, mask, Q_DST, proto, src_off, dst_off);
3623		gen_or(b0, b1);
3624		return b1;
3625
3626	default:
3627		abort();
3628	}
3629	/* this order is important */
3630	a = (u_int32_t *)addr;
3631	m = (u_int32_t *)mask;
3632	b1 = gen_mcmp(OR_NET, offset + 12, BPF_W, ntohl(a[3]), ntohl(m[3]));
3633	b0 = gen_mcmp(OR_NET, offset + 8, BPF_W, ntohl(a[2]), ntohl(m[2]));
3634	gen_and(b0, b1);
3635	b0 = gen_mcmp(OR_NET, offset + 4, BPF_W, ntohl(a[1]), ntohl(m[1]));
3636	gen_and(b0, b1);
3637	b0 = gen_mcmp(OR_NET, offset + 0, BPF_W, ntohl(a[0]), ntohl(m[0]));
3638	gen_and(b0, b1);
3639	b0 = gen_linktype(proto);
3640	gen_and(b0, b1);
3641	return b1;
3642}
3643#endif
3644
3645static struct block *
3646gen_ehostop(eaddr, dir)
3647	register const u_char *eaddr;
3648	register int dir;
3649{
3650	register struct block *b0, *b1;
3651
3652	switch (dir) {
3653	case Q_SRC:
3654		return gen_bcmp(OR_LINK, off_mac + 6, 6, eaddr);
3655
3656	case Q_DST:
3657		return gen_bcmp(OR_LINK, off_mac + 0, 6, eaddr);
3658
3659	case Q_AND:
3660		b0 = gen_ehostop(eaddr, Q_SRC);
3661		b1 = gen_ehostop(eaddr, Q_DST);
3662		gen_and(b0, b1);
3663		return b1;
3664
3665	case Q_DEFAULT:
3666	case Q_OR:
3667		b0 = gen_ehostop(eaddr, Q_SRC);
3668		b1 = gen_ehostop(eaddr, Q_DST);
3669		gen_or(b0, b1);
3670		return b1;
3671
3672	case Q_ADDR1:
3673		bpf_error("'addr1' is only supported on 802.11 with 802.11 headers");
3674		break;
3675
3676	case Q_ADDR2:
3677		bpf_error("'addr2' is only supported on 802.11 with 802.11 headers");
3678		break;
3679
3680	case Q_ADDR3:
3681		bpf_error("'addr3' is only supported on 802.11 with 802.11 headers");
3682		break;
3683
3684	case Q_ADDR4:
3685		bpf_error("'addr4' is only supported on 802.11 with 802.11 headers");
3686		break;
3687
3688	case Q_RA:
3689		bpf_error("'ra' is only supported on 802.11 with 802.11 headers");
3690		break;
3691
3692	case Q_TA:
3693		bpf_error("'ta' is only supported on 802.11 with 802.11 headers");
3694		break;
3695	}
3696	abort();
3697	/* NOTREACHED */
3698}
3699
3700/*
3701 * Like gen_ehostop, but for DLT_FDDI
3702 */
3703static struct block *
3704gen_fhostop(eaddr, dir)
3705	register const u_char *eaddr;
3706	register int dir;
3707{
3708	struct block *b0, *b1;
3709
3710	switch (dir) {
3711	case Q_SRC:
3712		return gen_bcmp(OR_LINK, 6 + 1 + pcap_fddipad, 6, eaddr);
3713
3714	case Q_DST:
3715		return gen_bcmp(OR_LINK, 0 + 1 + pcap_fddipad, 6, eaddr);
3716
3717	case Q_AND:
3718		b0 = gen_fhostop(eaddr, Q_SRC);
3719		b1 = gen_fhostop(eaddr, Q_DST);
3720		gen_and(b0, b1);
3721		return b1;
3722
3723	case Q_DEFAULT:
3724	case Q_OR:
3725		b0 = gen_fhostop(eaddr, Q_SRC);
3726		b1 = gen_fhostop(eaddr, Q_DST);
3727		gen_or(b0, b1);
3728		return b1;
3729
3730	case Q_ADDR1:
3731		bpf_error("'addr1' is only supported on 802.11");
3732		break;
3733
3734	case Q_ADDR2:
3735		bpf_error("'addr2' is only supported on 802.11");
3736		break;
3737
3738	case Q_ADDR3:
3739		bpf_error("'addr3' is only supported on 802.11");
3740		break;
3741
3742	case Q_ADDR4:
3743		bpf_error("'addr4' is only supported on 802.11");
3744		break;
3745
3746	case Q_RA:
3747		bpf_error("'ra' is only supported on 802.11");
3748		break;
3749
3750	case Q_TA:
3751		bpf_error("'ta' is only supported on 802.11");
3752		break;
3753	}
3754	abort();
3755	/* NOTREACHED */
3756}
3757
3758/*
3759 * Like gen_ehostop, but for DLT_IEEE802 (Token Ring)
3760 */
3761static struct block *
3762gen_thostop(eaddr, dir)
3763	register const u_char *eaddr;
3764	register int dir;
3765{
3766	register struct block *b0, *b1;
3767
3768	switch (dir) {
3769	case Q_SRC:
3770		return gen_bcmp(OR_LINK, 8, 6, eaddr);
3771
3772	case Q_DST:
3773		return gen_bcmp(OR_LINK, 2, 6, eaddr);
3774
3775	case Q_AND:
3776		b0 = gen_thostop(eaddr, Q_SRC);
3777		b1 = gen_thostop(eaddr, Q_DST);
3778		gen_and(b0, b1);
3779		return b1;
3780
3781	case Q_DEFAULT:
3782	case Q_OR:
3783		b0 = gen_thostop(eaddr, Q_SRC);
3784		b1 = gen_thostop(eaddr, Q_DST);
3785		gen_or(b0, b1);
3786		return b1;
3787
3788	case Q_ADDR1:
3789		bpf_error("'addr1' is only supported on 802.11");
3790		break;
3791
3792	case Q_ADDR2:
3793		bpf_error("'addr2' is only supported on 802.11");
3794		break;
3795
3796	case Q_ADDR3:
3797		bpf_error("'addr3' is only supported on 802.11");
3798		break;
3799
3800	case Q_ADDR4:
3801		bpf_error("'addr4' is only supported on 802.11");
3802		break;
3803
3804	case Q_RA:
3805		bpf_error("'ra' is only supported on 802.11");
3806		break;
3807
3808	case Q_TA:
3809		bpf_error("'ta' is only supported on 802.11");
3810		break;
3811	}
3812	abort();
3813	/* NOTREACHED */
3814}
3815
3816/*
3817 * Like gen_ehostop, but for DLT_IEEE802_11 (802.11 wireless LAN) and
3818 * various 802.11 + radio headers.
3819 */
3820static struct block *
3821gen_wlanhostop(eaddr, dir)
3822	register const u_char *eaddr;
3823	register int dir;
3824{
3825	register struct block *b0, *b1, *b2;
3826	register struct slist *s;
3827
3828#ifdef ENABLE_WLAN_FILTERING_PATCH
3829	/*
3830	 * TODO GV 20070613
3831	 * We need to disable the optimizer because the optimizer is buggy
3832	 * and wipes out some LD instructions generated by the below
3833	 * code to validate the Frame Control bits
3834	 */
3835	no_optimize = 1;
3836#endif /* ENABLE_WLAN_FILTERING_PATCH */
3837
3838	switch (dir) {
3839	case Q_SRC:
3840		/*
3841		 * Oh, yuk.
3842		 *
3843		 *	For control frames, there is no SA.
3844		 *
3845		 *	For management frames, SA is at an
3846		 *	offset of 10 from the beginning of
3847		 *	the packet.
3848		 *
3849		 *	For data frames, SA is at an offset
3850		 *	of 10 from the beginning of the packet
3851		 *	if From DS is clear, at an offset of
3852		 *	16 from the beginning of the packet
3853		 *	if From DS is set and To DS is clear,
3854		 *	and an offset of 24 from the beginning
3855		 *	of the packet if From DS is set and To DS
3856		 *	is set.
3857		 */
3858
3859		/*
3860		 * Generate the tests to be done for data frames
3861		 * with From DS set.
3862		 *
3863		 * First, check for To DS set, i.e. check "link[1] & 0x01".
3864		 */
3865		s = gen_load_a(OR_LINK, 1, BPF_B);
3866		b1 = new_block(JMP(BPF_JSET));
3867		b1->s.k = 0x01;	/* To DS */
3868		b1->stmts = s;
3869
3870		/*
3871		 * If To DS is set, the SA is at 24.
3872		 */
3873		b0 = gen_bcmp(OR_LINK, 24, 6, eaddr);
3874		gen_and(b1, b0);
3875
3876		/*
3877		 * Now, check for To DS not set, i.e. check
3878		 * "!(link[1] & 0x01)".
3879		 */
3880		s = gen_load_a(OR_LINK, 1, BPF_B);
3881		b2 = new_block(JMP(BPF_JSET));
3882		b2->s.k = 0x01;	/* To DS */
3883		b2->stmts = s;
3884		gen_not(b2);
3885
3886		/*
3887		 * If To DS is not set, the SA is at 16.
3888		 */
3889		b1 = gen_bcmp(OR_LINK, 16, 6, eaddr);
3890		gen_and(b2, b1);
3891
3892		/*
3893		 * Now OR together the last two checks.  That gives
3894		 * the complete set of checks for data frames with
3895		 * From DS set.
3896		 */
3897		gen_or(b1, b0);
3898
3899		/*
3900		 * Now check for From DS being set, and AND that with
3901		 * the ORed-together checks.
3902		 */
3903		s = gen_load_a(OR_LINK, 1, BPF_B);
3904		b1 = new_block(JMP(BPF_JSET));
3905		b1->s.k = 0x02;	/* From DS */
3906		b1->stmts = s;
3907		gen_and(b1, b0);
3908
3909		/*
3910		 * Now check for data frames with From DS not set.
3911		 */
3912		s = gen_load_a(OR_LINK, 1, BPF_B);
3913		b2 = new_block(JMP(BPF_JSET));
3914		b2->s.k = 0x02;	/* From DS */
3915		b2->stmts = s;
3916		gen_not(b2);
3917
3918		/*
3919		 * If From DS isn't set, the SA is at 10.
3920		 */
3921		b1 = gen_bcmp(OR_LINK, 10, 6, eaddr);
3922		gen_and(b2, b1);
3923
3924		/*
3925		 * Now OR together the checks for data frames with
3926		 * From DS not set and for data frames with From DS
3927		 * set; that gives the checks done for data frames.
3928		 */
3929		gen_or(b1, b0);
3930
3931		/*
3932		 * Now check for a data frame.
3933		 * I.e, check "link[0] & 0x08".
3934		 */
3935		s = gen_load_a(OR_LINK, 0, BPF_B);
3936		b1 = new_block(JMP(BPF_JSET));
3937		b1->s.k = 0x08;
3938		b1->stmts = s;
3939
3940		/*
3941		 * AND that with the checks done for data frames.
3942		 */
3943		gen_and(b1, b0);
3944
3945		/*
3946		 * If the high-order bit of the type value is 0, this
3947		 * is a management frame.
3948		 * I.e, check "!(link[0] & 0x08)".
3949		 */
3950		s = gen_load_a(OR_LINK, 0, BPF_B);
3951		b2 = new_block(JMP(BPF_JSET));
3952		b2->s.k = 0x08;
3953		b2->stmts = s;
3954		gen_not(b2);
3955
3956		/*
3957		 * For management frames, the SA is at 10.
3958		 */
3959		b1 = gen_bcmp(OR_LINK, 10, 6, eaddr);
3960		gen_and(b2, b1);
3961
3962		/*
3963		 * OR that with the checks done for data frames.
3964		 * That gives the checks done for management and
3965		 * data frames.
3966		 */
3967		gen_or(b1, b0);
3968
3969		/*
3970		 * If the low-order bit of the type value is 1,
3971		 * this is either a control frame or a frame
3972		 * with a reserved type, and thus not a
3973		 * frame with an SA.
3974		 *
3975		 * I.e., check "!(link[0] & 0x04)".
3976		 */
3977		s = gen_load_a(OR_LINK, 0, BPF_B);
3978		b1 = new_block(JMP(BPF_JSET));
3979		b1->s.k = 0x04;
3980		b1->stmts = s;
3981		gen_not(b1);
3982
3983		/*
3984		 * AND that with the checks for data and management
3985		 * frames.
3986		 */
3987		gen_and(b1, b0);
3988		return b0;
3989
3990	case Q_DST:
3991		/*
3992		 * Oh, yuk.
3993		 *
3994		 *	For control frames, there is no DA.
3995		 *
3996		 *	For management frames, DA is at an
3997		 *	offset of 4 from the beginning of
3998		 *	the packet.
3999		 *
4000		 *	For data frames, DA is at an offset
4001		 *	of 4 from the beginning of the packet
4002		 *	if To DS is clear and at an offset of
4003		 *	16 from the beginning of the packet
4004		 *	if To DS is set.
4005		 */
4006
4007		/*
4008		 * Generate the tests to be done for data frames.
4009		 *
4010		 * First, check for To DS set, i.e. "link[1] & 0x01".
4011		 */
4012		s = gen_load_a(OR_LINK, 1, BPF_B);
4013		b1 = new_block(JMP(BPF_JSET));
4014		b1->s.k = 0x01;	/* To DS */
4015		b1->stmts = s;
4016
4017		/*
4018		 * If To DS is set, the DA is at 16.
4019		 */
4020		b0 = gen_bcmp(OR_LINK, 16, 6, eaddr);
4021		gen_and(b1, b0);
4022
4023		/*
4024		 * Now, check for To DS not set, i.e. check
4025		 * "!(link[1] & 0x01)".
4026		 */
4027		s = gen_load_a(OR_LINK, 1, BPF_B);
4028		b2 = new_block(JMP(BPF_JSET));
4029		b2->s.k = 0x01;	/* To DS */
4030		b2->stmts = s;
4031		gen_not(b2);
4032
4033		/*
4034		 * If To DS is not set, the DA is at 4.
4035		 */
4036		b1 = gen_bcmp(OR_LINK, 4, 6, eaddr);
4037		gen_and(b2, b1);
4038
4039		/*
4040		 * Now OR together the last two checks.  That gives
4041		 * the complete set of checks for data frames.
4042		 */
4043		gen_or(b1, b0);
4044
4045		/*
4046		 * Now check for a data frame.
4047		 * I.e, check "link[0] & 0x08".
4048		 */
4049		s = gen_load_a(OR_LINK, 0, BPF_B);
4050		b1 = new_block(JMP(BPF_JSET));
4051		b1->s.k = 0x08;
4052		b1->stmts = s;
4053
4054		/*
4055		 * AND that with the checks done for data frames.
4056		 */
4057		gen_and(b1, b0);
4058
4059		/*
4060		 * If the high-order bit of the type value is 0, this
4061		 * is a management frame.
4062		 * I.e, check "!(link[0] & 0x08)".
4063		 */
4064		s = gen_load_a(OR_LINK, 0, BPF_B);
4065		b2 = new_block(JMP(BPF_JSET));
4066		b2->s.k = 0x08;
4067		b2->stmts = s;
4068		gen_not(b2);
4069
4070		/*
4071		 * For management frames, the DA is at 4.
4072		 */
4073		b1 = gen_bcmp(OR_LINK, 4, 6, eaddr);
4074		gen_and(b2, b1);
4075
4076		/*
4077		 * OR that with the checks done for data frames.
4078		 * That gives the checks done for management and
4079		 * data frames.
4080		 */
4081		gen_or(b1, b0);
4082
4083		/*
4084		 * If the low-order bit of the type value is 1,
4085		 * this is either a control frame or a frame
4086		 * with a reserved type, and thus not a
4087		 * frame with an SA.
4088		 *
4089		 * I.e., check "!(link[0] & 0x04)".
4090		 */
4091		s = gen_load_a(OR_LINK, 0, BPF_B);
4092		b1 = new_block(JMP(BPF_JSET));
4093		b1->s.k = 0x04;
4094		b1->stmts = s;
4095		gen_not(b1);
4096
4097		/*
4098		 * AND that with the checks for data and management
4099		 * frames.
4100		 */
4101		gen_and(b1, b0);
4102		return b0;
4103
4104	case Q_RA:
4105		/*
4106		 * Not present in management frames; addr1 in other
4107		 * frames.
4108		 */
4109
4110		/*
4111		 * If the high-order bit of the type value is 0, this
4112		 * is a management frame.
4113		 * I.e, check "(link[0] & 0x08)".
4114		 */
4115		s = gen_load_a(OR_LINK, 0, BPF_B);
4116		b1 = new_block(JMP(BPF_JSET));
4117		b1->s.k = 0x08;
4118		b1->stmts = s;
4119
4120		/*
4121		 * Check addr1.
4122		 */
4123		b0 = gen_bcmp(OR_LINK, 4, 6, eaddr);
4124
4125		/*
4126		 * AND that with the check of addr1.
4127		 */
4128		gen_and(b1, b0);
4129		return (b0);
4130
4131	case Q_TA:
4132		/*
4133		 * Not present in management frames; addr2, if present,
4134		 * in other frames.
4135		 */
4136
4137		/*
4138		 * Not present in CTS or ACK control frames.
4139		 */
4140		b0 = gen_mcmp(OR_LINK, 0, BPF_B, IEEE80211_FC0_TYPE_CTL,
4141			IEEE80211_FC0_TYPE_MASK);
4142		gen_not(b0);
4143		b1 = gen_mcmp(OR_LINK, 0, BPF_B, IEEE80211_FC0_SUBTYPE_CTS,
4144			IEEE80211_FC0_SUBTYPE_MASK);
4145		gen_not(b1);
4146		b2 = gen_mcmp(OR_LINK, 0, BPF_B, IEEE80211_FC0_SUBTYPE_ACK,
4147			IEEE80211_FC0_SUBTYPE_MASK);
4148		gen_not(b2);
4149		gen_and(b1, b2);
4150		gen_or(b0, b2);
4151
4152		/*
4153		 * If the high-order bit of the type value is 0, this
4154		 * is a management frame.
4155		 * I.e, check "(link[0] & 0x08)".
4156		 */
4157		s = gen_load_a(OR_LINK, 0, BPF_B);
4158		b1 = new_block(JMP(BPF_JSET));
4159		b1->s.k = 0x08;
4160		b1->stmts = s;
4161
4162		/*
4163		 * AND that with the check for frames other than
4164		 * CTS and ACK frames.
4165		 */
4166		gen_and(b1, b2);
4167
4168		/*
4169		 * Check addr2.
4170		 */
4171		b1 = gen_bcmp(OR_LINK, 10, 6, eaddr);
4172		gen_and(b2, b1);
4173		return b1;
4174
4175	/*
4176	 * XXX - add BSSID keyword?
4177	 */
4178	case Q_ADDR1:
4179		return (gen_bcmp(OR_LINK, 4, 6, eaddr));
4180
4181	case Q_ADDR2:
4182		/*
4183		 * Not present in CTS or ACK control frames.
4184		 */
4185		b0 = gen_mcmp(OR_LINK, 0, BPF_B, IEEE80211_FC0_TYPE_CTL,
4186			IEEE80211_FC0_TYPE_MASK);
4187		gen_not(b0);
4188		b1 = gen_mcmp(OR_LINK, 0, BPF_B, IEEE80211_FC0_SUBTYPE_CTS,
4189			IEEE80211_FC0_SUBTYPE_MASK);
4190		gen_not(b1);
4191		b2 = gen_mcmp(OR_LINK, 0, BPF_B, IEEE80211_FC0_SUBTYPE_ACK,
4192			IEEE80211_FC0_SUBTYPE_MASK);
4193		gen_not(b2);
4194		gen_and(b1, b2);
4195		gen_or(b0, b2);
4196		b1 = gen_bcmp(OR_LINK, 10, 6, eaddr);
4197		gen_and(b2, b1);
4198		return b1;
4199
4200	case Q_ADDR3:
4201		/*
4202		 * Not present in control frames.
4203		 */
4204		b0 = gen_mcmp(OR_LINK, 0, BPF_B, IEEE80211_FC0_TYPE_CTL,
4205			IEEE80211_FC0_TYPE_MASK);
4206		gen_not(b0);
4207		b1 = gen_bcmp(OR_LINK, 16, 6, eaddr);
4208		gen_and(b0, b1);
4209		return b1;
4210
4211	case Q_ADDR4:
4212		/*
4213		 * Present only if the direction mask has both "From DS"
4214		 * and "To DS" set.  Neither control frames nor management
4215		 * frames should have both of those set, so we don't
4216		 * check the frame type.
4217		 */
4218		b0 = gen_mcmp(OR_LINK, 1, BPF_B,
4219			IEEE80211_FC1_DIR_DSTODS, IEEE80211_FC1_DIR_MASK);
4220		b1 = gen_bcmp(OR_LINK, 24, 6, eaddr);
4221		gen_and(b0, b1);
4222		return b1;
4223
4224	case Q_AND:
4225		b0 = gen_wlanhostop(eaddr, Q_SRC);
4226		b1 = gen_wlanhostop(eaddr, Q_DST);
4227		gen_and(b0, b1);
4228		return b1;
4229
4230	case Q_DEFAULT:
4231	case Q_OR:
4232		b0 = gen_wlanhostop(eaddr, Q_SRC);
4233		b1 = gen_wlanhostop(eaddr, Q_DST);
4234		gen_or(b0, b1);
4235		return b1;
4236	}
4237	abort();
4238	/* NOTREACHED */
4239}
4240
4241/*
4242 * Like gen_ehostop, but for RFC 2625 IP-over-Fibre-Channel.
4243 * (We assume that the addresses are IEEE 48-bit MAC addresses,
4244 * as the RFC states.)
4245 */
4246static struct block *
4247gen_ipfchostop(eaddr, dir)
4248	register const u_char *eaddr;
4249	register int dir;
4250{
4251	register struct block *b0, *b1;
4252
4253	switch (dir) {
4254	case Q_SRC:
4255		return gen_bcmp(OR_LINK, 10, 6, eaddr);
4256
4257	case Q_DST:
4258		return gen_bcmp(OR_LINK, 2, 6, eaddr);
4259
4260	case Q_AND:
4261		b0 = gen_ipfchostop(eaddr, Q_SRC);
4262		b1 = gen_ipfchostop(eaddr, Q_DST);
4263		gen_and(b0, b1);
4264		return b1;
4265
4266	case Q_DEFAULT:
4267	case Q_OR:
4268		b0 = gen_ipfchostop(eaddr, Q_SRC);
4269		b1 = gen_ipfchostop(eaddr, Q_DST);
4270		gen_or(b0, b1);
4271		return b1;
4272
4273	case Q_ADDR1:
4274		bpf_error("'addr1' is only supported on 802.11");
4275		break;
4276
4277	case Q_ADDR2:
4278		bpf_error("'addr2' is only supported on 802.11");
4279		break;
4280
4281	case Q_ADDR3:
4282		bpf_error("'addr3' is only supported on 802.11");
4283		break;
4284
4285	case Q_ADDR4:
4286		bpf_error("'addr4' is only supported on 802.11");
4287		break;
4288
4289	case Q_RA:
4290		bpf_error("'ra' is only supported on 802.11");
4291		break;
4292
4293	case Q_TA:
4294		bpf_error("'ta' is only supported on 802.11");
4295		break;
4296	}
4297	abort();
4298	/* NOTREACHED */
4299}
4300
4301/*
4302 * This is quite tricky because there may be pad bytes in front of the
4303 * DECNET header, and then there are two possible data packet formats that
4304 * carry both src and dst addresses, plus 5 packet types in a format that
4305 * carries only the src node, plus 2 types that use a different format and
4306 * also carry just the src node.
4307 *
4308 * Yuck.
4309 *
4310 * Instead of doing those all right, we just look for data packets with
4311 * 0 or 1 bytes of padding.  If you want to look at other packets, that
4312 * will require a lot more hacking.
4313 *
4314 * To add support for filtering on DECNET "areas" (network numbers)
4315 * one would want to add a "mask" argument to this routine.  That would
4316 * make the filter even more inefficient, although one could be clever
4317 * and not generate masking instructions if the mask is 0xFFFF.
4318 */
4319static struct block *
4320gen_dnhostop(addr, dir)
4321	bpf_u_int32 addr;
4322	int dir;
4323{
4324	struct block *b0, *b1, *b2, *tmp;
4325	u_int offset_lh;	/* offset if long header is received */
4326	u_int offset_sh;	/* offset if short header is received */
4327
4328	switch (dir) {
4329
4330	case Q_DST:
4331		offset_sh = 1;	/* follows flags */
4332		offset_lh = 7;	/* flgs,darea,dsubarea,HIORD */
4333		break;
4334
4335	case Q_SRC:
4336		offset_sh = 3;	/* follows flags, dstnode */
4337		offset_lh = 15;	/* flgs,darea,dsubarea,did,sarea,ssub,HIORD */
4338		break;
4339
4340	case Q_AND:
4341		/* Inefficient because we do our Calvinball dance twice */
4342		b0 = gen_dnhostop(addr, Q_SRC);
4343		b1 = gen_dnhostop(addr, Q_DST);
4344		gen_and(b0, b1);
4345		return b1;
4346
4347	case Q_OR:
4348	case Q_DEFAULT:
4349		/* Inefficient because we do our Calvinball dance twice */
4350		b0 = gen_dnhostop(addr, Q_SRC);
4351		b1 = gen_dnhostop(addr, Q_DST);
4352		gen_or(b0, b1);
4353		return b1;
4354
4355	case Q_ISO:
4356		bpf_error("ISO host filtering not implemented");
4357
4358	default:
4359		abort();
4360	}
4361	b0 = gen_linktype(ETHERTYPE_DN);
4362	/* Check for pad = 1, long header case */
4363	tmp = gen_mcmp(OR_NET, 2, BPF_H,
4364	    (bpf_int32)ntohs(0x0681), (bpf_int32)ntohs(0x07FF));
4365	b1 = gen_cmp(OR_NET, 2 + 1 + offset_lh,
4366	    BPF_H, (bpf_int32)ntohs((u_short)addr));
4367	gen_and(tmp, b1);
4368	/* Check for pad = 0, long header case */
4369	tmp = gen_mcmp(OR_NET, 2, BPF_B, (bpf_int32)0x06, (bpf_int32)0x7);
4370	b2 = gen_cmp(OR_NET, 2 + offset_lh, BPF_H, (bpf_int32)ntohs((u_short)addr));
4371	gen_and(tmp, b2);
4372	gen_or(b2, b1);
4373	/* Check for pad = 1, short header case */
4374	tmp = gen_mcmp(OR_NET, 2, BPF_H,
4375	    (bpf_int32)ntohs(0x0281), (bpf_int32)ntohs(0x07FF));
4376	b2 = gen_cmp(OR_NET, 2 + 1 + offset_sh, BPF_H, (bpf_int32)ntohs((u_short)addr));
4377	gen_and(tmp, b2);
4378	gen_or(b2, b1);
4379	/* Check for pad = 0, short header case */
4380	tmp = gen_mcmp(OR_NET, 2, BPF_B, (bpf_int32)0x02, (bpf_int32)0x7);
4381	b2 = gen_cmp(OR_NET, 2 + offset_sh, BPF_H, (bpf_int32)ntohs((u_short)addr));
4382	gen_and(tmp, b2);
4383	gen_or(b2, b1);
4384
4385	/* Combine with test for linktype */
4386	gen_and(b0, b1);
4387	return b1;
4388}
4389
4390/*
4391 * Generate a check for IPv4 or IPv6 for MPLS-encapsulated packets;
4392 * test the bottom-of-stack bit, and then check the version number
4393 * field in the IP header.
4394 */
4395static struct block *
4396gen_mpls_linktype(proto)
4397	int proto;
4398{
4399	struct block *b0, *b1;
4400
4401        switch (proto) {
4402
4403        case Q_IP:
4404                /* match the bottom-of-stack bit */
4405                b0 = gen_mcmp(OR_NET, -2, BPF_B, 0x01, 0x01);
4406                /* match the IPv4 version number */
4407                b1 = gen_mcmp(OR_NET, 0, BPF_B, 0x40, 0xf0);
4408                gen_and(b0, b1);
4409                return b1;
4410
4411       case Q_IPV6:
4412                /* match the bottom-of-stack bit */
4413                b0 = gen_mcmp(OR_NET, -2, BPF_B, 0x01, 0x01);
4414                /* match the IPv4 version number */
4415                b1 = gen_mcmp(OR_NET, 0, BPF_B, 0x60, 0xf0);
4416                gen_and(b0, b1);
4417                return b1;
4418
4419       default:
4420                abort();
4421        }
4422}
4423
4424static struct block *
4425gen_host(addr, mask, proto, dir, type)
4426	bpf_u_int32 addr;
4427	bpf_u_int32 mask;
4428	int proto;
4429	int dir;
4430	int type;
4431{
4432	struct block *b0, *b1;
4433	const char *typestr;
4434
4435	if (type == Q_NET)
4436		typestr = "net";
4437	else
4438		typestr = "host";
4439
4440	switch (proto) {
4441
4442	case Q_DEFAULT:
4443		b0 = gen_host(addr, mask, Q_IP, dir, type);
4444		/*
4445		 * Only check for non-IPv4 addresses if we're not
4446		 * checking MPLS-encapsulated packets.
4447		 */
4448		if (label_stack_depth == 0) {
4449			b1 = gen_host(addr, mask, Q_ARP, dir, type);
4450			gen_or(b0, b1);
4451			b0 = gen_host(addr, mask, Q_RARP, dir, type);
4452			gen_or(b1, b0);
4453		}
4454		return b0;
4455
4456	case Q_IP:
4457		return gen_hostop(addr, mask, dir, ETHERTYPE_IP, 12, 16);
4458
4459	case Q_RARP:
4460		return gen_hostop(addr, mask, dir, ETHERTYPE_REVARP, 14, 24);
4461
4462	case Q_ARP:
4463		return gen_hostop(addr, mask, dir, ETHERTYPE_ARP, 14, 24);
4464
4465	case Q_TCP:
4466		bpf_error("'tcp' modifier applied to %s", typestr);
4467
4468	case Q_SCTP:
4469		bpf_error("'sctp' modifier applied to %s", typestr);
4470
4471	case Q_UDP:
4472		bpf_error("'udp' modifier applied to %s", typestr);
4473
4474	case Q_ICMP:
4475		bpf_error("'icmp' modifier applied to %s", typestr);
4476
4477	case Q_IGMP:
4478		bpf_error("'igmp' modifier applied to %s", typestr);
4479
4480	case Q_IGRP:
4481		bpf_error("'igrp' modifier applied to %s", typestr);
4482
4483	case Q_PIM:
4484		bpf_error("'pim' modifier applied to %s", typestr);
4485
4486	case Q_VRRP:
4487		bpf_error("'vrrp' modifier applied to %s", typestr);
4488
4489	case Q_CARP:
4490		bpf_error("'carp' modifier applied to %s", typestr);
4491
4492	case Q_ATALK:
4493		bpf_error("ATALK host filtering not implemented");
4494
4495	case Q_AARP:
4496		bpf_error("AARP host filtering not implemented");
4497
4498	case Q_DECNET:
4499		return gen_dnhostop(addr, dir);
4500
4501	case Q_SCA:
4502		bpf_error("SCA host filtering not implemented");
4503
4504	case Q_LAT:
4505		bpf_error("LAT host filtering not implemented");
4506
4507	case Q_MOPDL:
4508		bpf_error("MOPDL host filtering not implemented");
4509
4510	case Q_MOPRC:
4511		bpf_error("MOPRC host filtering not implemented");
4512
4513	case Q_IPV6:
4514		bpf_error("'ip6' modifier applied to ip host");
4515
4516	case Q_ICMPV6:
4517		bpf_error("'icmp6' modifier applied to %s", typestr);
4518
4519	case Q_AH:
4520		bpf_error("'ah' modifier applied to %s", typestr);
4521
4522	case Q_ESP:
4523		bpf_error("'esp' modifier applied to %s", typestr);
4524
4525	case Q_ISO:
4526		bpf_error("ISO host filtering not implemented");
4527
4528	case Q_ESIS:
4529		bpf_error("'esis' modifier applied to %s", typestr);
4530
4531	case Q_ISIS:
4532		bpf_error("'isis' modifier applied to %s", typestr);
4533
4534	case Q_CLNP:
4535		bpf_error("'clnp' modifier applied to %s", typestr);
4536
4537	case Q_STP:
4538		bpf_error("'stp' modifier applied to %s", typestr);
4539
4540	case Q_IPX:
4541		bpf_error("IPX host filtering not implemented");
4542
4543	case Q_NETBEUI:
4544		bpf_error("'netbeui' modifier applied to %s", typestr);
4545
4546	case Q_RADIO:
4547		bpf_error("'radio' modifier applied to %s", typestr);
4548
4549	default:
4550		abort();
4551	}
4552	/* NOTREACHED */
4553}
4554
4555#ifdef INET6
4556static struct block *
4557gen_host6(addr, mask, proto, dir, type)
4558	struct in6_addr *addr;
4559	struct in6_addr *mask;
4560	int proto;
4561	int dir;
4562	int type;
4563{
4564	const char *typestr;
4565
4566	if (type == Q_NET)
4567		typestr = "net";
4568	else
4569		typestr = "host";
4570
4571	switch (proto) {
4572
4573	case Q_DEFAULT:
4574		return gen_host6(addr, mask, Q_IPV6, dir, type);
4575
4576	case Q_LINK:
4577		bpf_error("link-layer modifier applied to ip6 %s", typestr);
4578
4579	case Q_IP:
4580		bpf_error("'ip' modifier applied to ip6 %s", typestr);
4581
4582	case Q_RARP:
4583		bpf_error("'rarp' modifier applied to ip6 %s", typestr);
4584
4585	case Q_ARP:
4586		bpf_error("'arp' modifier applied to ip6 %s", typestr);
4587
4588	case Q_SCTP:
4589		bpf_error("'sctp' modifier applied to %s", typestr);
4590
4591	case Q_TCP:
4592		bpf_error("'tcp' modifier applied to %s", typestr);
4593
4594	case Q_UDP:
4595		bpf_error("'udp' modifier applied to %s", typestr);
4596
4597	case Q_ICMP:
4598		bpf_error("'icmp' modifier applied to %s", typestr);
4599
4600	case Q_IGMP:
4601		bpf_error("'igmp' modifier applied to %s", typestr);
4602
4603	case Q_IGRP:
4604		bpf_error("'igrp' modifier applied to %s", typestr);
4605
4606	case Q_PIM:
4607		bpf_error("'pim' modifier applied to %s", typestr);
4608
4609	case Q_VRRP:
4610		bpf_error("'vrrp' modifier applied to %s", typestr);
4611
4612	case Q_CARP:
4613		bpf_error("'carp' modifier applied to %s", typestr);
4614
4615	case Q_ATALK:
4616		bpf_error("ATALK host filtering not implemented");
4617
4618	case Q_AARP:
4619		bpf_error("AARP host filtering not implemented");
4620
4621	case Q_DECNET:
4622		bpf_error("'decnet' modifier applied to ip6 %s", typestr);
4623
4624	case Q_SCA:
4625		bpf_error("SCA host filtering not implemented");
4626
4627	case Q_LAT:
4628		bpf_error("LAT host filtering not implemented");
4629
4630	case Q_MOPDL:
4631		bpf_error("MOPDL host filtering not implemented");
4632
4633	case Q_MOPRC:
4634		bpf_error("MOPRC host filtering not implemented");
4635
4636	case Q_IPV6:
4637		return gen_hostop6(addr, mask, dir, ETHERTYPE_IPV6, 8, 24);
4638
4639	case Q_ICMPV6:
4640		bpf_error("'icmp6' modifier applied to %s", typestr);
4641
4642	case Q_AH:
4643		bpf_error("'ah' modifier applied to %s", typestr);
4644
4645	case Q_ESP:
4646		bpf_error("'esp' modifier applied to %s", typestr);
4647
4648	case Q_ISO:
4649		bpf_error("ISO host filtering not implemented");
4650
4651	case Q_ESIS:
4652		bpf_error("'esis' modifier applied to %s", typestr);
4653
4654	case Q_ISIS:
4655		bpf_error("'isis' modifier applied to %s", typestr);
4656
4657	case Q_CLNP:
4658		bpf_error("'clnp' modifier applied to %s", typestr);
4659
4660	case Q_STP:
4661		bpf_error("'stp' modifier applied to %s", typestr);
4662
4663	case Q_IPX:
4664		bpf_error("IPX host filtering not implemented");
4665
4666	case Q_NETBEUI:
4667		bpf_error("'netbeui' modifier applied to %s", typestr);
4668
4669	case Q_RADIO:
4670		bpf_error("'radio' modifier applied to %s", typestr);
4671
4672	default:
4673		abort();
4674	}
4675	/* NOTREACHED */
4676}
4677#endif
4678
4679#ifndef INET6
4680static struct block *
4681gen_gateway(eaddr, alist, proto, dir)
4682	const u_char *eaddr;
4683	bpf_u_int32 **alist;
4684	int proto;
4685	int dir;
4686{
4687	struct block *b0, *b1, *tmp;
4688
4689	if (dir != 0)
4690		bpf_error("direction applied to 'gateway'");
4691
4692	switch (proto) {
4693	case Q_DEFAULT:
4694	case Q_IP:
4695	case Q_ARP:
4696	case Q_RARP:
4697		switch (linktype) {
4698		case DLT_EN10MB:
4699		case DLT_NETANALYZER:
4700		case DLT_NETANALYZER_TRANSPARENT:
4701			b0 = gen_ehostop(eaddr, Q_OR);
4702			break;
4703		case DLT_FDDI:
4704			b0 = gen_fhostop(eaddr, Q_OR);
4705			break;
4706		case DLT_IEEE802:
4707			b0 = gen_thostop(eaddr, Q_OR);
4708			break;
4709		case DLT_IEEE802_11:
4710		case DLT_PRISM_HEADER:
4711		case DLT_IEEE802_11_RADIO_AVS:
4712		case DLT_IEEE802_11_RADIO:
4713		case DLT_PPI:
4714			b0 = gen_wlanhostop(eaddr, Q_OR);
4715			break;
4716		case DLT_SUNATM:
4717			if (!is_lane)
4718				bpf_error(
4719				    "'gateway' supported only on ethernet/FDDI/token ring/802.11/ATM LANE/Fibre Channel");
4720			/*
4721			 * Check that the packet doesn't begin with an
4722			 * LE Control marker.  (We've already generated
4723			 * a test for LANE.)
4724			 */
4725			b1 = gen_cmp(OR_LINK, SUNATM_PKT_BEGIN_POS,
4726			    BPF_H, 0xFF00);
4727			gen_not(b1);
4728
4729			/*
4730			 * Now check the MAC address.
4731			 */
4732			b0 = gen_ehostop(eaddr, Q_OR);
4733			gen_and(b1, b0);
4734			break;
4735		case DLT_IP_OVER_FC:
4736			b0 = gen_ipfchostop(eaddr, Q_OR);
4737			break;
4738		default:
4739			bpf_error(
4740			    "'gateway' supported only on ethernet/FDDI/token ring/802.11/ATM LANE/Fibre Channel");
4741		}
4742		b1 = gen_host(**alist++, 0xffffffff, proto, Q_OR, Q_HOST);
4743		while (*alist) {
4744			tmp = gen_host(**alist++, 0xffffffff, proto, Q_OR,
4745			    Q_HOST);
4746			gen_or(b1, tmp);
4747			b1 = tmp;
4748		}
4749		gen_not(b1);
4750		gen_and(b0, b1);
4751		return b1;
4752	}
4753	bpf_error("illegal modifier of 'gateway'");
4754	/* NOTREACHED */
4755}
4756#endif
4757
4758struct block *
4759gen_proto_abbrev(proto)
4760	int proto;
4761{
4762	struct block *b0;
4763	struct block *b1;
4764
4765	switch (proto) {
4766
4767	case Q_SCTP:
4768		b1 = gen_proto(IPPROTO_SCTP, Q_IP, Q_DEFAULT);
4769		b0 = gen_proto(IPPROTO_SCTP, Q_IPV6, Q_DEFAULT);
4770		gen_or(b0, b1);
4771		break;
4772
4773	case Q_TCP:
4774		b1 = gen_proto(IPPROTO_TCP, Q_IP, Q_DEFAULT);
4775		b0 = gen_proto(IPPROTO_TCP, Q_IPV6, Q_DEFAULT);
4776		gen_or(b0, b1);
4777		break;
4778
4779	case Q_UDP:
4780		b1 = gen_proto(IPPROTO_UDP, Q_IP, Q_DEFAULT);
4781		b0 = gen_proto(IPPROTO_UDP, Q_IPV6, Q_DEFAULT);
4782		gen_or(b0, b1);
4783		break;
4784
4785	case Q_ICMP:
4786		b1 = gen_proto(IPPROTO_ICMP, Q_IP, Q_DEFAULT);
4787		break;
4788
4789#ifndef	IPPROTO_IGMP
4790#define	IPPROTO_IGMP	2
4791#endif
4792
4793	case Q_IGMP:
4794		b1 = gen_proto(IPPROTO_IGMP, Q_IP, Q_DEFAULT);
4795		break;
4796
4797#ifndef	IPPROTO_IGRP
4798#define	IPPROTO_IGRP	9
4799#endif
4800	case Q_IGRP:
4801		b1 = gen_proto(IPPROTO_IGRP, Q_IP, Q_DEFAULT);
4802		break;
4803
4804#ifndef IPPROTO_PIM
4805#define IPPROTO_PIM	103
4806#endif
4807
4808	case Q_PIM:
4809		b1 = gen_proto(IPPROTO_PIM, Q_IP, Q_DEFAULT);
4810		b0 = gen_proto(IPPROTO_PIM, Q_IPV6, Q_DEFAULT);
4811		gen_or(b0, b1);
4812		break;
4813
4814#ifndef IPPROTO_VRRP
4815#define IPPROTO_VRRP	112
4816#endif
4817
4818	case Q_VRRP:
4819		b1 = gen_proto(IPPROTO_VRRP, Q_IP, Q_DEFAULT);
4820		break;
4821
4822#ifndef IPPROTO_CARP
4823#define IPPROTO_CARP	112
4824#endif
4825
4826	case Q_CARP:
4827		b1 = gen_proto(IPPROTO_CARP, Q_IP, Q_DEFAULT);
4828		break;
4829
4830	case Q_IP:
4831		b1 =  gen_linktype(ETHERTYPE_IP);
4832		break;
4833
4834	case Q_ARP:
4835		b1 =  gen_linktype(ETHERTYPE_ARP);
4836		break;
4837
4838	case Q_RARP:
4839		b1 =  gen_linktype(ETHERTYPE_REVARP);
4840		break;
4841
4842	case Q_LINK:
4843		bpf_error("link layer applied in wrong context");
4844
4845	case Q_ATALK:
4846		b1 =  gen_linktype(ETHERTYPE_ATALK);
4847		break;
4848
4849	case Q_AARP:
4850		b1 =  gen_linktype(ETHERTYPE_AARP);
4851		break;
4852
4853	case Q_DECNET:
4854		b1 =  gen_linktype(ETHERTYPE_DN);
4855		break;
4856
4857	case Q_SCA:
4858		b1 =  gen_linktype(ETHERTYPE_SCA);
4859		break;
4860
4861	case Q_LAT:
4862		b1 =  gen_linktype(ETHERTYPE_LAT);
4863		break;
4864
4865	case Q_MOPDL:
4866		b1 =  gen_linktype(ETHERTYPE_MOPDL);
4867		break;
4868
4869	case Q_MOPRC:
4870		b1 =  gen_linktype(ETHERTYPE_MOPRC);
4871		break;
4872
4873	case Q_IPV6:
4874		b1 = gen_linktype(ETHERTYPE_IPV6);
4875		break;
4876
4877#ifndef IPPROTO_ICMPV6
4878#define IPPROTO_ICMPV6	58
4879#endif
4880	case Q_ICMPV6:
4881		b1 = gen_proto(IPPROTO_ICMPV6, Q_IPV6, Q_DEFAULT);
4882		break;
4883
4884#ifndef IPPROTO_AH
4885#define IPPROTO_AH	51
4886#endif
4887	case Q_AH:
4888		b1 = gen_proto(IPPROTO_AH, Q_IP, Q_DEFAULT);
4889		b0 = gen_proto(IPPROTO_AH, Q_IPV6, Q_DEFAULT);
4890		gen_or(b0, b1);
4891		break;
4892
4893#ifndef IPPROTO_ESP
4894#define IPPROTO_ESP	50
4895#endif
4896	case Q_ESP:
4897		b1 = gen_proto(IPPROTO_ESP, Q_IP, Q_DEFAULT);
4898		b0 = gen_proto(IPPROTO_ESP, Q_IPV6, Q_DEFAULT);
4899		gen_or(b0, b1);
4900		break;
4901
4902	case Q_ISO:
4903		b1 = gen_linktype(LLCSAP_ISONS);
4904		break;
4905
4906	case Q_ESIS:
4907		b1 = gen_proto(ISO9542_ESIS, Q_ISO, Q_DEFAULT);
4908		break;
4909
4910	case Q_ISIS:
4911		b1 = gen_proto(ISO10589_ISIS, Q_ISO, Q_DEFAULT);
4912		break;
4913
4914	case Q_ISIS_L1: /* all IS-IS Level1 PDU-Types */
4915		b0 = gen_proto(ISIS_L1_LAN_IIH, Q_ISIS, Q_DEFAULT);
4916		b1 = gen_proto(ISIS_PTP_IIH, Q_ISIS, Q_DEFAULT); /* FIXME extract the circuit-type bits */
4917		gen_or(b0, b1);
4918		b0 = gen_proto(ISIS_L1_LSP, Q_ISIS, Q_DEFAULT);
4919		gen_or(b0, b1);
4920		b0 = gen_proto(ISIS_L1_CSNP, Q_ISIS, Q_DEFAULT);
4921		gen_or(b0, b1);
4922		b0 = gen_proto(ISIS_L1_PSNP, Q_ISIS, Q_DEFAULT);
4923		gen_or(b0, b1);
4924		break;
4925
4926	case Q_ISIS_L2: /* all IS-IS Level2 PDU-Types */
4927		b0 = gen_proto(ISIS_L2_LAN_IIH, Q_ISIS, Q_DEFAULT);
4928		b1 = gen_proto(ISIS_PTP_IIH, Q_ISIS, Q_DEFAULT); /* FIXME extract the circuit-type bits */
4929		gen_or(b0, b1);
4930		b0 = gen_proto(ISIS_L2_LSP, Q_ISIS, Q_DEFAULT);
4931		gen_or(b0, b1);
4932		b0 = gen_proto(ISIS_L2_CSNP, Q_ISIS, Q_DEFAULT);
4933		gen_or(b0, b1);
4934		b0 = gen_proto(ISIS_L2_PSNP, Q_ISIS, Q_DEFAULT);
4935		gen_or(b0, b1);
4936		break;
4937
4938	case Q_ISIS_IIH: /* all IS-IS Hello PDU-Types */
4939		b0 = gen_proto(ISIS_L1_LAN_IIH, Q_ISIS, Q_DEFAULT);
4940		b1 = gen_proto(ISIS_L2_LAN_IIH, Q_ISIS, Q_DEFAULT);
4941		gen_or(b0, b1);
4942		b0 = gen_proto(ISIS_PTP_IIH, Q_ISIS, Q_DEFAULT);
4943		gen_or(b0, b1);
4944		break;
4945
4946	case Q_ISIS_LSP:
4947		b0 = gen_proto(ISIS_L1_LSP, Q_ISIS, Q_DEFAULT);
4948		b1 = gen_proto(ISIS_L2_LSP, Q_ISIS, Q_DEFAULT);
4949		gen_or(b0, b1);
4950		break;
4951
4952	case Q_ISIS_SNP:
4953		b0 = gen_proto(ISIS_L1_CSNP, Q_ISIS, Q_DEFAULT);
4954		b1 = gen_proto(ISIS_L2_CSNP, Q_ISIS, Q_DEFAULT);
4955		gen_or(b0, b1);
4956		b0 = gen_proto(ISIS_L1_PSNP, Q_ISIS, Q_DEFAULT);
4957		gen_or(b0, b1);
4958		b0 = gen_proto(ISIS_L2_PSNP, Q_ISIS, Q_DEFAULT);
4959		gen_or(b0, b1);
4960		break;
4961
4962	case Q_ISIS_CSNP:
4963		b0 = gen_proto(ISIS_L1_CSNP, Q_ISIS, Q_DEFAULT);
4964		b1 = gen_proto(ISIS_L2_CSNP, Q_ISIS, Q_DEFAULT);
4965		gen_or(b0, b1);
4966		break;
4967
4968	case Q_ISIS_PSNP:
4969		b0 = gen_proto(ISIS_L1_PSNP, Q_ISIS, Q_DEFAULT);
4970		b1 = gen_proto(ISIS_L2_PSNP, Q_ISIS, Q_DEFAULT);
4971		gen_or(b0, b1);
4972		break;
4973
4974	case Q_CLNP:
4975		b1 = gen_proto(ISO8473_CLNP, Q_ISO, Q_DEFAULT);
4976		break;
4977
4978	case Q_STP:
4979		b1 = gen_linktype(LLCSAP_8021D);
4980		break;
4981
4982	case Q_IPX:
4983		b1 = gen_linktype(LLCSAP_IPX);
4984		break;
4985
4986	case Q_NETBEUI:
4987		b1 = gen_linktype(LLCSAP_NETBEUI);
4988		break;
4989
4990	case Q_RADIO:
4991		bpf_error("'radio' is not a valid protocol type");
4992
4993	default:
4994		abort();
4995	}
4996	return b1;
4997}
4998
4999static struct block *
5000gen_ipfrag()
5001{
5002	struct slist *s;
5003	struct block *b;
5004
5005	/* not IPv4 frag other than the first frag */
5006	s = gen_load_a(OR_NET, 6, BPF_H);
5007	b = new_block(JMP(BPF_JSET));
5008	b->s.k = 0x1fff;
5009	b->stmts = s;
5010	gen_not(b);
5011
5012	return b;
5013}
5014
5015/*
5016 * Generate a comparison to a port value in the transport-layer header
5017 * at the specified offset from the beginning of that header.
5018 *
5019 * XXX - this handles a variable-length prefix preceding the link-layer
5020 * header, such as the radiotap or AVS radio prefix, but doesn't handle
5021 * variable-length link-layer headers (such as Token Ring or 802.11
5022 * headers).
5023 */
5024static struct block *
5025gen_portatom(off, v)
5026	int off;
5027	bpf_int32 v;
5028{
5029	return gen_cmp(OR_TRAN_IPV4, off, BPF_H, v);
5030}
5031
5032static struct block *
5033gen_portatom6(off, v)
5034	int off;
5035	bpf_int32 v;
5036{
5037	return gen_cmp(OR_TRAN_IPV6, off, BPF_H, v);
5038}
5039
5040struct block *
5041gen_portop(port, proto, dir)
5042	int port, proto, dir;
5043{
5044	struct block *b0, *b1, *tmp;
5045
5046	/* ip proto 'proto' and not a fragment other than the first fragment */
5047	tmp = gen_cmp(OR_NET, 9, BPF_B, (bpf_int32)proto);
5048	b0 = gen_ipfrag();
5049	gen_and(tmp, b0);
5050
5051	switch (dir) {
5052	case Q_SRC:
5053		b1 = gen_portatom(0, (bpf_int32)port);
5054		break;
5055
5056	case Q_DST:
5057		b1 = gen_portatom(2, (bpf_int32)port);
5058		break;
5059
5060	case Q_OR:
5061	case Q_DEFAULT:
5062		tmp = gen_portatom(0, (bpf_int32)port);
5063		b1 = gen_portatom(2, (bpf_int32)port);
5064		gen_or(tmp, b1);
5065		break;
5066
5067	case Q_AND:
5068		tmp = gen_portatom(0, (bpf_int32)port);
5069		b1 = gen_portatom(2, (bpf_int32)port);
5070		gen_and(tmp, b1);
5071		break;
5072
5073	default:
5074		abort();
5075	}
5076	gen_and(b0, b1);
5077
5078	return b1;
5079}
5080
5081static struct block *
5082gen_port(port, ip_proto, dir)
5083	int port;
5084	int ip_proto;
5085	int dir;
5086{
5087	struct block *b0, *b1, *tmp;
5088
5089	/*
5090	 * ether proto ip
5091	 *
5092	 * For FDDI, RFC 1188 says that SNAP encapsulation is used,
5093	 * not LLC encapsulation with LLCSAP_IP.
5094	 *
5095	 * For IEEE 802 networks - which includes 802.5 token ring
5096	 * (which is what DLT_IEEE802 means) and 802.11 - RFC 1042
5097	 * says that SNAP encapsulation is used, not LLC encapsulation
5098	 * with LLCSAP_IP.
5099	 *
5100	 * For LLC-encapsulated ATM/"Classical IP", RFC 1483 and
5101	 * RFC 2225 say that SNAP encapsulation is used, not LLC
5102	 * encapsulation with LLCSAP_IP.
5103	 *
5104	 * So we always check for ETHERTYPE_IP.
5105	 */
5106	b0 =  gen_linktype(ETHERTYPE_IP);
5107
5108	switch (ip_proto) {
5109	case IPPROTO_UDP:
5110	case IPPROTO_TCP:
5111	case IPPROTO_SCTP:
5112		b1 = gen_portop(port, ip_proto, dir);
5113		break;
5114
5115	case PROTO_UNDEF:
5116		tmp = gen_portop(port, IPPROTO_TCP, dir);
5117		b1 = gen_portop(port, IPPROTO_UDP, dir);
5118		gen_or(tmp, b1);
5119		tmp = gen_portop(port, IPPROTO_SCTP, dir);
5120		gen_or(tmp, b1);
5121		break;
5122
5123	default:
5124		abort();
5125	}
5126	gen_and(b0, b1);
5127	return b1;
5128}
5129
5130struct block *
5131gen_portop6(port, proto, dir)
5132	int port, proto, dir;
5133{
5134	struct block *b0, *b1, *tmp;
5135
5136	/* ip6 proto 'proto' */
5137	/* XXX - catch the first fragment of a fragmented packet? */
5138	b0 = gen_cmp(OR_NET, 6, BPF_B, (bpf_int32)proto);
5139
5140	switch (dir) {
5141	case Q_SRC:
5142		b1 = gen_portatom6(0, (bpf_int32)port);
5143		break;
5144
5145	case Q_DST:
5146		b1 = gen_portatom6(2, (bpf_int32)port);
5147		break;
5148
5149	case Q_OR:
5150	case Q_DEFAULT:
5151		tmp = gen_portatom6(0, (bpf_int32)port);
5152		b1 = gen_portatom6(2, (bpf_int32)port);
5153		gen_or(tmp, b1);
5154		break;
5155
5156	case Q_AND:
5157		tmp = gen_portatom6(0, (bpf_int32)port);
5158		b1 = gen_portatom6(2, (bpf_int32)port);
5159		gen_and(tmp, b1);
5160		break;
5161
5162	default:
5163		abort();
5164	}
5165	gen_and(b0, b1);
5166
5167	return b1;
5168}
5169
5170static struct block *
5171gen_port6(port, ip_proto, dir)
5172	int port;
5173	int ip_proto;
5174	int dir;
5175{
5176	struct block *b0, *b1, *tmp;
5177
5178	/* link proto ip6 */
5179	b0 =  gen_linktype(ETHERTYPE_IPV6);
5180
5181	switch (ip_proto) {
5182	case IPPROTO_UDP:
5183	case IPPROTO_TCP:
5184	case IPPROTO_SCTP:
5185		b1 = gen_portop6(port, ip_proto, dir);
5186		break;
5187
5188	case PROTO_UNDEF:
5189		tmp = gen_portop6(port, IPPROTO_TCP, dir);
5190		b1 = gen_portop6(port, IPPROTO_UDP, dir);
5191		gen_or(tmp, b1);
5192		tmp = gen_portop6(port, IPPROTO_SCTP, dir);
5193		gen_or(tmp, b1);
5194		break;
5195
5196	default:
5197		abort();
5198	}
5199	gen_and(b0, b1);
5200	return b1;
5201}
5202
5203/* gen_portrange code */
5204static struct block *
5205gen_portrangeatom(off, v1, v2)
5206	int off;
5207	bpf_int32 v1, v2;
5208{
5209	struct block *b1, *b2;
5210
5211	if (v1 > v2) {
5212		/*
5213		 * Reverse the order of the ports, so v1 is the lower one.
5214		 */
5215		bpf_int32 vtemp;
5216
5217		vtemp = v1;
5218		v1 = v2;
5219		v2 = vtemp;
5220	}
5221
5222	b1 = gen_cmp_ge(OR_TRAN_IPV4, off, BPF_H, v1);
5223	b2 = gen_cmp_le(OR_TRAN_IPV4, off, BPF_H, v2);
5224
5225	gen_and(b1, b2);
5226
5227	return b2;
5228}
5229
5230struct block *
5231gen_portrangeop(port1, port2, proto, dir)
5232	int port1, port2;
5233	int proto;
5234	int dir;
5235{
5236	struct block *b0, *b1, *tmp;
5237
5238	/* ip proto 'proto' and not a fragment other than the first fragment */
5239	tmp = gen_cmp(OR_NET, 9, BPF_B, (bpf_int32)proto);
5240	b0 = gen_ipfrag();
5241	gen_and(tmp, b0);
5242
5243	switch (dir) {
5244	case Q_SRC:
5245		b1 = gen_portrangeatom(0, (bpf_int32)port1, (bpf_int32)port2);
5246		break;
5247
5248	case Q_DST:
5249		b1 = gen_portrangeatom(2, (bpf_int32)port1, (bpf_int32)port2);
5250		break;
5251
5252	case Q_OR:
5253	case Q_DEFAULT:
5254		tmp = gen_portrangeatom(0, (bpf_int32)port1, (bpf_int32)port2);
5255		b1 = gen_portrangeatom(2, (bpf_int32)port1, (bpf_int32)port2);
5256		gen_or(tmp, b1);
5257		break;
5258
5259	case Q_AND:
5260		tmp = gen_portrangeatom(0, (bpf_int32)port1, (bpf_int32)port2);
5261		b1 = gen_portrangeatom(2, (bpf_int32)port1, (bpf_int32)port2);
5262		gen_and(tmp, b1);
5263		break;
5264
5265	default:
5266		abort();
5267	}
5268	gen_and(b0, b1);
5269
5270	return b1;
5271}
5272
5273static struct block *
5274gen_portrange(port1, port2, ip_proto, dir)
5275	int port1, port2;
5276	int ip_proto;
5277	int dir;
5278{
5279	struct block *b0, *b1, *tmp;
5280
5281	/* link proto ip */
5282	b0 =  gen_linktype(ETHERTYPE_IP);
5283
5284	switch (ip_proto) {
5285	case IPPROTO_UDP:
5286	case IPPROTO_TCP:
5287	case IPPROTO_SCTP:
5288		b1 = gen_portrangeop(port1, port2, ip_proto, dir);
5289		break;
5290
5291	case PROTO_UNDEF:
5292		tmp = gen_portrangeop(port1, port2, IPPROTO_TCP, dir);
5293		b1 = gen_portrangeop(port1, port2, IPPROTO_UDP, dir);
5294		gen_or(tmp, b1);
5295		tmp = gen_portrangeop(port1, port2, IPPROTO_SCTP, dir);
5296		gen_or(tmp, b1);
5297		break;
5298
5299	default:
5300		abort();
5301	}
5302	gen_and(b0, b1);
5303	return b1;
5304}
5305
5306static struct block *
5307gen_portrangeatom6(off, v1, v2)
5308	int off;
5309	bpf_int32 v1, v2;
5310{
5311	struct block *b1, *b2;
5312
5313	if (v1 > v2) {
5314		/*
5315		 * Reverse the order of the ports, so v1 is the lower one.
5316		 */
5317		bpf_int32 vtemp;
5318
5319		vtemp = v1;
5320		v1 = v2;
5321		v2 = vtemp;
5322	}
5323
5324	b1 = gen_cmp_ge(OR_TRAN_IPV6, off, BPF_H, v1);
5325	b2 = gen_cmp_le(OR_TRAN_IPV6, off, BPF_H, v2);
5326
5327	gen_and(b1, b2);
5328
5329	return b2;
5330}
5331
5332struct block *
5333gen_portrangeop6(port1, port2, proto, dir)
5334	int port1, port2;
5335	int proto;
5336	int dir;
5337{
5338	struct block *b0, *b1, *tmp;
5339
5340	/* ip6 proto 'proto' */
5341	/* XXX - catch the first fragment of a fragmented packet? */
5342	b0 = gen_cmp(OR_NET, 6, BPF_B, (bpf_int32)proto);
5343
5344	switch (dir) {
5345	case Q_SRC:
5346		b1 = gen_portrangeatom6(0, (bpf_int32)port1, (bpf_int32)port2);
5347		break;
5348
5349	case Q_DST:
5350		b1 = gen_portrangeatom6(2, (bpf_int32)port1, (bpf_int32)port2);
5351		break;
5352
5353	case Q_OR:
5354	case Q_DEFAULT:
5355		tmp = gen_portrangeatom6(0, (bpf_int32)port1, (bpf_int32)port2);
5356		b1 = gen_portrangeatom6(2, (bpf_int32)port1, (bpf_int32)port2);
5357		gen_or(tmp, b1);
5358		break;
5359
5360	case Q_AND:
5361		tmp = gen_portrangeatom6(0, (bpf_int32)port1, (bpf_int32)port2);
5362		b1 = gen_portrangeatom6(2, (bpf_int32)port1, (bpf_int32)port2);
5363		gen_and(tmp, b1);
5364		break;
5365
5366	default:
5367		abort();
5368	}
5369	gen_and(b0, b1);
5370
5371	return b1;
5372}
5373
5374static struct block *
5375gen_portrange6(port1, port2, ip_proto, dir)
5376	int port1, port2;
5377	int ip_proto;
5378	int dir;
5379{
5380	struct block *b0, *b1, *tmp;
5381
5382	/* link proto ip6 */
5383	b0 =  gen_linktype(ETHERTYPE_IPV6);
5384
5385	switch (ip_proto) {
5386	case IPPROTO_UDP:
5387	case IPPROTO_TCP:
5388	case IPPROTO_SCTP:
5389		b1 = gen_portrangeop6(port1, port2, ip_proto, dir);
5390		break;
5391
5392	case PROTO_UNDEF:
5393		tmp = gen_portrangeop6(port1, port2, IPPROTO_TCP, dir);
5394		b1 = gen_portrangeop6(port1, port2, IPPROTO_UDP, dir);
5395		gen_or(tmp, b1);
5396		tmp = gen_portrangeop6(port1, port2, IPPROTO_SCTP, dir);
5397		gen_or(tmp, b1);
5398		break;
5399
5400	default:
5401		abort();
5402	}
5403	gen_and(b0, b1);
5404	return b1;
5405}
5406
5407static int
5408lookup_proto(name, proto)
5409	register const char *name;
5410	register int proto;
5411{
5412	register int v;
5413
5414	switch (proto) {
5415
5416	case Q_DEFAULT:
5417	case Q_IP:
5418	case Q_IPV6:
5419		v = pcap_nametoproto(name);
5420		if (v == PROTO_UNDEF)
5421			bpf_error("unknown ip proto '%s'", name);
5422		break;
5423
5424	case Q_LINK:
5425		/* XXX should look up h/w protocol type based on linktype */
5426		v = pcap_nametoeproto(name);
5427		if (v == PROTO_UNDEF) {
5428			v = pcap_nametollc(name);
5429			if (v == PROTO_UNDEF)
5430				bpf_error("unknown ether proto '%s'", name);
5431		}
5432		break;
5433
5434	case Q_ISO:
5435		if (strcmp(name, "esis") == 0)
5436			v = ISO9542_ESIS;
5437		else if (strcmp(name, "isis") == 0)
5438			v = ISO10589_ISIS;
5439		else if (strcmp(name, "clnp") == 0)
5440			v = ISO8473_CLNP;
5441		else
5442			bpf_error("unknown osi proto '%s'", name);
5443		break;
5444
5445	default:
5446		v = PROTO_UNDEF;
5447		break;
5448	}
5449	return v;
5450}
5451
5452#if 0
5453struct stmt *
5454gen_joinsp(s, n)
5455	struct stmt **s;
5456	int n;
5457{
5458	return NULL;
5459}
5460#endif
5461
5462static struct block *
5463gen_protochain(v, proto, dir)
5464	int v;
5465	int proto;
5466	int dir;
5467{
5468#ifdef NO_PROTOCHAIN
5469	return gen_proto(v, proto, dir);
5470#else
5471	struct block *b0, *b;
5472	struct slist *s[100];
5473	int fix2, fix3, fix4, fix5;
5474	int ahcheck, again, end;
5475	int i, max;
5476	int reg2 = alloc_reg();
5477
5478	memset(s, 0, sizeof(s));
5479	fix2 = fix3 = fix4 = fix5 = 0;
5480
5481	switch (proto) {
5482	case Q_IP:
5483	case Q_IPV6:
5484		break;
5485	case Q_DEFAULT:
5486		b0 = gen_protochain(v, Q_IP, dir);
5487		b = gen_protochain(v, Q_IPV6, dir);
5488		gen_or(b0, b);
5489		return b;
5490	default:
5491		bpf_error("bad protocol applied for 'protochain'");
5492		/*NOTREACHED*/
5493	}
5494
5495	/*
5496	 * We don't handle variable-length prefixes before the link-layer
5497	 * header, or variable-length link-layer headers, here yet.
5498	 * We might want to add BPF instructions to do the protochain
5499	 * work, to simplify that and, on platforms that have a BPF
5500	 * interpreter with the new instructions, let the filtering
5501	 * be done in the kernel.  (We already require a modified BPF
5502	 * engine to do the protochain stuff, to support backward
5503	 * branches, and backward branch support is unlikely to appear
5504	 * in kernel BPF engines.)
5505	 */
5506	switch (linktype) {
5507
5508	case DLT_IEEE802_11:
5509	case DLT_PRISM_HEADER:
5510	case DLT_IEEE802_11_RADIO_AVS:
5511	case DLT_IEEE802_11_RADIO:
5512	case DLT_PPI:
5513		bpf_error("'protochain' not supported with 802.11");
5514	}
5515
5516	no_optimize = 1; /*this code is not compatible with optimzer yet */
5517
5518	/*
5519	 * s[0] is a dummy entry to protect other BPF insn from damage
5520	 * by s[fix] = foo with uninitialized variable "fix".  It is somewhat
5521	 * hard to find interdependency made by jump table fixup.
5522	 */
5523	i = 0;
5524	s[i] = new_stmt(0);	/*dummy*/
5525	i++;
5526
5527	switch (proto) {
5528	case Q_IP:
5529		b0 = gen_linktype(ETHERTYPE_IP);
5530
5531		/* A = ip->ip_p */
5532		s[i] = new_stmt(BPF_LD|BPF_ABS|BPF_B);
5533		s[i]->s.k = off_macpl + off_nl + 9;
5534		i++;
5535		/* X = ip->ip_hl << 2 */
5536		s[i] = new_stmt(BPF_LDX|BPF_MSH|BPF_B);
5537		s[i]->s.k = off_macpl + off_nl;
5538		i++;
5539		break;
5540
5541	case Q_IPV6:
5542		b0 = gen_linktype(ETHERTYPE_IPV6);
5543
5544		/* A = ip6->ip_nxt */
5545		s[i] = new_stmt(BPF_LD|BPF_ABS|BPF_B);
5546		s[i]->s.k = off_macpl + off_nl + 6;
5547		i++;
5548		/* X = sizeof(struct ip6_hdr) */
5549		s[i] = new_stmt(BPF_LDX|BPF_IMM);
5550		s[i]->s.k = 40;
5551		i++;
5552		break;
5553
5554	default:
5555		bpf_error("unsupported proto to gen_protochain");
5556		/*NOTREACHED*/
5557	}
5558
5559	/* again: if (A == v) goto end; else fall through; */
5560	again = i;
5561	s[i] = new_stmt(BPF_JMP|BPF_JEQ|BPF_K);
5562	s[i]->s.k = v;
5563	s[i]->s.jt = NULL;		/*later*/
5564	s[i]->s.jf = NULL;		/*update in next stmt*/
5565	fix5 = i;
5566	i++;
5567
5568#ifndef IPPROTO_NONE
5569#define IPPROTO_NONE	59
5570#endif
5571	/* if (A == IPPROTO_NONE) goto end */
5572	s[i] = new_stmt(BPF_JMP|BPF_JEQ|BPF_K);
5573	s[i]->s.jt = NULL;	/*later*/
5574	s[i]->s.jf = NULL;	/*update in next stmt*/
5575	s[i]->s.k = IPPROTO_NONE;
5576	s[fix5]->s.jf = s[i];
5577	fix2 = i;
5578	i++;
5579
5580	if (proto == Q_IPV6) {
5581		int v6start, v6end, v6advance, j;
5582
5583		v6start = i;
5584		/* if (A == IPPROTO_HOPOPTS) goto v6advance */
5585		s[i] = new_stmt(BPF_JMP|BPF_JEQ|BPF_K);
5586		s[i]->s.jt = NULL;	/*later*/
5587		s[i]->s.jf = NULL;	/*update in next stmt*/
5588		s[i]->s.k = IPPROTO_HOPOPTS;
5589		s[fix2]->s.jf = s[i];
5590		i++;
5591		/* if (A == IPPROTO_DSTOPTS) goto v6advance */
5592		s[i - 1]->s.jf = s[i] = new_stmt(BPF_JMP|BPF_JEQ|BPF_K);
5593		s[i]->s.jt = NULL;	/*later*/
5594		s[i]->s.jf = NULL;	/*update in next stmt*/
5595		s[i]->s.k = IPPROTO_DSTOPTS;
5596		i++;
5597		/* if (A == IPPROTO_ROUTING) goto v6advance */
5598		s[i - 1]->s.jf = s[i] = new_stmt(BPF_JMP|BPF_JEQ|BPF_K);
5599		s[i]->s.jt = NULL;	/*later*/
5600		s[i]->s.jf = NULL;	/*update in next stmt*/
5601		s[i]->s.k = IPPROTO_ROUTING;
5602		i++;
5603		/* if (A == IPPROTO_FRAGMENT) goto v6advance; else goto ahcheck; */
5604		s[i - 1]->s.jf = s[i] = new_stmt(BPF_JMP|BPF_JEQ|BPF_K);
5605		s[i]->s.jt = NULL;	/*later*/
5606		s[i]->s.jf = NULL;	/*later*/
5607		s[i]->s.k = IPPROTO_FRAGMENT;
5608		fix3 = i;
5609		v6end = i;
5610		i++;
5611
5612		/* v6advance: */
5613		v6advance = i;
5614
5615		/*
5616		 * in short,
5617		 * A = P[X + packet head];
5618		 * X = X + (P[X + packet head + 1] + 1) * 8;
5619		 */
5620		/* A = P[X + packet head] */
5621		s[i] = new_stmt(BPF_LD|BPF_IND|BPF_B);
5622		s[i]->s.k = off_macpl + off_nl;
5623		i++;
5624		/* MEM[reg2] = A */
5625		s[i] = new_stmt(BPF_ST);
5626		s[i]->s.k = reg2;
5627		i++;
5628		/* A = P[X + packet head + 1]; */
5629		s[i] = new_stmt(BPF_LD|BPF_IND|BPF_B);
5630		s[i]->s.k = off_macpl + off_nl + 1;
5631		i++;
5632		/* A += 1 */
5633		s[i] = new_stmt(BPF_ALU|BPF_ADD|BPF_K);
5634		s[i]->s.k = 1;
5635		i++;
5636		/* A *= 8 */
5637		s[i] = new_stmt(BPF_ALU|BPF_MUL|BPF_K);
5638		s[i]->s.k = 8;
5639		i++;
5640		/* A += X */
5641		s[i] = new_stmt(BPF_ALU|BPF_ADD|BPF_X);
5642		s[i]->s.k = 0;
5643		i++;
5644		/* X = A; */
5645		s[i] = new_stmt(BPF_MISC|BPF_TAX);
5646		i++;
5647		/* A = MEM[reg2] */
5648		s[i] = new_stmt(BPF_LD|BPF_MEM);
5649		s[i]->s.k = reg2;
5650		i++;
5651
5652		/* goto again; (must use BPF_JA for backward jump) */
5653		s[i] = new_stmt(BPF_JMP|BPF_JA);
5654		s[i]->s.k = again - i - 1;
5655		s[i - 1]->s.jf = s[i];
5656		i++;
5657
5658		/* fixup */
5659		for (j = v6start; j <= v6end; j++)
5660			s[j]->s.jt = s[v6advance];
5661	} else {
5662		/* nop */
5663		s[i] = new_stmt(BPF_ALU|BPF_ADD|BPF_K);
5664		s[i]->s.k = 0;
5665		s[fix2]->s.jf = s[i];
5666		i++;
5667	}
5668
5669	/* ahcheck: */
5670	ahcheck = i;
5671	/* if (A == IPPROTO_AH) then fall through; else goto end; */
5672	s[i] = new_stmt(BPF_JMP|BPF_JEQ|BPF_K);
5673	s[i]->s.jt = NULL;	/*later*/
5674	s[i]->s.jf = NULL;	/*later*/
5675	s[i]->s.k = IPPROTO_AH;
5676	if (fix3)
5677		s[fix3]->s.jf = s[ahcheck];
5678	fix4 = i;
5679	i++;
5680
5681	/*
5682	 * in short,
5683	 * A = P[X];
5684	 * X = X + (P[X + 1] + 2) * 4;
5685	 */
5686	/* A = X */
5687	s[i - 1]->s.jt = s[i] = new_stmt(BPF_MISC|BPF_TXA);
5688	i++;
5689	/* A = P[X + packet head]; */
5690	s[i] = new_stmt(BPF_LD|BPF_IND|BPF_B);
5691	s[i]->s.k = off_macpl + off_nl;
5692	i++;
5693	/* MEM[reg2] = A */
5694	s[i] = new_stmt(BPF_ST);
5695	s[i]->s.k = reg2;
5696	i++;
5697	/* A = X */
5698	s[i - 1]->s.jt = s[i] = new_stmt(BPF_MISC|BPF_TXA);
5699	i++;
5700	/* A += 1 */
5701	s[i] = new_stmt(BPF_ALU|BPF_ADD|BPF_K);
5702	s[i]->s.k = 1;
5703	i++;
5704	/* X = A */
5705	s[i] = new_stmt(BPF_MISC|BPF_TAX);
5706	i++;
5707	/* A = P[X + packet head] */
5708	s[i] = new_stmt(BPF_LD|BPF_IND|BPF_B);
5709	s[i]->s.k = off_macpl + off_nl;
5710	i++;
5711	/* A += 2 */
5712	s[i] = new_stmt(BPF_ALU|BPF_ADD|BPF_K);
5713	s[i]->s.k = 2;
5714	i++;
5715	/* A *= 4 */
5716	s[i] = new_stmt(BPF_ALU|BPF_MUL|BPF_K);
5717	s[i]->s.k = 4;
5718	i++;
5719	/* X = A; */
5720	s[i] = new_stmt(BPF_MISC|BPF_TAX);
5721	i++;
5722	/* A = MEM[reg2] */
5723	s[i] = new_stmt(BPF_LD|BPF_MEM);
5724	s[i]->s.k = reg2;
5725	i++;
5726
5727	/* goto again; (must use BPF_JA for backward jump) */
5728	s[i] = new_stmt(BPF_JMP|BPF_JA);
5729	s[i]->s.k = again - i - 1;
5730	i++;
5731
5732	/* end: nop */
5733	end = i;
5734	s[i] = new_stmt(BPF_ALU|BPF_ADD|BPF_K);
5735	s[i]->s.k = 0;
5736	s[fix2]->s.jt = s[end];
5737	s[fix4]->s.jf = s[end];
5738	s[fix5]->s.jt = s[end];
5739	i++;
5740
5741	/*
5742	 * make slist chain
5743	 */
5744	max = i;
5745	for (i = 0; i < max - 1; i++)
5746		s[i]->next = s[i + 1];
5747	s[max - 1]->next = NULL;
5748
5749	/*
5750	 * emit final check
5751	 */
5752	b = new_block(JMP(BPF_JEQ));
5753	b->stmts = s[1];	/*remember, s[0] is dummy*/
5754	b->s.k = v;
5755
5756	free_reg(reg2);
5757
5758	gen_and(b0, b);
5759	return b;
5760#endif
5761}
5762
5763static struct block *
5764gen_check_802_11_data_frame()
5765{
5766	struct slist *s;
5767	struct block *b0, *b1;
5768
5769	/*
5770	 * A data frame has the 0x08 bit (b3) in the frame control field set
5771	 * and the 0x04 bit (b2) clear.
5772	 */
5773	s = gen_load_a(OR_LINK, 0, BPF_B);
5774	b0 = new_block(JMP(BPF_JSET));
5775	b0->s.k = 0x08;
5776	b0->stmts = s;
5777
5778	s = gen_load_a(OR_LINK, 0, BPF_B);
5779	b1 = new_block(JMP(BPF_JSET));
5780	b1->s.k = 0x04;
5781	b1->stmts = s;
5782	gen_not(b1);
5783
5784	gen_and(b1, b0);
5785
5786	return b0;
5787}
5788
5789/*
5790 * Generate code that checks whether the packet is a packet for protocol
5791 * <proto> and whether the type field in that protocol's header has
5792 * the value <v>, e.g. if <proto> is Q_IP, it checks whether it's an
5793 * IP packet and checks the protocol number in the IP header against <v>.
5794 *
5795 * If <proto> is Q_DEFAULT, i.e. just "proto" was specified, it checks
5796 * against Q_IP and Q_IPV6.
5797 */
5798static struct block *
5799gen_proto(v, proto, dir)
5800	int v;
5801	int proto;
5802	int dir;
5803{
5804	struct block *b0, *b1;
5805#ifndef CHASE_CHAIN
5806	struct block *b2;
5807#endif
5808
5809	if (dir != Q_DEFAULT)
5810		bpf_error("direction applied to 'proto'");
5811
5812	switch (proto) {
5813	case Q_DEFAULT:
5814		b0 = gen_proto(v, Q_IP, dir);
5815		b1 = gen_proto(v, Q_IPV6, dir);
5816		gen_or(b0, b1);
5817		return b1;
5818
5819	case Q_IP:
5820		/*
5821		 * For FDDI, RFC 1188 says that SNAP encapsulation is used,
5822		 * not LLC encapsulation with LLCSAP_IP.
5823		 *
5824		 * For IEEE 802 networks - which includes 802.5 token ring
5825		 * (which is what DLT_IEEE802 means) and 802.11 - RFC 1042
5826		 * says that SNAP encapsulation is used, not LLC encapsulation
5827		 * with LLCSAP_IP.
5828		 *
5829		 * For LLC-encapsulated ATM/"Classical IP", RFC 1483 and
5830		 * RFC 2225 say that SNAP encapsulation is used, not LLC
5831		 * encapsulation with LLCSAP_IP.
5832		 *
5833		 * So we always check for ETHERTYPE_IP.
5834		 */
5835		b0 = gen_linktype(ETHERTYPE_IP);
5836#ifndef CHASE_CHAIN
5837		b1 = gen_cmp(OR_NET, 9, BPF_B, (bpf_int32)v);
5838#else
5839		b1 = gen_protochain(v, Q_IP);
5840#endif
5841		gen_and(b0, b1);
5842		return b1;
5843
5844	case Q_ISO:
5845		switch (linktype) {
5846
5847		case DLT_FRELAY:
5848			/*
5849			 * Frame Relay packets typically have an OSI
5850			 * NLPID at the beginning; "gen_linktype(LLCSAP_ISONS)"
5851			 * generates code to check for all the OSI
5852			 * NLPIDs, so calling it and then adding a check
5853			 * for the particular NLPID for which we're
5854			 * looking is bogus, as we can just check for
5855			 * the NLPID.
5856			 *
5857			 * What we check for is the NLPID and a frame
5858			 * control field value of UI, i.e. 0x03 followed
5859			 * by the NLPID.
5860			 *
5861			 * XXX - assumes a 2-byte Frame Relay header with
5862			 * DLCI and flags.  What if the address is longer?
5863			 *
5864			 * XXX - what about SNAP-encapsulated frames?
5865			 */
5866			return gen_cmp(OR_LINK, 2, BPF_H, (0x03<<8) | v);
5867			/*NOTREACHED*/
5868			break;
5869
5870		case DLT_C_HDLC:
5871			/*
5872			 * Cisco uses an Ethertype lookalike - for OSI,
5873			 * it's 0xfefe.
5874			 */
5875			b0 = gen_linktype(LLCSAP_ISONS<<8 | LLCSAP_ISONS);
5876			/* OSI in C-HDLC is stuffed with a fudge byte */
5877			b1 = gen_cmp(OR_NET_NOSNAP, 1, BPF_B, (long)v);
5878			gen_and(b0, b1);
5879			return b1;
5880
5881		default:
5882			b0 = gen_linktype(LLCSAP_ISONS);
5883			b1 = gen_cmp(OR_NET_NOSNAP, 0, BPF_B, (long)v);
5884			gen_and(b0, b1);
5885			return b1;
5886		}
5887
5888	case Q_ISIS:
5889		b0 = gen_proto(ISO10589_ISIS, Q_ISO, Q_DEFAULT);
5890		/*
5891		 * 4 is the offset of the PDU type relative to the IS-IS
5892		 * header.
5893		 */
5894		b1 = gen_cmp(OR_NET_NOSNAP, 4, BPF_B, (long)v);
5895		gen_and(b0, b1);
5896		return b1;
5897
5898	case Q_ARP:
5899		bpf_error("arp does not encapsulate another protocol");
5900		/* NOTREACHED */
5901
5902	case Q_RARP:
5903		bpf_error("rarp does not encapsulate another protocol");
5904		/* NOTREACHED */
5905
5906	case Q_ATALK:
5907		bpf_error("atalk encapsulation is not specifiable");
5908		/* NOTREACHED */
5909
5910	case Q_DECNET:
5911		bpf_error("decnet encapsulation is not specifiable");
5912		/* NOTREACHED */
5913
5914	case Q_SCA:
5915		bpf_error("sca does not encapsulate another protocol");
5916		/* NOTREACHED */
5917
5918	case Q_LAT:
5919		bpf_error("lat does not encapsulate another protocol");
5920		/* NOTREACHED */
5921
5922	case Q_MOPRC:
5923		bpf_error("moprc does not encapsulate another protocol");
5924		/* NOTREACHED */
5925
5926	case Q_MOPDL:
5927		bpf_error("mopdl does not encapsulate another protocol");
5928		/* NOTREACHED */
5929
5930	case Q_LINK:
5931		return gen_linktype(v);
5932
5933	case Q_UDP:
5934		bpf_error("'udp proto' is bogus");
5935		/* NOTREACHED */
5936
5937	case Q_TCP:
5938		bpf_error("'tcp proto' is bogus");
5939		/* NOTREACHED */
5940
5941	case Q_SCTP:
5942		bpf_error("'sctp proto' is bogus");
5943		/* NOTREACHED */
5944
5945	case Q_ICMP:
5946		bpf_error("'icmp proto' is bogus");
5947		/* NOTREACHED */
5948
5949	case Q_IGMP:
5950		bpf_error("'igmp proto' is bogus");
5951		/* NOTREACHED */
5952
5953	case Q_IGRP:
5954		bpf_error("'igrp proto' is bogus");
5955		/* NOTREACHED */
5956
5957	case Q_PIM:
5958		bpf_error("'pim proto' is bogus");
5959		/* NOTREACHED */
5960
5961	case Q_VRRP:
5962		bpf_error("'vrrp proto' is bogus");
5963		/* NOTREACHED */
5964
5965	case Q_CARP:
5966		bpf_error("'carp proto' is bogus");
5967		/* NOTREACHED */
5968
5969	case Q_IPV6:
5970		b0 = gen_linktype(ETHERTYPE_IPV6);
5971#ifndef CHASE_CHAIN
5972		/*
5973		 * Also check for a fragment header before the final
5974		 * header.
5975		 */
5976		b2 = gen_cmp(OR_NET, 6, BPF_B, IPPROTO_FRAGMENT);
5977		b1 = gen_cmp(OR_NET, 40, BPF_B, (bpf_int32)v);
5978		gen_and(b2, b1);
5979		b2 = gen_cmp(OR_NET, 6, BPF_B, (bpf_int32)v);
5980		gen_or(b2, b1);
5981#else
5982		b1 = gen_protochain(v, Q_IPV6);
5983#endif
5984		gen_and(b0, b1);
5985		return b1;
5986
5987	case Q_ICMPV6:
5988		bpf_error("'icmp6 proto' is bogus");
5989
5990	case Q_AH:
5991		bpf_error("'ah proto' is bogus");
5992
5993	case Q_ESP:
5994		bpf_error("'ah proto' is bogus");
5995
5996	case Q_STP:
5997		bpf_error("'stp proto' is bogus");
5998
5999	case Q_IPX:
6000		bpf_error("'ipx proto' is bogus");
6001
6002	case Q_NETBEUI:
6003		bpf_error("'netbeui proto' is bogus");
6004
6005	case Q_RADIO:
6006		bpf_error("'radio proto' is bogus");
6007
6008	default:
6009		abort();
6010		/* NOTREACHED */
6011	}
6012	/* NOTREACHED */
6013}
6014
6015struct block *
6016gen_scode(name, q)
6017	register const char *name;
6018	struct qual q;
6019{
6020	int proto = q.proto;
6021	int dir = q.dir;
6022	int tproto;
6023	u_char *eaddr;
6024	bpf_u_int32 mask, addr;
6025#ifndef INET6
6026	bpf_u_int32 **alist;
6027#else
6028	int tproto6;
6029	struct sockaddr_in *sin4;
6030	struct sockaddr_in6 *sin6;
6031	struct addrinfo *res, *res0;
6032	struct in6_addr mask128;
6033#endif /*INET6*/
6034	struct block *b, *tmp;
6035	int port, real_proto;
6036	int port1, port2;
6037
6038	switch (q.addr) {
6039
6040	case Q_NET:
6041		addr = pcap_nametonetaddr(name);
6042		if (addr == 0)
6043			bpf_error("unknown network '%s'", name);
6044		/* Left justify network addr and calculate its network mask */
6045		mask = 0xffffffff;
6046		while (addr && (addr & 0xff000000) == 0) {
6047			addr <<= 8;
6048			mask <<= 8;
6049		}
6050		return gen_host(addr, mask, proto, dir, q.addr);
6051
6052	case Q_DEFAULT:
6053	case Q_HOST:
6054		if (proto == Q_LINK) {
6055			switch (linktype) {
6056
6057			case DLT_EN10MB:
6058			case DLT_NETANALYZER:
6059			case DLT_NETANALYZER_TRANSPARENT:
6060				eaddr = pcap_ether_hostton(name);
6061				if (eaddr == NULL)
6062					bpf_error(
6063					    "unknown ether host '%s'", name);
6064				b = gen_ehostop(eaddr, dir);
6065				free(eaddr);
6066				return b;
6067
6068			case DLT_FDDI:
6069				eaddr = pcap_ether_hostton(name);
6070				if (eaddr == NULL)
6071					bpf_error(
6072					    "unknown FDDI host '%s'", name);
6073				b = gen_fhostop(eaddr, dir);
6074				free(eaddr);
6075				return b;
6076
6077			case DLT_IEEE802:
6078				eaddr = pcap_ether_hostton(name);
6079				if (eaddr == NULL)
6080					bpf_error(
6081					    "unknown token ring host '%s'", name);
6082				b = gen_thostop(eaddr, dir);
6083				free(eaddr);
6084				return b;
6085
6086			case DLT_IEEE802_11:
6087			case DLT_PRISM_HEADER:
6088			case DLT_IEEE802_11_RADIO_AVS:
6089			case DLT_IEEE802_11_RADIO:
6090			case DLT_PPI:
6091				eaddr = pcap_ether_hostton(name);
6092				if (eaddr == NULL)
6093					bpf_error(
6094					    "unknown 802.11 host '%s'", name);
6095				b = gen_wlanhostop(eaddr, dir);
6096				free(eaddr);
6097				return b;
6098
6099			case DLT_IP_OVER_FC:
6100				eaddr = pcap_ether_hostton(name);
6101				if (eaddr == NULL)
6102					bpf_error(
6103					    "unknown Fibre Channel host '%s'", name);
6104				b = gen_ipfchostop(eaddr, dir);
6105				free(eaddr);
6106				return b;
6107
6108			case DLT_SUNATM:
6109				if (!is_lane)
6110					break;
6111
6112				/*
6113				 * Check that the packet doesn't begin
6114				 * with an LE Control marker.  (We've
6115				 * already generated a test for LANE.)
6116				 */
6117				tmp = gen_cmp(OR_LINK, SUNATM_PKT_BEGIN_POS,
6118				    BPF_H, 0xFF00);
6119				gen_not(tmp);
6120
6121				eaddr = pcap_ether_hostton(name);
6122				if (eaddr == NULL)
6123					bpf_error(
6124					    "unknown ether host '%s'", name);
6125				b = gen_ehostop(eaddr, dir);
6126				gen_and(tmp, b);
6127				free(eaddr);
6128				return b;
6129			}
6130
6131			bpf_error("only ethernet/FDDI/token ring/802.11/ATM LANE/Fibre Channel supports link-level host name");
6132		} else if (proto == Q_DECNET) {
6133			unsigned short dn_addr = __pcap_nametodnaddr(name);
6134			/*
6135			 * I don't think DECNET hosts can be multihomed, so
6136			 * there is no need to build up a list of addresses
6137			 */
6138			return (gen_host(dn_addr, 0, proto, dir, q.addr));
6139		} else {
6140#ifndef INET6
6141			alist = pcap_nametoaddr(name);
6142			if (alist == NULL || *alist == NULL)
6143				bpf_error("unknown host '%s'", name);
6144			tproto = proto;
6145			if (off_linktype == (u_int)-1 && tproto == Q_DEFAULT)
6146				tproto = Q_IP;
6147			b = gen_host(**alist++, 0xffffffff, tproto, dir, q.addr);
6148			while (*alist) {
6149				tmp = gen_host(**alist++, 0xffffffff,
6150					       tproto, dir, q.addr);
6151				gen_or(b, tmp);
6152				b = tmp;
6153			}
6154			return b;
6155#else
6156			memset(&mask128, 0xff, sizeof(mask128));
6157			res0 = res = pcap_nametoaddrinfo(name);
6158			if (res == NULL)
6159				bpf_error("unknown host '%s'", name);
6160			ai = res;
6161			b = tmp = NULL;
6162			tproto = tproto6 = proto;
6163			if (off_linktype == -1 && tproto == Q_DEFAULT) {
6164				tproto = Q_IP;
6165				tproto6 = Q_IPV6;
6166			}
6167			for (res = res0; res; res = res->ai_next) {
6168				switch (res->ai_family) {
6169				case AF_INET:
6170					if (tproto == Q_IPV6)
6171						continue;
6172
6173					sin4 = (struct sockaddr_in *)
6174						res->ai_addr;
6175					tmp = gen_host(ntohl(sin4->sin_addr.s_addr),
6176						0xffffffff, tproto, dir, q.addr);
6177					break;
6178				case AF_INET6:
6179					if (tproto6 == Q_IP)
6180						continue;
6181
6182					sin6 = (struct sockaddr_in6 *)
6183						res->ai_addr;
6184					tmp = gen_host6(&sin6->sin6_addr,
6185						&mask128, tproto6, dir, q.addr);
6186					break;
6187				default:
6188					continue;
6189				}
6190				if (b)
6191					gen_or(b, tmp);
6192				b = tmp;
6193			}
6194			ai = NULL;
6195			freeaddrinfo(res0);
6196			if (b == NULL) {
6197				bpf_error("unknown host '%s'%s", name,
6198				    (proto == Q_DEFAULT)
6199					? ""
6200					: " for specified address family");
6201			}
6202			return b;
6203#endif /*INET6*/
6204		}
6205
6206	case Q_PORT:
6207		if (proto != Q_DEFAULT &&
6208		    proto != Q_UDP && proto != Q_TCP && proto != Q_SCTP)
6209			bpf_error("illegal qualifier of 'port'");
6210		if (pcap_nametoport(name, &port, &real_proto) == 0)
6211			bpf_error("unknown port '%s'", name);
6212		if (proto == Q_UDP) {
6213			if (real_proto == IPPROTO_TCP)
6214				bpf_error("port '%s' is tcp", name);
6215			else if (real_proto == IPPROTO_SCTP)
6216				bpf_error("port '%s' is sctp", name);
6217			else
6218				/* override PROTO_UNDEF */
6219				real_proto = IPPROTO_UDP;
6220		}
6221		if (proto == Q_TCP) {
6222			if (real_proto == IPPROTO_UDP)
6223				bpf_error("port '%s' is udp", name);
6224
6225			else if (real_proto == IPPROTO_SCTP)
6226				bpf_error("port '%s' is sctp", name);
6227			else
6228				/* override PROTO_UNDEF */
6229				real_proto = IPPROTO_TCP;
6230		}
6231		if (proto == Q_SCTP) {
6232			if (real_proto == IPPROTO_UDP)
6233				bpf_error("port '%s' is udp", name);
6234
6235			else if (real_proto == IPPROTO_TCP)
6236				bpf_error("port '%s' is tcp", name);
6237			else
6238				/* override PROTO_UNDEF */
6239				real_proto = IPPROTO_SCTP;
6240		}
6241		if (port < 0)
6242			bpf_error("illegal port number %d < 0", port);
6243		if (port > 65535)
6244			bpf_error("illegal port number %d > 65535", port);
6245		b = gen_port(port, real_proto, dir);
6246		gen_or(gen_port6(port, real_proto, dir), b);
6247		return b;
6248
6249	case Q_PORTRANGE:
6250		if (proto != Q_DEFAULT &&
6251		    proto != Q_UDP && proto != Q_TCP && proto != Q_SCTP)
6252			bpf_error("illegal qualifier of 'portrange'");
6253		if (pcap_nametoportrange(name, &port1, &port2, &real_proto) == 0)
6254			bpf_error("unknown port in range '%s'", name);
6255		if (proto == Q_UDP) {
6256			if (real_proto == IPPROTO_TCP)
6257				bpf_error("port in range '%s' is tcp", name);
6258			else if (real_proto == IPPROTO_SCTP)
6259				bpf_error("port in range '%s' is sctp", name);
6260			else
6261				/* override PROTO_UNDEF */
6262				real_proto = IPPROTO_UDP;
6263		}
6264		if (proto == Q_TCP) {
6265			if (real_proto == IPPROTO_UDP)
6266				bpf_error("port in range '%s' is udp", name);
6267			else if (real_proto == IPPROTO_SCTP)
6268				bpf_error("port in range '%s' is sctp", name);
6269			else
6270				/* override PROTO_UNDEF */
6271				real_proto = IPPROTO_TCP;
6272		}
6273		if (proto == Q_SCTP) {
6274			if (real_proto == IPPROTO_UDP)
6275				bpf_error("port in range '%s' is udp", name);
6276			else if (real_proto == IPPROTO_TCP)
6277				bpf_error("port in range '%s' is tcp", name);
6278			else
6279				/* override PROTO_UNDEF */
6280				real_proto = IPPROTO_SCTP;
6281		}
6282		if (port1 < 0)
6283			bpf_error("illegal port number %d < 0", port1);
6284		if (port1 > 65535)
6285			bpf_error("illegal port number %d > 65535", port1);
6286		if (port2 < 0)
6287			bpf_error("illegal port number %d < 0", port2);
6288		if (port2 > 65535)
6289			bpf_error("illegal port number %d > 65535", port2);
6290
6291		b = gen_portrange(port1, port2, real_proto, dir);
6292		gen_or(gen_portrange6(port1, port2, real_proto, dir), b);
6293		return b;
6294
6295	case Q_GATEWAY:
6296#ifndef INET6
6297		eaddr = pcap_ether_hostton(name);
6298		if (eaddr == NULL)
6299			bpf_error("unknown ether host: %s", name);
6300
6301		alist = pcap_nametoaddr(name);
6302		if (alist == NULL || *alist == NULL)
6303			bpf_error("unknown host '%s'", name);
6304		b = gen_gateway(eaddr, alist, proto, dir);
6305		free(eaddr);
6306		return b;
6307#else
6308		bpf_error("'gateway' not supported in this configuration");
6309#endif /*INET6*/
6310
6311	case Q_PROTO:
6312		real_proto = lookup_proto(name, proto);
6313		if (real_proto >= 0)
6314			return gen_proto(real_proto, proto, dir);
6315		else
6316			bpf_error("unknown protocol: %s", name);
6317
6318	case Q_PROTOCHAIN:
6319		real_proto = lookup_proto(name, proto);
6320		if (real_proto >= 0)
6321			return gen_protochain(real_proto, proto, dir);
6322		else
6323			bpf_error("unknown protocol: %s", name);
6324
6325	case Q_UNDEF:
6326		syntax();
6327		/* NOTREACHED */
6328	}
6329	abort();
6330	/* NOTREACHED */
6331}
6332
6333struct block *
6334gen_mcode(s1, s2, masklen, q)
6335	register const char *s1, *s2;
6336	register int masklen;
6337	struct qual q;
6338{
6339	register int nlen, mlen;
6340	bpf_u_int32 n, m;
6341
6342	nlen = __pcap_atoin(s1, &n);
6343	/* Promote short ipaddr */
6344	n <<= 32 - nlen;
6345
6346	if (s2 != NULL) {
6347		mlen = __pcap_atoin(s2, &m);
6348		/* Promote short ipaddr */
6349		m <<= 32 - mlen;
6350		if ((n & ~m) != 0)
6351			bpf_error("non-network bits set in \"%s mask %s\"",
6352			    s1, s2);
6353	} else {
6354		/* Convert mask len to mask */
6355		if (masklen > 32)
6356			bpf_error("mask length must be <= 32");
6357		if (masklen == 0) {
6358			/*
6359			 * X << 32 is not guaranteed by C to be 0; it's
6360			 * undefined.
6361			 */
6362			m = 0;
6363		} else
6364			m = 0xffffffff << (32 - masklen);
6365		if ((n & ~m) != 0)
6366			bpf_error("non-network bits set in \"%s/%d\"",
6367			    s1, masklen);
6368	}
6369
6370	switch (q.addr) {
6371
6372	case Q_NET:
6373		return gen_host(n, m, q.proto, q.dir, q.addr);
6374
6375	default:
6376		bpf_error("Mask syntax for networks only");
6377		/* NOTREACHED */
6378	}
6379	/* NOTREACHED */
6380	return NULL;
6381}
6382
6383struct block *
6384gen_ncode(s, v, q)
6385	register const char *s;
6386	bpf_u_int32 v;
6387	struct qual q;
6388{
6389	bpf_u_int32 mask;
6390	int proto = q.proto;
6391	int dir = q.dir;
6392	register int vlen;
6393
6394	if (s == NULL)
6395		vlen = 32;
6396	else if (q.proto == Q_DECNET)
6397		vlen = __pcap_atodn(s, &v);
6398	else
6399		vlen = __pcap_atoin(s, &v);
6400
6401	switch (q.addr) {
6402
6403	case Q_DEFAULT:
6404	case Q_HOST:
6405	case Q_NET:
6406		if (proto == Q_DECNET)
6407			return gen_host(v, 0, proto, dir, q.addr);
6408		else if (proto == Q_LINK) {
6409			bpf_error("illegal link layer address");
6410		} else {
6411			mask = 0xffffffff;
6412			if (s == NULL && q.addr == Q_NET) {
6413				/* Promote short net number */
6414				while (v && (v & 0xff000000) == 0) {
6415					v <<= 8;
6416					mask <<= 8;
6417				}
6418			} else {
6419				/* Promote short ipaddr */
6420				v <<= 32 - vlen;
6421				mask <<= 32 - vlen;
6422			}
6423			return gen_host(v, mask, proto, dir, q.addr);
6424		}
6425
6426	case Q_PORT:
6427		if (proto == Q_UDP)
6428			proto = IPPROTO_UDP;
6429		else if (proto == Q_TCP)
6430			proto = IPPROTO_TCP;
6431		else if (proto == Q_SCTP)
6432			proto = IPPROTO_SCTP;
6433		else if (proto == Q_DEFAULT)
6434			proto = PROTO_UNDEF;
6435		else
6436			bpf_error("illegal qualifier of 'port'");
6437
6438		if (v > 65535)
6439			bpf_error("illegal port number %u > 65535", v);
6440
6441	    {
6442		struct block *b;
6443		b = gen_port((int)v, proto, dir);
6444		gen_or(gen_port6((int)v, proto, dir), b);
6445		return b;
6446	    }
6447
6448	case Q_PORTRANGE:
6449		if (proto == Q_UDP)
6450			proto = IPPROTO_UDP;
6451		else if (proto == Q_TCP)
6452			proto = IPPROTO_TCP;
6453		else if (proto == Q_SCTP)
6454			proto = IPPROTO_SCTP;
6455		else if (proto == Q_DEFAULT)
6456			proto = PROTO_UNDEF;
6457		else
6458			bpf_error("illegal qualifier of 'portrange'");
6459
6460		if (v > 65535)
6461			bpf_error("illegal port number %u > 65535", v);
6462
6463	    {
6464		struct block *b;
6465		b = gen_portrange((int)v, (int)v, proto, dir);
6466		gen_or(gen_portrange6((int)v, (int)v, proto, dir), b);
6467		return b;
6468	    }
6469
6470	case Q_GATEWAY:
6471		bpf_error("'gateway' requires a name");
6472		/* NOTREACHED */
6473
6474	case Q_PROTO:
6475		return gen_proto((int)v, proto, dir);
6476
6477	case Q_PROTOCHAIN:
6478		return gen_protochain((int)v, proto, dir);
6479
6480	case Q_UNDEF:
6481		syntax();
6482		/* NOTREACHED */
6483
6484	default:
6485		abort();
6486		/* NOTREACHED */
6487	}
6488	/* NOTREACHED */
6489}
6490
6491#ifdef INET6
6492struct block *
6493gen_mcode6(s1, s2, masklen, q)
6494	register const char *s1, *s2;
6495	register int masklen;
6496	struct qual q;
6497{
6498	struct addrinfo *res;
6499	struct in6_addr *addr;
6500	struct in6_addr mask;
6501	struct block *b;
6502	u_int32_t *a, *m;
6503
6504	if (s2)
6505		bpf_error("no mask %s supported", s2);
6506
6507	res = pcap_nametoaddrinfo(s1);
6508	if (!res)
6509		bpf_error("invalid ip6 address %s", s1);
6510	ai = res;
6511	if (res->ai_next)
6512		bpf_error("%s resolved to multiple address", s1);
6513	addr = &((struct sockaddr_in6 *)res->ai_addr)->sin6_addr;
6514
6515	if (sizeof(mask) * 8 < masklen)
6516		bpf_error("mask length must be <= %u", (unsigned int)(sizeof(mask) * 8));
6517	memset(&mask, 0, sizeof(mask));
6518	memset(&mask, 0xff, masklen / 8);
6519	if (masklen % 8) {
6520		mask.s6_addr[masklen / 8] =
6521			(0xff << (8 - masklen % 8)) & 0xff;
6522	}
6523
6524	a = (u_int32_t *)addr;
6525	m = (u_int32_t *)&mask;
6526	if ((a[0] & ~m[0]) || (a[1] & ~m[1])
6527	 || (a[2] & ~m[2]) || (a[3] & ~m[3])) {
6528		bpf_error("non-network bits set in \"%s/%d\"", s1, masklen);
6529	}
6530
6531	switch (q.addr) {
6532
6533	case Q_DEFAULT:
6534	case Q_HOST:
6535		if (masklen != 128)
6536			bpf_error("Mask syntax for networks only");
6537		/* FALLTHROUGH */
6538
6539	case Q_NET:
6540		b = gen_host6(addr, &mask, q.proto, q.dir, q.addr);
6541		ai = NULL;
6542		freeaddrinfo(res);
6543		return b;
6544
6545	default:
6546		bpf_error("invalid qualifier against IPv6 address");
6547		/* NOTREACHED */
6548	}
6549	return NULL;
6550}
6551#endif /*INET6*/
6552
6553struct block *
6554gen_ecode(eaddr, q)
6555	register const u_char *eaddr;
6556	struct qual q;
6557{
6558	struct block *b, *tmp;
6559
6560	if ((q.addr == Q_HOST || q.addr == Q_DEFAULT) && q.proto == Q_LINK) {
6561		switch (linktype) {
6562		case DLT_EN10MB:
6563		case DLT_NETANALYZER:
6564		case DLT_NETANALYZER_TRANSPARENT:
6565			return gen_ehostop(eaddr, (int)q.dir);
6566		case DLT_FDDI:
6567			return gen_fhostop(eaddr, (int)q.dir);
6568		case DLT_IEEE802:
6569			return gen_thostop(eaddr, (int)q.dir);
6570		case DLT_IEEE802_11:
6571		case DLT_PRISM_HEADER:
6572		case DLT_IEEE802_11_RADIO_AVS:
6573		case DLT_IEEE802_11_RADIO:
6574		case DLT_PPI:
6575			return gen_wlanhostop(eaddr, (int)q.dir);
6576		case DLT_SUNATM:
6577			if (is_lane) {
6578				/*
6579				 * Check that the packet doesn't begin with an
6580				 * LE Control marker.  (We've already generated
6581				 * a test for LANE.)
6582				 */
6583				tmp = gen_cmp(OR_LINK, SUNATM_PKT_BEGIN_POS, BPF_H,
6584					0xFF00);
6585				gen_not(tmp);
6586
6587				/*
6588				 * Now check the MAC address.
6589				 */
6590				b = gen_ehostop(eaddr, (int)q.dir);
6591				gen_and(tmp, b);
6592				return b;
6593			}
6594			break;
6595		case DLT_IP_OVER_FC:
6596			return gen_ipfchostop(eaddr, (int)q.dir);
6597		default:
6598			bpf_error("ethernet addresses supported only on ethernet/FDDI/token ring/802.11/ATM LANE/Fibre Channel");
6599			break;
6600		}
6601	}
6602	bpf_error("ethernet address used in non-ether expression");
6603	/* NOTREACHED */
6604	return NULL;
6605}
6606
6607void
6608sappend(s0, s1)
6609	struct slist *s0, *s1;
6610{
6611	/*
6612	 * This is definitely not the best way to do this, but the
6613	 * lists will rarely get long.
6614	 */
6615	while (s0->next)
6616		s0 = s0->next;
6617	s0->next = s1;
6618}
6619
6620static struct slist *
6621xfer_to_x(a)
6622	struct arth *a;
6623{
6624	struct slist *s;
6625
6626	s = new_stmt(BPF_LDX|BPF_MEM);
6627	s->s.k = a->regno;
6628	return s;
6629}
6630
6631static struct slist *
6632xfer_to_a(a)
6633	struct arth *a;
6634{
6635	struct slist *s;
6636
6637	s = new_stmt(BPF_LD|BPF_MEM);
6638	s->s.k = a->regno;
6639	return s;
6640}
6641
6642/*
6643 * Modify "index" to use the value stored into its register as an
6644 * offset relative to the beginning of the header for the protocol
6645 * "proto", and allocate a register and put an item "size" bytes long
6646 * (1, 2, or 4) at that offset into that register, making it the register
6647 * for "index".
6648 */
6649struct arth *
6650gen_load(proto, inst, size)
6651	int proto;
6652	struct arth *inst;
6653	int size;
6654{
6655	struct slist *s, *tmp;
6656	struct block *b;
6657	int regno = alloc_reg();
6658
6659	free_reg(inst->regno);
6660	switch (size) {
6661
6662	default:
6663		bpf_error("data size must be 1, 2, or 4");
6664
6665	case 1:
6666		size = BPF_B;
6667		break;
6668
6669	case 2:
6670		size = BPF_H;
6671		break;
6672
6673	case 4:
6674		size = BPF_W;
6675		break;
6676	}
6677	switch (proto) {
6678	default:
6679		bpf_error("unsupported index operation");
6680
6681	case Q_RADIO:
6682		/*
6683		 * The offset is relative to the beginning of the packet
6684		 * data, if we have a radio header.  (If we don't, this
6685		 * is an error.)
6686		 */
6687		if (linktype != DLT_IEEE802_11_RADIO_AVS &&
6688		    linktype != DLT_IEEE802_11_RADIO &&
6689		    linktype != DLT_PRISM_HEADER)
6690			bpf_error("radio information not present in capture");
6691
6692		/*
6693		 * Load into the X register the offset computed into the
6694		 * register specified by "index".
6695		 */
6696		s = xfer_to_x(inst);
6697
6698		/*
6699		 * Load the item at that offset.
6700		 */
6701		tmp = new_stmt(BPF_LD|BPF_IND|size);
6702		sappend(s, tmp);
6703		sappend(inst->s, s);
6704		break;
6705
6706	case Q_LINK:
6707		/*
6708		 * The offset is relative to the beginning of
6709		 * the link-layer header.
6710		 *
6711		 * XXX - what about ATM LANE?  Should the index be
6712		 * relative to the beginning of the AAL5 frame, so
6713		 * that 0 refers to the beginning of the LE Control
6714		 * field, or relative to the beginning of the LAN
6715		 * frame, so that 0 refers, for Ethernet LANE, to
6716		 * the beginning of the destination address?
6717		 */
6718		s = gen_llprefixlen();
6719
6720		/*
6721		 * If "s" is non-null, it has code to arrange that the
6722		 * X register contains the length of the prefix preceding
6723		 * the link-layer header.  Add to it the offset computed
6724		 * into the register specified by "index", and move that
6725		 * into the X register.  Otherwise, just load into the X
6726		 * register the offset computed into the register specified
6727		 * by "index".
6728		 */
6729		if (s != NULL) {
6730			sappend(s, xfer_to_a(inst));
6731			sappend(s, new_stmt(BPF_ALU|BPF_ADD|BPF_X));
6732			sappend(s, new_stmt(BPF_MISC|BPF_TAX));
6733		} else
6734			s = xfer_to_x(inst);
6735
6736		/*
6737		 * Load the item at the sum of the offset we've put in the
6738		 * X register and the offset of the start of the link
6739		 * layer header (which is 0 if the radio header is
6740		 * variable-length; that header length is what we put
6741		 * into the X register and then added to the index).
6742		 */
6743		tmp = new_stmt(BPF_LD|BPF_IND|size);
6744		tmp->s.k = off_ll;
6745		sappend(s, tmp);
6746		sappend(inst->s, s);
6747		break;
6748
6749	case Q_IP:
6750	case Q_ARP:
6751	case Q_RARP:
6752	case Q_ATALK:
6753	case Q_DECNET:
6754	case Q_SCA:
6755	case Q_LAT:
6756	case Q_MOPRC:
6757	case Q_MOPDL:
6758	case Q_IPV6:
6759		/*
6760		 * The offset is relative to the beginning of
6761		 * the network-layer header.
6762		 * XXX - are there any cases where we want
6763		 * off_nl_nosnap?
6764		 */
6765		s = gen_off_macpl();
6766
6767		/*
6768		 * If "s" is non-null, it has code to arrange that the
6769		 * X register contains the offset of the MAC-layer
6770		 * payload.  Add to it the offset computed into the
6771		 * register specified by "index", and move that into
6772		 * the X register.  Otherwise, just load into the X
6773		 * register the offset computed into the register specified
6774		 * by "index".
6775		 */
6776		if (s != NULL) {
6777			sappend(s, xfer_to_a(inst));
6778			sappend(s, new_stmt(BPF_ALU|BPF_ADD|BPF_X));
6779			sappend(s, new_stmt(BPF_MISC|BPF_TAX));
6780		} else
6781			s = xfer_to_x(inst);
6782
6783		/*
6784		 * Load the item at the sum of the offset we've put in the
6785		 * X register, the offset of the start of the network
6786		 * layer header from the beginning of the MAC-layer
6787		 * payload, and the purported offset of the start of the
6788		 * MAC-layer payload (which might be 0 if there's a
6789		 * variable-length prefix before the link-layer header
6790		 * or the link-layer header itself is variable-length;
6791		 * the variable-length offset of the start of the
6792		 * MAC-layer payload is what we put into the X register
6793		 * and then added to the index).
6794		 */
6795		tmp = new_stmt(BPF_LD|BPF_IND|size);
6796		tmp->s.k = off_macpl + off_nl;
6797		sappend(s, tmp);
6798		sappend(inst->s, s);
6799
6800		/*
6801		 * Do the computation only if the packet contains
6802		 * the protocol in question.
6803		 */
6804		b = gen_proto_abbrev(proto);
6805		if (inst->b)
6806			gen_and(inst->b, b);
6807		inst->b = b;
6808		break;
6809
6810	case Q_SCTP:
6811	case Q_TCP:
6812	case Q_UDP:
6813	case Q_ICMP:
6814	case Q_IGMP:
6815	case Q_IGRP:
6816	case Q_PIM:
6817	case Q_VRRP:
6818	case Q_CARP:
6819		/*
6820		 * The offset is relative to the beginning of
6821		 * the transport-layer header.
6822		 *
6823		 * Load the X register with the length of the IPv4 header
6824		 * (plus the offset of the link-layer header, if it's
6825		 * a variable-length header), in bytes.
6826		 *
6827		 * XXX - are there any cases where we want
6828		 * off_nl_nosnap?
6829		 * XXX - we should, if we're built with
6830		 * IPv6 support, generate code to load either
6831		 * IPv4, IPv6, or both, as appropriate.
6832		 */
6833		s = gen_loadx_iphdrlen();
6834
6835		/*
6836		 * The X register now contains the sum of the length
6837		 * of any variable-length header preceding the link-layer
6838		 * header, any variable-length link-layer header, and the
6839		 * length of the network-layer header.
6840		 *
6841		 * Load into the A register the offset relative to
6842		 * the beginning of the transport layer header,
6843		 * add the X register to that, move that to the
6844		 * X register, and load with an offset from the
6845		 * X register equal to the offset of the network
6846		 * layer header relative to the beginning of
6847		 * the MAC-layer payload plus the fixed-length
6848		 * portion of the offset of the MAC-layer payload
6849		 * from the beginning of the raw packet data.
6850		 */
6851		sappend(s, xfer_to_a(inst));
6852		sappend(s, new_stmt(BPF_ALU|BPF_ADD|BPF_X));
6853		sappend(s, new_stmt(BPF_MISC|BPF_TAX));
6854		sappend(s, tmp = new_stmt(BPF_LD|BPF_IND|size));
6855		tmp->s.k = off_macpl + off_nl;
6856		sappend(inst->s, s);
6857
6858		/*
6859		 * Do the computation only if the packet contains
6860		 * the protocol in question - which is true only
6861		 * if this is an IP datagram and is the first or
6862		 * only fragment of that datagram.
6863		 */
6864		gen_and(gen_proto_abbrev(proto), b = gen_ipfrag());
6865		if (inst->b)
6866			gen_and(inst->b, b);
6867		gen_and(gen_proto_abbrev(Q_IP), b);
6868		inst->b = b;
6869		break;
6870	case Q_ICMPV6:
6871		bpf_error("IPv6 upper-layer protocol is not supported by proto[x]");
6872		/*NOTREACHED*/
6873	}
6874	inst->regno = regno;
6875	s = new_stmt(BPF_ST);
6876	s->s.k = regno;
6877	sappend(inst->s, s);
6878
6879	return inst;
6880}
6881
6882struct block *
6883gen_relation(code, a0, a1, reversed)
6884	int code;
6885	struct arth *a0, *a1;
6886	int reversed;
6887{
6888	struct slist *s0, *s1, *s2;
6889	struct block *b, *tmp;
6890
6891	s0 = xfer_to_x(a1);
6892	s1 = xfer_to_a(a0);
6893	if (code == BPF_JEQ) {
6894		s2 = new_stmt(BPF_ALU|BPF_SUB|BPF_X);
6895		b = new_block(JMP(code));
6896		sappend(s1, s2);
6897	}
6898	else
6899		b = new_block(BPF_JMP|code|BPF_X);
6900	if (reversed)
6901		gen_not(b);
6902
6903	sappend(s0, s1);
6904	sappend(a1->s, s0);
6905	sappend(a0->s, a1->s);
6906
6907	b->stmts = a0->s;
6908
6909	free_reg(a0->regno);
6910	free_reg(a1->regno);
6911
6912	/* 'and' together protocol checks */
6913	if (a0->b) {
6914		if (a1->b) {
6915			gen_and(a0->b, tmp = a1->b);
6916		}
6917		else
6918			tmp = a0->b;
6919	} else
6920		tmp = a1->b;
6921
6922	if (tmp)
6923		gen_and(tmp, b);
6924
6925	return b;
6926}
6927
6928struct arth *
6929gen_loadlen()
6930{
6931	int regno = alloc_reg();
6932	struct arth *a = (struct arth *)newchunk(sizeof(*a));
6933	struct slist *s;
6934
6935	s = new_stmt(BPF_LD|BPF_LEN);
6936	s->next = new_stmt(BPF_ST);
6937	s->next->s.k = regno;
6938	a->s = s;
6939	a->regno = regno;
6940
6941	return a;
6942}
6943
6944struct arth *
6945gen_loadi(val)
6946	int val;
6947{
6948	struct arth *a;
6949	struct slist *s;
6950	int reg;
6951
6952	a = (struct arth *)newchunk(sizeof(*a));
6953
6954	reg = alloc_reg();
6955
6956	s = new_stmt(BPF_LD|BPF_IMM);
6957	s->s.k = val;
6958	s->next = new_stmt(BPF_ST);
6959	s->next->s.k = reg;
6960	a->s = s;
6961	a->regno = reg;
6962
6963	return a;
6964}
6965
6966struct arth *
6967gen_neg(a)
6968	struct arth *a;
6969{
6970	struct slist *s;
6971
6972	s = xfer_to_a(a);
6973	sappend(a->s, s);
6974	s = new_stmt(BPF_ALU|BPF_NEG);
6975	s->s.k = 0;
6976	sappend(a->s, s);
6977	s = new_stmt(BPF_ST);
6978	s->s.k = a->regno;
6979	sappend(a->s, s);
6980
6981	return a;
6982}
6983
6984struct arth *
6985gen_arth(code, a0, a1)
6986	int code;
6987	struct arth *a0, *a1;
6988{
6989	struct slist *s0, *s1, *s2;
6990
6991	s0 = xfer_to_x(a1);
6992	s1 = xfer_to_a(a0);
6993	s2 = new_stmt(BPF_ALU|BPF_X|code);
6994
6995	sappend(s1, s2);
6996	sappend(s0, s1);
6997	sappend(a1->s, s0);
6998	sappend(a0->s, a1->s);
6999
7000	free_reg(a0->regno);
7001	free_reg(a1->regno);
7002
7003	s0 = new_stmt(BPF_ST);
7004	a0->regno = s0->s.k = alloc_reg();
7005	sappend(a0->s, s0);
7006
7007	return a0;
7008}
7009
7010/*
7011 * Here we handle simple allocation of the scratch registers.
7012 * If too many registers are alloc'd, the allocator punts.
7013 */
7014static int regused[BPF_MEMWORDS];
7015static int curreg;
7016
7017/*
7018 * Initialize the table of used registers and the current register.
7019 */
7020static void
7021init_regs()
7022{
7023	curreg = 0;
7024	memset(regused, 0, sizeof regused);
7025}
7026
7027/*
7028 * Return the next free register.
7029 */
7030static int
7031alloc_reg()
7032{
7033	int n = BPF_MEMWORDS;
7034
7035	while (--n >= 0) {
7036		if (regused[curreg])
7037			curreg = (curreg + 1) % BPF_MEMWORDS;
7038		else {
7039			regused[curreg] = 1;
7040			return curreg;
7041		}
7042	}
7043	bpf_error("too many registers needed to evaluate expression");
7044	/* NOTREACHED */
7045	return 0;
7046}
7047
7048/*
7049 * Return a register to the table so it can
7050 * be used later.
7051 */
7052static void
7053free_reg(n)
7054	int n;
7055{
7056	regused[n] = 0;
7057}
7058
7059static struct block *
7060gen_len(jmp, n)
7061	int jmp, n;
7062{
7063	struct slist *s;
7064	struct block *b;
7065
7066	s = new_stmt(BPF_LD|BPF_LEN);
7067	b = new_block(JMP(jmp));
7068	b->stmts = s;
7069	b->s.k = n;
7070
7071	return b;
7072}
7073
7074struct block *
7075gen_greater(n)
7076	int n;
7077{
7078	return gen_len(BPF_JGE, n);
7079}
7080
7081/*
7082 * Actually, this is less than or equal.
7083 */
7084struct block *
7085gen_less(n)
7086	int n;
7087{
7088	struct block *b;
7089
7090	b = gen_len(BPF_JGT, n);
7091	gen_not(b);
7092
7093	return b;
7094}
7095
7096/*
7097 * This is for "byte {idx} {op} {val}"; "idx" is treated as relative to
7098 * the beginning of the link-layer header.
7099 * XXX - that means you can't test values in the radiotap header, but
7100 * as that header is difficult if not impossible to parse generally
7101 * without a loop, that might not be a severe problem.  A new keyword
7102 * "radio" could be added for that, although what you'd really want
7103 * would be a way of testing particular radio header values, which
7104 * would generate code appropriate to the radio header in question.
7105 */
7106struct block *
7107gen_byteop(op, idx, val)
7108	int op, idx, val;
7109{
7110	struct block *b;
7111	struct slist *s;
7112
7113	switch (op) {
7114	default:
7115		abort();
7116
7117	case '=':
7118		return gen_cmp(OR_LINK, (u_int)idx, BPF_B, (bpf_int32)val);
7119
7120	case '<':
7121		b = gen_cmp_lt(OR_LINK, (u_int)idx, BPF_B, (bpf_int32)val);
7122		return b;
7123
7124	case '>':
7125		b = gen_cmp_gt(OR_LINK, (u_int)idx, BPF_B, (bpf_int32)val);
7126		return b;
7127
7128	case '|':
7129		s = new_stmt(BPF_ALU|BPF_OR|BPF_K);
7130		break;
7131
7132	case '&':
7133		s = new_stmt(BPF_ALU|BPF_AND|BPF_K);
7134		break;
7135	}
7136	s->s.k = val;
7137	b = new_block(JMP(BPF_JEQ));
7138	b->stmts = s;
7139	gen_not(b);
7140
7141	return b;
7142}
7143
7144static u_char abroadcast[] = { 0x0 };
7145
7146struct block *
7147gen_broadcast(proto)
7148	int proto;
7149{
7150	bpf_u_int32 hostmask;
7151	struct block *b0, *b1, *b2;
7152	static u_char ebroadcast[] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
7153
7154	switch (proto) {
7155
7156	case Q_DEFAULT:
7157	case Q_LINK:
7158		switch (linktype) {
7159		case DLT_ARCNET:
7160		case DLT_ARCNET_LINUX:
7161			return gen_ahostop(abroadcast, Q_DST);
7162		case DLT_EN10MB:
7163		case DLT_NETANALYZER:
7164		case DLT_NETANALYZER_TRANSPARENT:
7165			return gen_ehostop(ebroadcast, Q_DST);
7166		case DLT_FDDI:
7167			return gen_fhostop(ebroadcast, Q_DST);
7168		case DLT_IEEE802:
7169			return gen_thostop(ebroadcast, Q_DST);
7170		case DLT_IEEE802_11:
7171		case DLT_PRISM_HEADER:
7172		case DLT_IEEE802_11_RADIO_AVS:
7173		case DLT_IEEE802_11_RADIO:
7174		case DLT_PPI:
7175			return gen_wlanhostop(ebroadcast, Q_DST);
7176		case DLT_IP_OVER_FC:
7177			return gen_ipfchostop(ebroadcast, Q_DST);
7178		case DLT_SUNATM:
7179			if (is_lane) {
7180				/*
7181				 * Check that the packet doesn't begin with an
7182				 * LE Control marker.  (We've already generated
7183				 * a test for LANE.)
7184				 */
7185				b1 = gen_cmp(OR_LINK, SUNATM_PKT_BEGIN_POS,
7186				    BPF_H, 0xFF00);
7187				gen_not(b1);
7188
7189				/*
7190				 * Now check the MAC address.
7191				 */
7192				b0 = gen_ehostop(ebroadcast, Q_DST);
7193				gen_and(b1, b0);
7194				return b0;
7195			}
7196			break;
7197		default:
7198			bpf_error("not a broadcast link");
7199		}
7200		break;
7201
7202	case Q_IP:
7203		/*
7204		 * We treat a netmask of PCAP_NETMASK_UNKNOWN (0xffffffff)
7205		 * as an indication that we don't know the netmask, and fail
7206		 * in that case.
7207		 */
7208		if (netmask == PCAP_NETMASK_UNKNOWN)
7209			bpf_error("netmask not known, so 'ip broadcast' not supported");
7210		b0 = gen_linktype(ETHERTYPE_IP);
7211		hostmask = ~netmask;
7212		b1 = gen_mcmp(OR_NET, 16, BPF_W, (bpf_int32)0, hostmask);
7213		b2 = gen_mcmp(OR_NET, 16, BPF_W,
7214			      (bpf_int32)(~0 & hostmask), hostmask);
7215		gen_or(b1, b2);
7216		gen_and(b0, b2);
7217		return b2;
7218	}
7219	bpf_error("only link-layer/IP broadcast filters supported");
7220	/* NOTREACHED */
7221	return NULL;
7222}
7223
7224/*
7225 * Generate code to test the low-order bit of a MAC address (that's
7226 * the bottom bit of the *first* byte).
7227 */
7228static struct block *
7229gen_mac_multicast(offset)
7230	int offset;
7231{
7232	register struct block *b0;
7233	register struct slist *s;
7234
7235	/* link[offset] & 1 != 0 */
7236	s = gen_load_a(OR_LINK, offset, BPF_B);
7237	b0 = new_block(JMP(BPF_JSET));
7238	b0->s.k = 1;
7239	b0->stmts = s;
7240	return b0;
7241}
7242
7243struct block *
7244gen_multicast(proto)
7245	int proto;
7246{
7247	register struct block *b0, *b1, *b2;
7248	register struct slist *s;
7249
7250	switch (proto) {
7251
7252	case Q_DEFAULT:
7253	case Q_LINK:
7254		switch (linktype) {
7255		case DLT_ARCNET:
7256		case DLT_ARCNET_LINUX:
7257			/* all ARCnet multicasts use the same address */
7258			return gen_ahostop(abroadcast, Q_DST);
7259		case DLT_EN10MB:
7260		case DLT_NETANALYZER:
7261		case DLT_NETANALYZER_TRANSPARENT:
7262			/* ether[0] & 1 != 0 */
7263			return gen_mac_multicast(0);
7264		case DLT_FDDI:
7265			/*
7266			 * XXX TEST THIS: MIGHT NOT PORT PROPERLY XXX
7267			 *
7268			 * XXX - was that referring to bit-order issues?
7269			 */
7270			/* fddi[1] & 1 != 0 */
7271			return gen_mac_multicast(1);
7272		case DLT_IEEE802:
7273			/* tr[2] & 1 != 0 */
7274			return gen_mac_multicast(2);
7275		case DLT_IEEE802_11:
7276		case DLT_PRISM_HEADER:
7277		case DLT_IEEE802_11_RADIO_AVS:
7278		case DLT_IEEE802_11_RADIO:
7279		case DLT_PPI:
7280			/*
7281			 * Oh, yuk.
7282			 *
7283			 *	For control frames, there is no DA.
7284			 *
7285			 *	For management frames, DA is at an
7286			 *	offset of 4 from the beginning of
7287			 *	the packet.
7288			 *
7289			 *	For data frames, DA is at an offset
7290			 *	of 4 from the beginning of the packet
7291			 *	if To DS is clear and at an offset of
7292			 *	16 from the beginning of the packet
7293			 *	if To DS is set.
7294			 */
7295
7296			/*
7297			 * Generate the tests to be done for data frames.
7298			 *
7299			 * First, check for To DS set, i.e. "link[1] & 0x01".
7300			 */
7301			s = gen_load_a(OR_LINK, 1, BPF_B);
7302			b1 = new_block(JMP(BPF_JSET));
7303			b1->s.k = 0x01;	/* To DS */
7304			b1->stmts = s;
7305
7306			/*
7307			 * If To DS is set, the DA is at 16.
7308			 */
7309			b0 = gen_mac_multicast(16);
7310			gen_and(b1, b0);
7311
7312			/*
7313			 * Now, check for To DS not set, i.e. check
7314			 * "!(link[1] & 0x01)".
7315			 */
7316			s = gen_load_a(OR_LINK, 1, BPF_B);
7317			b2 = new_block(JMP(BPF_JSET));
7318			b2->s.k = 0x01;	/* To DS */
7319			b2->stmts = s;
7320			gen_not(b2);
7321
7322			/*
7323			 * If To DS is not set, the DA is at 4.
7324			 */
7325			b1 = gen_mac_multicast(4);
7326			gen_and(b2, b1);
7327
7328			/*
7329			 * Now OR together the last two checks.  That gives
7330			 * the complete set of checks for data frames.
7331			 */
7332			gen_or(b1, b0);
7333
7334			/*
7335			 * Now check for a data frame.
7336			 * I.e, check "link[0] & 0x08".
7337			 */
7338			s = gen_load_a(OR_LINK, 0, BPF_B);
7339			b1 = new_block(JMP(BPF_JSET));
7340			b1->s.k = 0x08;
7341			b1->stmts = s;
7342
7343			/*
7344			 * AND that with the checks done for data frames.
7345			 */
7346			gen_and(b1, b0);
7347
7348			/*
7349			 * If the high-order bit of the type value is 0, this
7350			 * is a management frame.
7351			 * I.e, check "!(link[0] & 0x08)".
7352			 */
7353			s = gen_load_a(OR_LINK, 0, BPF_B);
7354			b2 = new_block(JMP(BPF_JSET));
7355			b2->s.k = 0x08;
7356			b2->stmts = s;
7357			gen_not(b2);
7358
7359			/*
7360			 * For management frames, the DA is at 4.
7361			 */
7362			b1 = gen_mac_multicast(4);
7363			gen_and(b2, b1);
7364
7365			/*
7366			 * OR that with the checks done for data frames.
7367			 * That gives the checks done for management and
7368			 * data frames.
7369			 */
7370			gen_or(b1, b0);
7371
7372			/*
7373			 * If the low-order bit of the type value is 1,
7374			 * this is either a control frame or a frame
7375			 * with a reserved type, and thus not a
7376			 * frame with an SA.
7377			 *
7378			 * I.e., check "!(link[0] & 0x04)".
7379			 */
7380			s = gen_load_a(OR_LINK, 0, BPF_B);
7381			b1 = new_block(JMP(BPF_JSET));
7382			b1->s.k = 0x04;
7383			b1->stmts = s;
7384			gen_not(b1);
7385
7386			/*
7387			 * AND that with the checks for data and management
7388			 * frames.
7389			 */
7390			gen_and(b1, b0);
7391			return b0;
7392		case DLT_IP_OVER_FC:
7393			b0 = gen_mac_multicast(2);
7394			return b0;
7395		case DLT_SUNATM:
7396			if (is_lane) {
7397				/*
7398				 * Check that the packet doesn't begin with an
7399				 * LE Control marker.  (We've already generated
7400				 * a test for LANE.)
7401				 */
7402				b1 = gen_cmp(OR_LINK, SUNATM_PKT_BEGIN_POS,
7403				    BPF_H, 0xFF00);
7404				gen_not(b1);
7405
7406				/* ether[off_mac] & 1 != 0 */
7407				b0 = gen_mac_multicast(off_mac);
7408				gen_and(b1, b0);
7409				return b0;
7410			}
7411			break;
7412		default:
7413			break;
7414		}
7415		/* Link not known to support multicasts */
7416		break;
7417
7418	case Q_IP:
7419		b0 = gen_linktype(ETHERTYPE_IP);
7420		b1 = gen_cmp_ge(OR_NET, 16, BPF_B, (bpf_int32)224);
7421		gen_and(b0, b1);
7422		return b1;
7423
7424	case Q_IPV6:
7425		b0 = gen_linktype(ETHERTYPE_IPV6);
7426		b1 = gen_cmp(OR_NET, 24, BPF_B, (bpf_int32)255);
7427		gen_and(b0, b1);
7428		return b1;
7429	}
7430	bpf_error("link-layer multicast filters supported only on ethernet/FDDI/token ring/ARCNET/802.11/ATM LANE/Fibre Channel");
7431	/* NOTREACHED */
7432	return NULL;
7433}
7434
7435/*
7436 * Filter on inbound (dir == 0) or outbound (dir == 1) traffic.
7437 * Outbound traffic is sent by this machine, while inbound traffic is
7438 * sent by a remote machine (and may include packets destined for a
7439 * unicast or multicast link-layer address we are not subscribing to).
7440 * These are the same definitions implemented by pcap_setdirection().
7441 * Capturing only unicast traffic destined for this host is probably
7442 * better accomplished using a higher-layer filter.
7443 */
7444struct block *
7445gen_inbound(dir)
7446	int dir;
7447{
7448	register struct block *b0;
7449
7450	/*
7451	 * Only some data link types support inbound/outbound qualifiers.
7452	 */
7453	switch (linktype) {
7454	case DLT_SLIP:
7455		b0 = gen_relation(BPF_JEQ,
7456			  gen_load(Q_LINK, gen_loadi(0), 1),
7457			  gen_loadi(0),
7458			  dir);
7459		break;
7460
7461	case DLT_IPNET:
7462		if (dir) {
7463			/* match outgoing packets */
7464			b0 = gen_cmp(OR_LINK, 2, BPF_H, IPNET_OUTBOUND);
7465		} else {
7466			/* match incoming packets */
7467			b0 = gen_cmp(OR_LINK, 2, BPF_H, IPNET_INBOUND);
7468		}
7469		break;
7470
7471	case DLT_LINUX_SLL:
7472		/* match outgoing packets */
7473		b0 = gen_cmp(OR_LINK, 0, BPF_H, LINUX_SLL_OUTGOING);
7474		if (!dir) {
7475			/* to filter on inbound traffic, invert the match */
7476			gen_not(b0);
7477		}
7478		break;
7479
7480#ifdef HAVE_NET_PFVAR_H
7481	case DLT_PFLOG:
7482		b0 = gen_cmp(OR_LINK, offsetof(struct pfloghdr, dir), BPF_B,
7483		    (bpf_int32)((dir == 0) ? PF_IN : PF_OUT));
7484		break;
7485#endif
7486
7487	case DLT_PPP_PPPD:
7488		if (dir) {
7489			/* match outgoing packets */
7490			b0 = gen_cmp(OR_LINK, 0, BPF_B, PPP_PPPD_OUT);
7491		} else {
7492			/* match incoming packets */
7493			b0 = gen_cmp(OR_LINK, 0, BPF_B, PPP_PPPD_IN);
7494		}
7495		break;
7496
7497        case DLT_JUNIPER_MFR:
7498        case DLT_JUNIPER_MLFR:
7499        case DLT_JUNIPER_MLPPP:
7500	case DLT_JUNIPER_ATM1:
7501	case DLT_JUNIPER_ATM2:
7502	case DLT_JUNIPER_PPPOE:
7503	case DLT_JUNIPER_PPPOE_ATM:
7504        case DLT_JUNIPER_GGSN:
7505        case DLT_JUNIPER_ES:
7506        case DLT_JUNIPER_MONITOR:
7507        case DLT_JUNIPER_SERVICES:
7508        case DLT_JUNIPER_ETHER:
7509        case DLT_JUNIPER_PPP:
7510        case DLT_JUNIPER_FRELAY:
7511        case DLT_JUNIPER_CHDLC:
7512        case DLT_JUNIPER_VP:
7513        case DLT_JUNIPER_ST:
7514        case DLT_JUNIPER_ISM:
7515        case DLT_JUNIPER_VS:
7516        case DLT_JUNIPER_SRX_E2E:
7517        case DLT_JUNIPER_FIBRECHANNEL:
7518	case DLT_JUNIPER_ATM_CEMIC:
7519
7520		/* juniper flags (including direction) are stored
7521		 * the byte after the 3-byte magic number */
7522		if (dir) {
7523			/* match outgoing packets */
7524			b0 = gen_mcmp(OR_LINK, 3, BPF_B, 0, 0x01);
7525		} else {
7526			/* match incoming packets */
7527			b0 = gen_mcmp(OR_LINK, 3, BPF_B, 1, 0x01);
7528		}
7529		break;
7530
7531	default:
7532		/*
7533		 * If we have packet meta-data indicating a direction,
7534		 * check it, otherwise give up as this link-layer type
7535		 * has nothing in the packet data.
7536		 */
7537#if defined(linux) && defined(PF_PACKET) && defined(SO_ATTACH_FILTER)
7538		/*
7539		 * This is Linux with PF_PACKET support.
7540		 * If this is a *live* capture, we can look at
7541		 * special meta-data in the filter expression;
7542		 * if it's a savefile, we can't.
7543		 */
7544		if (bpf_pcap->rfile != NULL) {
7545			/* We have a FILE *, so this is a savefile */
7546			bpf_error("inbound/outbound not supported on linktype %d when reading savefiles",
7547			    linktype);
7548			b0 = NULL;
7549			/* NOTREACHED */
7550		}
7551		/* match outgoing packets */
7552		b0 = gen_cmp(OR_LINK, SKF_AD_OFF + SKF_AD_PKTTYPE, BPF_H,
7553		             PACKET_OUTGOING);
7554		if (!dir) {
7555			/* to filter on inbound traffic, invert the match */
7556			gen_not(b0);
7557		}
7558#else /* defined(linux) && defined(PF_PACKET) && defined(SO_ATTACH_FILTER) */
7559		bpf_error("inbound/outbound not supported on linktype %d",
7560		    linktype);
7561		b0 = NULL;
7562		/* NOTREACHED */
7563#endif /* defined(linux) && defined(PF_PACKET) && defined(SO_ATTACH_FILTER) */
7564	}
7565	return (b0);
7566}
7567
7568#ifdef HAVE_NET_PFVAR_H
7569/* PF firewall log matched interface */
7570struct block *
7571gen_pf_ifname(const char *ifname)
7572{
7573	struct block *b0;
7574	u_int len, off;
7575
7576	if (linktype != DLT_PFLOG) {
7577		bpf_error("ifname supported only on PF linktype");
7578		/* NOTREACHED */
7579	}
7580	len = sizeof(((struct pfloghdr *)0)->ifname);
7581	off = offsetof(struct pfloghdr, ifname);
7582	if (strlen(ifname) >= len) {
7583		bpf_error("ifname interface names can only be %d characters",
7584		    len-1);
7585		/* NOTREACHED */
7586	}
7587	b0 = gen_bcmp(OR_LINK, off, strlen(ifname), (const u_char *)ifname);
7588	return (b0);
7589}
7590
7591/* PF firewall log ruleset name */
7592struct block *
7593gen_pf_ruleset(char *ruleset)
7594{
7595	struct block *b0;
7596
7597	if (linktype != DLT_PFLOG) {
7598		bpf_error("ruleset supported only on PF linktype");
7599		/* NOTREACHED */
7600	}
7601
7602	if (strlen(ruleset) >= sizeof(((struct pfloghdr *)0)->ruleset)) {
7603		bpf_error("ruleset names can only be %ld characters",
7604		    (long)(sizeof(((struct pfloghdr *)0)->ruleset) - 1));
7605		/* NOTREACHED */
7606	}
7607
7608	b0 = gen_bcmp(OR_LINK, offsetof(struct pfloghdr, ruleset),
7609	    strlen(ruleset), (const u_char *)ruleset);
7610	return (b0);
7611}
7612
7613/* PF firewall log rule number */
7614struct block *
7615gen_pf_rnr(int rnr)
7616{
7617	struct block *b0;
7618
7619	if (linktype != DLT_PFLOG) {
7620		bpf_error("rnr supported only on PF linktype");
7621		/* NOTREACHED */
7622	}
7623
7624	b0 = gen_cmp(OR_LINK, offsetof(struct pfloghdr, rulenr), BPF_W,
7625		 (bpf_int32)rnr);
7626	return (b0);
7627}
7628
7629/* PF firewall log sub-rule number */
7630struct block *
7631gen_pf_srnr(int srnr)
7632{
7633	struct block *b0;
7634
7635	if (linktype != DLT_PFLOG) {
7636		bpf_error("srnr supported only on PF linktype");
7637		/* NOTREACHED */
7638	}
7639
7640	b0 = gen_cmp(OR_LINK, offsetof(struct pfloghdr, subrulenr), BPF_W,
7641	    (bpf_int32)srnr);
7642	return (b0);
7643}
7644
7645/* PF firewall log reason code */
7646struct block *
7647gen_pf_reason(int reason)
7648{
7649	struct block *b0;
7650
7651	if (linktype != DLT_PFLOG) {
7652		bpf_error("reason supported only on PF linktype");
7653		/* NOTREACHED */
7654	}
7655
7656	b0 = gen_cmp(OR_LINK, offsetof(struct pfloghdr, reason), BPF_B,
7657	    (bpf_int32)reason);
7658	return (b0);
7659}
7660
7661/* PF firewall log action */
7662struct block *
7663gen_pf_action(int action)
7664{
7665	struct block *b0;
7666
7667	if (linktype != DLT_PFLOG) {
7668		bpf_error("action supported only on PF linktype");
7669		/* NOTREACHED */
7670	}
7671
7672	b0 = gen_cmp(OR_LINK, offsetof(struct pfloghdr, action), BPF_B,
7673	    (bpf_int32)action);
7674	return (b0);
7675}
7676#else /* !HAVE_NET_PFVAR_H */
7677struct block *
7678gen_pf_ifname(const char *ifname)
7679{
7680	bpf_error("libpcap was compiled without pf support");
7681	/* NOTREACHED */
7682	return (NULL);
7683}
7684
7685struct block *
7686gen_pf_ruleset(char *ruleset)
7687{
7688	bpf_error("libpcap was compiled on a machine without pf support");
7689	/* NOTREACHED */
7690	return (NULL);
7691}
7692
7693struct block *
7694gen_pf_rnr(int rnr)
7695{
7696	bpf_error("libpcap was compiled on a machine without pf support");
7697	/* NOTREACHED */
7698	return (NULL);
7699}
7700
7701struct block *
7702gen_pf_srnr(int srnr)
7703{
7704	bpf_error("libpcap was compiled on a machine without pf support");
7705	/* NOTREACHED */
7706	return (NULL);
7707}
7708
7709struct block *
7710gen_pf_reason(int reason)
7711{
7712	bpf_error("libpcap was compiled on a machine without pf support");
7713	/* NOTREACHED */
7714	return (NULL);
7715}
7716
7717struct block *
7718gen_pf_action(int action)
7719{
7720	bpf_error("libpcap was compiled on a machine without pf support");
7721	/* NOTREACHED */
7722	return (NULL);
7723}
7724#endif /* HAVE_NET_PFVAR_H */
7725
7726/* IEEE 802.11 wireless header */
7727struct block *
7728gen_p80211_type(int type, int mask)
7729{
7730	struct block *b0;
7731
7732	switch (linktype) {
7733
7734	case DLT_IEEE802_11:
7735	case DLT_PRISM_HEADER:
7736	case DLT_IEEE802_11_RADIO_AVS:
7737	case DLT_IEEE802_11_RADIO:
7738		b0 = gen_mcmp(OR_LINK, 0, BPF_B, (bpf_int32)type,
7739		    (bpf_int32)mask);
7740		break;
7741
7742	default:
7743		bpf_error("802.11 link-layer types supported only on 802.11");
7744		/* NOTREACHED */
7745	}
7746
7747	return (b0);
7748}
7749
7750struct block *
7751gen_p80211_fcdir(int fcdir)
7752{
7753	struct block *b0;
7754
7755	switch (linktype) {
7756
7757	case DLT_IEEE802_11:
7758	case DLT_PRISM_HEADER:
7759	case DLT_IEEE802_11_RADIO_AVS:
7760	case DLT_IEEE802_11_RADIO:
7761		break;
7762
7763	default:
7764		bpf_error("frame direction supported only with 802.11 headers");
7765		/* NOTREACHED */
7766	}
7767
7768	b0 = gen_mcmp(OR_LINK, 1, BPF_B, (bpf_int32)fcdir,
7769		(bpf_u_int32)IEEE80211_FC1_DIR_MASK);
7770
7771	return (b0);
7772}
7773
7774struct block *
7775gen_acode(eaddr, q)
7776	register const u_char *eaddr;
7777	struct qual q;
7778{
7779	switch (linktype) {
7780
7781	case DLT_ARCNET:
7782	case DLT_ARCNET_LINUX:
7783		if ((q.addr == Q_HOST || q.addr == Q_DEFAULT) &&
7784		    q.proto == Q_LINK)
7785			return (gen_ahostop(eaddr, (int)q.dir));
7786		else {
7787			bpf_error("ARCnet address used in non-arc expression");
7788			/* NOTREACHED */
7789		}
7790		break;
7791
7792	default:
7793		bpf_error("aid supported only on ARCnet");
7794		/* NOTREACHED */
7795	}
7796	bpf_error("ARCnet address used in non-arc expression");
7797	/* NOTREACHED */
7798	return NULL;
7799}
7800
7801static struct block *
7802gen_ahostop(eaddr, dir)
7803	register const u_char *eaddr;
7804	register int dir;
7805{
7806	register struct block *b0, *b1;
7807
7808	switch (dir) {
7809	/* src comes first, different from Ethernet */
7810	case Q_SRC:
7811		return gen_bcmp(OR_LINK, 0, 1, eaddr);
7812
7813	case Q_DST:
7814		return gen_bcmp(OR_LINK, 1, 1, eaddr);
7815
7816	case Q_AND:
7817		b0 = gen_ahostop(eaddr, Q_SRC);
7818		b1 = gen_ahostop(eaddr, Q_DST);
7819		gen_and(b0, b1);
7820		return b1;
7821
7822	case Q_DEFAULT:
7823	case Q_OR:
7824		b0 = gen_ahostop(eaddr, Q_SRC);
7825		b1 = gen_ahostop(eaddr, Q_DST);
7826		gen_or(b0, b1);
7827		return b1;
7828
7829	case Q_ADDR1:
7830		bpf_error("'addr1' is only supported on 802.11");
7831		break;
7832
7833	case Q_ADDR2:
7834		bpf_error("'addr2' is only supported on 802.11");
7835		break;
7836
7837	case Q_ADDR3:
7838		bpf_error("'addr3' is only supported on 802.11");
7839		break;
7840
7841	case Q_ADDR4:
7842		bpf_error("'addr4' is only supported on 802.11");
7843		break;
7844
7845	case Q_RA:
7846		bpf_error("'ra' is only supported on 802.11");
7847		break;
7848
7849	case Q_TA:
7850		bpf_error("'ta' is only supported on 802.11");
7851		break;
7852	}
7853	abort();
7854	/* NOTREACHED */
7855}
7856
7857/*
7858 * support IEEE 802.1Q VLAN trunk over ethernet
7859 */
7860struct block *
7861gen_vlan(vlan_num)
7862	int vlan_num;
7863{
7864	struct	block	*b0, *b1;
7865
7866	/* can't check for VLAN-encapsulated packets inside MPLS */
7867	if (label_stack_depth > 0)
7868		bpf_error("no VLAN match after MPLS");
7869
7870	/*
7871	 * Check for a VLAN packet, and then change the offsets to point
7872	 * to the type and data fields within the VLAN packet.  Just
7873	 * increment the offsets, so that we can support a hierarchy, e.g.
7874	 * "vlan 300 && vlan 200" to capture VLAN 200 encapsulated within
7875	 * VLAN 100.
7876	 *
7877	 * XXX - this is a bit of a kludge.  If we were to split the
7878	 * compiler into a parser that parses an expression and
7879	 * generates an expression tree, and a code generator that
7880	 * takes an expression tree (which could come from our
7881	 * parser or from some other parser) and generates BPF code,
7882	 * we could perhaps make the offsets parameters of routines
7883	 * and, in the handler for an "AND" node, pass to subnodes
7884	 * other than the VLAN node the adjusted offsets.
7885	 *
7886	 * This would mean that "vlan" would, instead of changing the
7887	 * behavior of *all* tests after it, change only the behavior
7888	 * of tests ANDed with it.  That would change the documented
7889	 * semantics of "vlan", which might break some expressions.
7890	 * However, it would mean that "(vlan and ip) or ip" would check
7891	 * both for VLAN-encapsulated IP and IP-over-Ethernet, rather than
7892	 * checking only for VLAN-encapsulated IP, so that could still
7893	 * be considered worth doing; it wouldn't break expressions
7894	 * that are of the form "vlan and ..." or "vlan N and ...",
7895	 * which I suspect are the most common expressions involving
7896	 * "vlan".  "vlan or ..." doesn't necessarily do what the user
7897	 * would really want, now, as all the "or ..." tests would
7898	 * be done assuming a VLAN, even though the "or" could be viewed
7899	 * as meaning "or, if this isn't a VLAN packet...".
7900	 */
7901	orig_nl = off_nl;
7902
7903	switch (linktype) {
7904
7905	case DLT_EN10MB:
7906	case DLT_NETANALYZER:
7907	case DLT_NETANALYZER_TRANSPARENT:
7908		/* check for VLAN, including QinQ */
7909		b0 = gen_cmp(OR_LINK, off_linktype, BPF_H,
7910		    (bpf_int32)ETHERTYPE_8021Q);
7911		b1 = gen_cmp(OR_LINK, off_linktype, BPF_H,
7912		    (bpf_int32)ETHERTYPE_8021QINQ);
7913		gen_or(b0,b1);
7914		b0 = b1;
7915
7916		/* If a specific VLAN is requested, check VLAN id */
7917		if (vlan_num >= 0) {
7918			b1 = gen_mcmp(OR_MACPL, 0, BPF_H,
7919			    (bpf_int32)vlan_num, 0x0fff);
7920			gen_and(b0, b1);
7921			b0 = b1;
7922		}
7923
7924		off_macpl += 4;
7925		off_linktype += 4;
7926#if 0
7927		off_nl_nosnap += 4;
7928		off_nl += 4;
7929#endif
7930		break;
7931
7932	default:
7933		bpf_error("no VLAN support for data link type %d",
7934		      linktype);
7935		/*NOTREACHED*/
7936	}
7937
7938	return (b0);
7939}
7940
7941/*
7942 * support for MPLS
7943 */
7944struct block *
7945gen_mpls(label_num)
7946	int label_num;
7947{
7948	struct	block	*b0,*b1;
7949
7950	/*
7951	 * Change the offsets to point to the type and data fields within
7952	 * the MPLS packet.  Just increment the offsets, so that we
7953	 * can support a hierarchy, e.g. "mpls 100000 && mpls 1024" to
7954	 * capture packets with an outer label of 100000 and an inner
7955	 * label of 1024.
7956	 *
7957	 * XXX - this is a bit of a kludge.  See comments in gen_vlan().
7958	 */
7959        orig_nl = off_nl;
7960
7961        if (label_stack_depth > 0) {
7962            /* just match the bottom-of-stack bit clear */
7963            b0 = gen_mcmp(OR_MACPL, orig_nl-2, BPF_B, 0, 0x01);
7964        } else {
7965            /*
7966             * Indicate that we're checking MPLS-encapsulated headers,
7967             * to make sure higher level code generators don't try to
7968             * match against IP-related protocols such as Q_ARP, Q_RARP
7969             * etc.
7970             */
7971            switch (linktype) {
7972
7973            case DLT_C_HDLC: /* fall through */
7974            case DLT_EN10MB:
7975            case DLT_NETANALYZER:
7976            case DLT_NETANALYZER_TRANSPARENT:
7977                    b0 = gen_linktype(ETHERTYPE_MPLS);
7978                    break;
7979
7980            case DLT_PPP:
7981                    b0 = gen_linktype(PPP_MPLS_UCAST);
7982                    break;
7983
7984                    /* FIXME add other DLT_s ...
7985                     * for Frame-Relay/and ATM this may get messy due to SNAP headers
7986                     * leave it for now */
7987
7988            default:
7989                    bpf_error("no MPLS support for data link type %d",
7990                          linktype);
7991                    b0 = NULL;
7992                    /*NOTREACHED*/
7993                    break;
7994            }
7995        }
7996
7997	/* If a specific MPLS label is requested, check it */
7998	if (label_num >= 0) {
7999		label_num = label_num << 12; /* label is shifted 12 bits on the wire */
8000		b1 = gen_mcmp(OR_MACPL, orig_nl, BPF_W, (bpf_int32)label_num,
8001		    0xfffff000); /* only compare the first 20 bits */
8002		gen_and(b0, b1);
8003		b0 = b1;
8004	}
8005
8006        off_nl_nosnap += 4;
8007        off_nl += 4;
8008        label_stack_depth++;
8009	return (b0);
8010}
8011
8012/*
8013 * Support PPPOE discovery and session.
8014 */
8015struct block *
8016gen_pppoed()
8017{
8018	/* check for PPPoE discovery */
8019	return gen_linktype((bpf_int32)ETHERTYPE_PPPOED);
8020}
8021
8022struct block *
8023gen_pppoes(sess_num)
8024	int sess_num;
8025{
8026	struct block *b0, *b1;
8027
8028	/*
8029	 * Test against the PPPoE session link-layer type.
8030	 */
8031	b0 = gen_linktype((bpf_int32)ETHERTYPE_PPPOES);
8032
8033	/*
8034	 * Change the offsets to point to the type and data fields within
8035	 * the PPP packet, and note that this is PPPoE rather than
8036	 * raw PPP.
8037	 *
8038	 * XXX - this is a bit of a kludge.  If we were to split the
8039	 * compiler into a parser that parses an expression and
8040	 * generates an expression tree, and a code generator that
8041	 * takes an expression tree (which could come from our
8042	 * parser or from some other parser) and generates BPF code,
8043	 * we could perhaps make the offsets parameters of routines
8044	 * and, in the handler for an "AND" node, pass to subnodes
8045	 * other than the PPPoE node the adjusted offsets.
8046	 *
8047	 * This would mean that "pppoes" would, instead of changing the
8048	 * behavior of *all* tests after it, change only the behavior
8049	 * of tests ANDed with it.  That would change the documented
8050	 * semantics of "pppoes", which might break some expressions.
8051	 * However, it would mean that "(pppoes and ip) or ip" would check
8052	 * both for VLAN-encapsulated IP and IP-over-Ethernet, rather than
8053	 * checking only for VLAN-encapsulated IP, so that could still
8054	 * be considered worth doing; it wouldn't break expressions
8055	 * that are of the form "pppoes and ..." which I suspect are the
8056	 * most common expressions involving "pppoes".  "pppoes or ..."
8057	 * doesn't necessarily do what the user would really want, now,
8058	 * as all the "or ..." tests would be done assuming PPPoE, even
8059	 * though the "or" could be viewed as meaning "or, if this isn't
8060	 * a PPPoE packet...".
8061	 */
8062	orig_linktype = off_linktype;	/* save original values */
8063	orig_nl = off_nl;
8064	is_pppoes = 1;
8065
8066	/* If a specific session is requested, check PPPoE session id */
8067	if (sess_num >= 0) {
8068		b1 = gen_mcmp(OR_MACPL, orig_nl, BPF_W,
8069		    (bpf_int32)sess_num, 0x0000ffff);
8070		gen_and(b0, b1);
8071		b0 = b1;
8072	}
8073
8074	/*
8075	 * The "network-layer" protocol is PPPoE, which has a 6-byte
8076	 * PPPoE header, followed by a PPP packet.
8077	 *
8078	 * There is no HDLC encapsulation for the PPP packet (it's
8079	 * encapsulated in PPPoES instead), so the link-layer type
8080	 * starts at the first byte of the PPP packet.  For PPPoE,
8081	 * that offset is relative to the beginning of the total
8082	 * link-layer payload, including any 802.2 LLC header, so
8083	 * it's 6 bytes past off_nl.
8084	 */
8085	off_linktype = off_nl + 6;
8086
8087	/*
8088	 * The network-layer offsets are relative to the beginning
8089	 * of the MAC-layer payload; that's past the 6-byte
8090	 * PPPoE header and the 2-byte PPP header.
8091	 */
8092	off_nl = 6+2;
8093	off_nl_nosnap = 6+2;
8094
8095	return b0;
8096}
8097
8098struct block *
8099gen_atmfield_code(atmfield, jvalue, jtype, reverse)
8100	int atmfield;
8101	bpf_int32 jvalue;
8102	bpf_u_int32 jtype;
8103	int reverse;
8104{
8105	struct block *b0;
8106
8107	switch (atmfield) {
8108
8109	case A_VPI:
8110		if (!is_atm)
8111			bpf_error("'vpi' supported only on raw ATM");
8112		if (off_vpi == (u_int)-1)
8113			abort();
8114		b0 = gen_ncmp(OR_LINK, off_vpi, BPF_B, 0xffffffff, jtype,
8115		    reverse, jvalue);
8116		break;
8117
8118	case A_VCI:
8119		if (!is_atm)
8120			bpf_error("'vci' supported only on raw ATM");
8121		if (off_vci == (u_int)-1)
8122			abort();
8123		b0 = gen_ncmp(OR_LINK, off_vci, BPF_H, 0xffffffff, jtype,
8124		    reverse, jvalue);
8125		break;
8126
8127	case A_PROTOTYPE:
8128		if (off_proto == (u_int)-1)
8129			abort();	/* XXX - this isn't on FreeBSD */
8130		b0 = gen_ncmp(OR_LINK, off_proto, BPF_B, 0x0f, jtype,
8131		    reverse, jvalue);
8132		break;
8133
8134	case A_MSGTYPE:
8135		if (off_payload == (u_int)-1)
8136			abort();
8137		b0 = gen_ncmp(OR_LINK, off_payload + MSG_TYPE_POS, BPF_B,
8138		    0xffffffff, jtype, reverse, jvalue);
8139		break;
8140
8141	case A_CALLREFTYPE:
8142		if (!is_atm)
8143			bpf_error("'callref' supported only on raw ATM");
8144		if (off_proto == (u_int)-1)
8145			abort();
8146		b0 = gen_ncmp(OR_LINK, off_proto, BPF_B, 0xffffffff,
8147		    jtype, reverse, jvalue);
8148		break;
8149
8150	default:
8151		abort();
8152	}
8153	return b0;
8154}
8155
8156struct block *
8157gen_atmtype_abbrev(type)
8158	int type;
8159{
8160	struct block *b0, *b1;
8161
8162	switch (type) {
8163
8164	case A_METAC:
8165		/* Get all packets in Meta signalling Circuit */
8166		if (!is_atm)
8167			bpf_error("'metac' supported only on raw ATM");
8168		b0 = gen_atmfield_code(A_VPI, 0, BPF_JEQ, 0);
8169		b1 = gen_atmfield_code(A_VCI, 1, BPF_JEQ, 0);
8170		gen_and(b0, b1);
8171		break;
8172
8173	case A_BCC:
8174		/* Get all packets in Broadcast Circuit*/
8175		if (!is_atm)
8176			bpf_error("'bcc' supported only on raw ATM");
8177		b0 = gen_atmfield_code(A_VPI, 0, BPF_JEQ, 0);
8178		b1 = gen_atmfield_code(A_VCI, 2, BPF_JEQ, 0);
8179		gen_and(b0, b1);
8180		break;
8181
8182	case A_OAMF4SC:
8183		/* Get all cells in Segment OAM F4 circuit*/
8184		if (!is_atm)
8185			bpf_error("'oam4sc' supported only on raw ATM");
8186		b0 = gen_atmfield_code(A_VPI, 0, BPF_JEQ, 0);
8187		b1 = gen_atmfield_code(A_VCI, 3, BPF_JEQ, 0);
8188		gen_and(b0, b1);
8189		break;
8190
8191	case A_OAMF4EC:
8192		/* Get all cells in End-to-End OAM F4 Circuit*/
8193		if (!is_atm)
8194			bpf_error("'oam4ec' supported only on raw ATM");
8195		b0 = gen_atmfield_code(A_VPI, 0, BPF_JEQ, 0);
8196		b1 = gen_atmfield_code(A_VCI, 4, BPF_JEQ, 0);
8197		gen_and(b0, b1);
8198		break;
8199
8200	case A_SC:
8201		/*  Get all packets in connection Signalling Circuit */
8202		if (!is_atm)
8203			bpf_error("'sc' supported only on raw ATM");
8204		b0 = gen_atmfield_code(A_VPI, 0, BPF_JEQ, 0);
8205		b1 = gen_atmfield_code(A_VCI, 5, BPF_JEQ, 0);
8206		gen_and(b0, b1);
8207		break;
8208
8209	case A_ILMIC:
8210		/* Get all packets in ILMI Circuit */
8211		if (!is_atm)
8212			bpf_error("'ilmic' supported only on raw ATM");
8213		b0 = gen_atmfield_code(A_VPI, 0, BPF_JEQ, 0);
8214		b1 = gen_atmfield_code(A_VCI, 16, BPF_JEQ, 0);
8215		gen_and(b0, b1);
8216		break;
8217
8218	case A_LANE:
8219		/* Get all LANE packets */
8220		if (!is_atm)
8221			bpf_error("'lane' supported only on raw ATM");
8222		b1 = gen_atmfield_code(A_PROTOTYPE, PT_LANE, BPF_JEQ, 0);
8223
8224		/*
8225		 * Arrange that all subsequent tests assume LANE
8226		 * rather than LLC-encapsulated packets, and set
8227		 * the offsets appropriately for LANE-encapsulated
8228		 * Ethernet.
8229		 *
8230		 * "off_mac" is the offset of the Ethernet header,
8231		 * which is 2 bytes past the ATM pseudo-header
8232		 * (skipping the pseudo-header and 2-byte LE Client
8233		 * field).  The other offsets are Ethernet offsets
8234		 * relative to "off_mac".
8235		 */
8236		is_lane = 1;
8237		off_mac = off_payload + 2;	/* MAC header */
8238		off_linktype = off_mac + 12;
8239		off_macpl = off_mac + 14;	/* Ethernet */
8240		off_nl = 0;			/* Ethernet II */
8241		off_nl_nosnap = 3;		/* 802.3+802.2 */
8242		break;
8243
8244	case A_LLC:
8245		/* Get all LLC-encapsulated packets */
8246		if (!is_atm)
8247			bpf_error("'llc' supported only on raw ATM");
8248		b1 = gen_atmfield_code(A_PROTOTYPE, PT_LLC, BPF_JEQ, 0);
8249		is_lane = 0;
8250		break;
8251
8252	default:
8253		abort();
8254	}
8255	return b1;
8256}
8257
8258/*
8259 * Filtering for MTP2 messages based on li value
8260 * FISU, length is null
8261 * LSSU, length is 1 or 2
8262 * MSU, length is 3 or more
8263 * For MTP2_HSL, sequences are on 2 bytes, and length on 9 bits
8264 */
8265struct block *
8266gen_mtp2type_abbrev(type)
8267	int type;
8268{
8269	struct block *b0, *b1;
8270
8271	switch (type) {
8272
8273	case M_FISU:
8274		if ( (linktype != DLT_MTP2) &&
8275		     (linktype != DLT_ERF) &&
8276		     (linktype != DLT_MTP2_WITH_PHDR) )
8277			bpf_error("'fisu' supported only on MTP2");
8278		/* gen_ncmp(offrel, offset, size, mask, jtype, reverse, value) */
8279		b0 = gen_ncmp(OR_PACKET, off_li, BPF_B, 0x3f, BPF_JEQ, 0, 0);
8280		break;
8281
8282	case M_LSSU:
8283		if ( (linktype != DLT_MTP2) &&
8284		     (linktype != DLT_ERF) &&
8285		     (linktype != DLT_MTP2_WITH_PHDR) )
8286			bpf_error("'lssu' supported only on MTP2");
8287		b0 = gen_ncmp(OR_PACKET, off_li, BPF_B, 0x3f, BPF_JGT, 1, 2);
8288		b1 = gen_ncmp(OR_PACKET, off_li, BPF_B, 0x3f, BPF_JGT, 0, 0);
8289		gen_and(b1, b0);
8290		break;
8291
8292	case M_MSU:
8293		if ( (linktype != DLT_MTP2) &&
8294		     (linktype != DLT_ERF) &&
8295		     (linktype != DLT_MTP2_WITH_PHDR) )
8296			bpf_error("'msu' supported only on MTP2");
8297		b0 = gen_ncmp(OR_PACKET, off_li, BPF_B, 0x3f, BPF_JGT, 0, 2);
8298		break;
8299
8300	case MH_FISU:
8301		if ( (linktype != DLT_MTP2) &&
8302		     (linktype != DLT_ERF) &&
8303		     (linktype != DLT_MTP2_WITH_PHDR) )
8304			bpf_error("'hfisu' supported only on MTP2_HSL");
8305		/* gen_ncmp(offrel, offset, size, mask, jtype, reverse, value) */
8306		b0 = gen_ncmp(OR_PACKET, off_li_hsl, BPF_H, 0xff80, BPF_JEQ, 0, 0);
8307		break;
8308
8309	case MH_LSSU:
8310		if ( (linktype != DLT_MTP2) &&
8311		     (linktype != DLT_ERF) &&
8312		     (linktype != DLT_MTP2_WITH_PHDR) )
8313			bpf_error("'hlssu' supported only on MTP2_HSL");
8314		b0 = gen_ncmp(OR_PACKET, off_li_hsl, BPF_H, 0xff80, BPF_JGT, 1, 0x0100);
8315		b1 = gen_ncmp(OR_PACKET, off_li_hsl, BPF_H, 0xff80, BPF_JGT, 0, 0);
8316		gen_and(b1, b0);
8317		break;
8318
8319	case MH_MSU:
8320		if ( (linktype != DLT_MTP2) &&
8321		     (linktype != DLT_ERF) &&
8322		     (linktype != DLT_MTP2_WITH_PHDR) )
8323			bpf_error("'hmsu' supported only on MTP2_HSL");
8324		b0 = gen_ncmp(OR_PACKET, off_li_hsl, BPF_H, 0xff80, BPF_JGT, 0, 0x0100);
8325		break;
8326
8327	default:
8328		abort();
8329	}
8330	return b0;
8331}
8332
8333struct block *
8334gen_mtp3field_code(mtp3field, jvalue, jtype, reverse)
8335	int mtp3field;
8336	bpf_u_int32 jvalue;
8337	bpf_u_int32 jtype;
8338	int reverse;
8339{
8340	struct block *b0;
8341	bpf_u_int32 val1 , val2 , val3;
8342	u_int newoff_sio=off_sio;
8343	u_int newoff_opc=off_opc;
8344	u_int newoff_dpc=off_dpc;
8345	u_int newoff_sls=off_sls;
8346
8347	switch (mtp3field) {
8348
8349	case MH_SIO:
8350		newoff_sio += 3; /* offset for MTP2_HSL */
8351		/* FALLTHROUGH */
8352
8353	case M_SIO:
8354		if (off_sio == (u_int)-1)
8355			bpf_error("'sio' supported only on SS7");
8356		/* sio coded on 1 byte so max value 255 */
8357		if(jvalue > 255)
8358		        bpf_error("sio value %u too big; max value = 255",
8359		            jvalue);
8360		b0 = gen_ncmp(OR_PACKET, newoff_sio, BPF_B, 0xffffffff,
8361		    (u_int)jtype, reverse, (u_int)jvalue);
8362		break;
8363
8364	case MH_OPC:
8365		newoff_opc+=3;
8366        case M_OPC:
8367	        if (off_opc == (u_int)-1)
8368			bpf_error("'opc' supported only on SS7");
8369		/* opc coded on 14 bits so max value 16383 */
8370		if (jvalue > 16383)
8371		        bpf_error("opc value %u too big; max value = 16383",
8372		            jvalue);
8373		/* the following instructions are made to convert jvalue
8374		 * to the form used to write opc in an ss7 message*/
8375		val1 = jvalue & 0x00003c00;
8376		val1 = val1 >>10;
8377		val2 = jvalue & 0x000003fc;
8378		val2 = val2 <<6;
8379		val3 = jvalue & 0x00000003;
8380		val3 = val3 <<22;
8381		jvalue = val1 + val2 + val3;
8382		b0 = gen_ncmp(OR_PACKET, newoff_opc, BPF_W, 0x00c0ff0f,
8383		    (u_int)jtype, reverse, (u_int)jvalue);
8384		break;
8385
8386	case MH_DPC:
8387		newoff_dpc += 3;
8388		/* FALLTHROUGH */
8389
8390	case M_DPC:
8391	        if (off_dpc == (u_int)-1)
8392			bpf_error("'dpc' supported only on SS7");
8393		/* dpc coded on 14 bits so max value 16383 */
8394		if (jvalue > 16383)
8395		        bpf_error("dpc value %u too big; max value = 16383",
8396		            jvalue);
8397		/* the following instructions are made to convert jvalue
8398		 * to the forme used to write dpc in an ss7 message*/
8399		val1 = jvalue & 0x000000ff;
8400		val1 = val1 << 24;
8401		val2 = jvalue & 0x00003f00;
8402		val2 = val2 << 8;
8403		jvalue = val1 + val2;
8404		b0 = gen_ncmp(OR_PACKET, newoff_dpc, BPF_W, 0xff3f0000,
8405		    (u_int)jtype, reverse, (u_int)jvalue);
8406		break;
8407
8408	case MH_SLS:
8409	  newoff_sls+=3;
8410	case M_SLS:
8411	        if (off_sls == (u_int)-1)
8412			bpf_error("'sls' supported only on SS7");
8413		/* sls coded on 4 bits so max value 15 */
8414		if (jvalue > 15)
8415		         bpf_error("sls value %u too big; max value = 15",
8416		             jvalue);
8417		/* the following instruction is made to convert jvalue
8418		 * to the forme used to write sls in an ss7 message*/
8419		jvalue = jvalue << 4;
8420		b0 = gen_ncmp(OR_PACKET, newoff_sls, BPF_B, 0xf0,
8421		    (u_int)jtype,reverse, (u_int)jvalue);
8422		break;
8423
8424	default:
8425		abort();
8426	}
8427	return b0;
8428}
8429
8430static struct block *
8431gen_msg_abbrev(type)
8432	int type;
8433{
8434	struct block *b1;
8435
8436	/*
8437	 * Q.2931 signalling protocol messages for handling virtual circuits
8438	 * establishment and teardown
8439	 */
8440	switch (type) {
8441
8442	case A_SETUP:
8443		b1 = gen_atmfield_code(A_MSGTYPE, SETUP, BPF_JEQ, 0);
8444		break;
8445
8446	case A_CALLPROCEED:
8447		b1 = gen_atmfield_code(A_MSGTYPE, CALL_PROCEED, BPF_JEQ, 0);
8448		break;
8449
8450	case A_CONNECT:
8451		b1 = gen_atmfield_code(A_MSGTYPE, CONNECT, BPF_JEQ, 0);
8452		break;
8453
8454	case A_CONNECTACK:
8455		b1 = gen_atmfield_code(A_MSGTYPE, CONNECT_ACK, BPF_JEQ, 0);
8456		break;
8457
8458	case A_RELEASE:
8459		b1 = gen_atmfield_code(A_MSGTYPE, RELEASE, BPF_JEQ, 0);
8460		break;
8461
8462	case A_RELEASE_DONE:
8463		b1 = gen_atmfield_code(A_MSGTYPE, RELEASE_DONE, BPF_JEQ, 0);
8464		break;
8465
8466	default:
8467		abort();
8468	}
8469	return b1;
8470}
8471
8472struct block *
8473gen_atmmulti_abbrev(type)
8474	int type;
8475{
8476	struct block *b0, *b1;
8477
8478	switch (type) {
8479
8480	case A_OAM:
8481		if (!is_atm)
8482			bpf_error("'oam' supported only on raw ATM");
8483		b1 = gen_atmmulti_abbrev(A_OAMF4);
8484		break;
8485
8486	case A_OAMF4:
8487		if (!is_atm)
8488			bpf_error("'oamf4' supported only on raw ATM");
8489		/* OAM F4 type */
8490		b0 = gen_atmfield_code(A_VCI, 3, BPF_JEQ, 0);
8491		b1 = gen_atmfield_code(A_VCI, 4, BPF_JEQ, 0);
8492		gen_or(b0, b1);
8493		b0 = gen_atmfield_code(A_VPI, 0, BPF_JEQ, 0);
8494		gen_and(b0, b1);
8495		break;
8496
8497	case A_CONNECTMSG:
8498		/*
8499		 * Get Q.2931 signalling messages for switched
8500		 * virtual connection
8501		 */
8502		if (!is_atm)
8503			bpf_error("'connectmsg' supported only on raw ATM");
8504		b0 = gen_msg_abbrev(A_SETUP);
8505		b1 = gen_msg_abbrev(A_CALLPROCEED);
8506		gen_or(b0, b1);
8507		b0 = gen_msg_abbrev(A_CONNECT);
8508		gen_or(b0, b1);
8509		b0 = gen_msg_abbrev(A_CONNECTACK);
8510		gen_or(b0, b1);
8511		b0 = gen_msg_abbrev(A_RELEASE);
8512		gen_or(b0, b1);
8513		b0 = gen_msg_abbrev(A_RELEASE_DONE);
8514		gen_or(b0, b1);
8515		b0 = gen_atmtype_abbrev(A_SC);
8516		gen_and(b0, b1);
8517		break;
8518
8519	case A_METACONNECT:
8520		if (!is_atm)
8521			bpf_error("'metaconnect' supported only on raw ATM");
8522		b0 = gen_msg_abbrev(A_SETUP);
8523		b1 = gen_msg_abbrev(A_CALLPROCEED);
8524		gen_or(b0, b1);
8525		b0 = gen_msg_abbrev(A_CONNECT);
8526		gen_or(b0, b1);
8527		b0 = gen_msg_abbrev(A_RELEASE);
8528		gen_or(b0, b1);
8529		b0 = gen_msg_abbrev(A_RELEASE_DONE);
8530		gen_or(b0, b1);
8531		b0 = gen_atmtype_abbrev(A_METAC);
8532		gen_and(b0, b1);
8533		break;
8534
8535	default:
8536		abort();
8537	}
8538	return b1;
8539}
8540