1/*
2 * Copyright (c) 1988, 1989, 1990, 1991, 1993, 1994, 1995, 1996
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that: (1) source code distributions
7 * retain the above copyright notice and this paragraph in its entirety, (2)
8 * distributions including binary code include the above copyright notice and
9 * this paragraph in its entirety in the documentation or other materials
10 * provided with the distribution, and (3) all advertising materials mentioning
11 * features or use of this software display the following acknowledgement:
12 * ``This product includes software developed by the University of California,
13 * Lawrence Berkeley Laboratory and its contributors.'' Neither the name of
14 * the University nor the names of its contributors may be used to endorse
15 * or promote products derived from this software without specific prior
16 * written permission.
17 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
19 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
20 *
21 *  Optimization module for tcpdump intermediate representation.
22 */
23#ifndef lint
24static const char rcsid[] _U_ =
25    "@(#) $Header: /tcpdump/master/libpcap/optimize.c,v 1.91 2008-01-02 04:16:46 guy Exp $ (LBL)";
26#endif
27
28#ifdef HAVE_CONFIG_H
29#include "config.h"
30#endif
31
32#ifdef WIN32
33#include <pcap-stdinc.h>
34#else /* WIN32 */
35#if HAVE_INTTYPES_H
36#include <inttypes.h>
37#elif HAVE_STDINT_H
38#include <stdint.h>
39#endif
40#ifdef HAVE_SYS_BITYPES_H
41#include <sys/bitypes.h>
42#endif
43#include <sys/types.h>
44#endif /* WIN32 */
45
46#include <stdio.h>
47#include <stdlib.h>
48#include <memory.h>
49#include <string.h>
50
51#include <errno.h>
52
53#include "pcap-int.h"
54
55#include "gencode.h"
56
57#ifdef HAVE_OS_PROTO_H
58#include "os-proto.h"
59#endif
60
61#ifdef BDEBUG
62extern int dflag;
63#endif
64
65#if defined(MSDOS) && !defined(__DJGPP__)
66extern int _w32_ffs (int mask);
67#define ffs _w32_ffs
68#endif
69
70#if defined(WIN32) && defined (_MSC_VER)
71int ffs(int mask);
72#endif
73
74/*
75 * Represents a deleted instruction.
76 */
77#define NOP -1
78
79/*
80 * Register numbers for use-def values.
81 * 0 through BPF_MEMWORDS-1 represent the corresponding scratch memory
82 * location.  A_ATOM is the accumulator and X_ATOM is the index
83 * register.
84 */
85#define A_ATOM BPF_MEMWORDS
86#define X_ATOM (BPF_MEMWORDS+1)
87
88/*
89 * This define is used to represent *both* the accumulator and
90 * x register in use-def computations.
91 * Currently, the use-def code assumes only one definition per instruction.
92 */
93#define AX_ATOM N_ATOMS
94
95/*
96 * A flag to indicate that further optimization is needed.
97 * Iterative passes are continued until a given pass yields no
98 * branch movement.
99 */
100static int done;
101
102/*
103 * A block is marked if only if its mark equals the current mark.
104 * Rather than traverse the code array, marking each item, 'cur_mark' is
105 * incremented.  This automatically makes each element unmarked.
106 */
107static int cur_mark;
108#define isMarked(p) ((p)->mark == cur_mark)
109#define unMarkAll() cur_mark += 1
110#define Mark(p) ((p)->mark = cur_mark)
111
112static void opt_init(struct block *);
113static void opt_cleanup(void);
114
115static void intern_blocks(struct block *);
116
117static void find_inedges(struct block *);
118#ifdef BDEBUG
119static void opt_dump(struct block *);
120#endif
121
122static int n_blocks;
123struct block **blocks;
124static int n_edges;
125struct edge **edges;
126
127/*
128 * A bit vector set representation of the dominators.
129 * We round up the set size to the next power of two.
130 */
131static int nodewords;
132static int edgewords;
133struct block **levels;
134bpf_u_int32 *space;
135#define BITS_PER_WORD (8*sizeof(bpf_u_int32))
136/*
137 * True if a is in uset {p}
138 */
139#define SET_MEMBER(p, a) \
140((p)[(unsigned)(a) / BITS_PER_WORD] & (1 << ((unsigned)(a) % BITS_PER_WORD)))
141
142/*
143 * Add 'a' to uset p.
144 */
145#define SET_INSERT(p, a) \
146(p)[(unsigned)(a) / BITS_PER_WORD] |= (1 << ((unsigned)(a) % BITS_PER_WORD))
147
148/*
149 * Delete 'a' from uset p.
150 */
151#define SET_DELETE(p, a) \
152(p)[(unsigned)(a) / BITS_PER_WORD] &= ~(1 << ((unsigned)(a) % BITS_PER_WORD))
153
154/*
155 * a := a intersect b
156 */
157#define SET_INTERSECT(a, b, n)\
158{\
159	register bpf_u_int32 *_x = a, *_y = b;\
160	register int _n = n;\
161	while (--_n >= 0) *_x++ &= *_y++;\
162}
163
164/*
165 * a := a - b
166 */
167#define SET_SUBTRACT(a, b, n)\
168{\
169	register bpf_u_int32 *_x = a, *_y = b;\
170	register int _n = n;\
171	while (--_n >= 0) *_x++ &=~ *_y++;\
172}
173
174/*
175 * a := a union b
176 */
177#define SET_UNION(a, b, n)\
178{\
179	register bpf_u_int32 *_x = a, *_y = b;\
180	register int _n = n;\
181	while (--_n >= 0) *_x++ |= *_y++;\
182}
183
184static uset all_dom_sets;
185static uset all_closure_sets;
186static uset all_edge_sets;
187
188#ifndef MAX
189#define MAX(a,b) ((a)>(b)?(a):(b))
190#endif
191
192static void
193find_levels_r(struct block *b)
194{
195	int level;
196
197	if (isMarked(b))
198		return;
199
200	Mark(b);
201	b->link = 0;
202
203	if (JT(b)) {
204		find_levels_r(JT(b));
205		find_levels_r(JF(b));
206		level = MAX(JT(b)->level, JF(b)->level) + 1;
207	} else
208		level = 0;
209	b->level = level;
210	b->link = levels[level];
211	levels[level] = b;
212}
213
214/*
215 * Level graph.  The levels go from 0 at the leaves to
216 * N_LEVELS at the root.  The levels[] array points to the
217 * first node of the level list, whose elements are linked
218 * with the 'link' field of the struct block.
219 */
220static void
221find_levels(struct block *root)
222{
223	memset((char *)levels, 0, n_blocks * sizeof(*levels));
224	unMarkAll();
225	find_levels_r(root);
226}
227
228/*
229 * Find dominator relationships.
230 * Assumes graph has been leveled.
231 */
232static void
233find_dom(struct block *root)
234{
235	int i;
236	struct block *b;
237	bpf_u_int32 *x;
238
239	/*
240	 * Initialize sets to contain all nodes.
241	 */
242	x = all_dom_sets;
243	i = n_blocks * nodewords;
244	while (--i >= 0)
245		*x++ = ~0;
246	/* Root starts off empty. */
247	for (i = nodewords; --i >= 0;)
248		root->dom[i] = 0;
249
250	/* root->level is the highest level no found. */
251	for (i = root->level; i >= 0; --i) {
252		for (b = levels[i]; b; b = b->link) {
253			SET_INSERT(b->dom, b->id);
254			if (JT(b) == 0)
255				continue;
256			SET_INTERSECT(JT(b)->dom, b->dom, nodewords);
257			SET_INTERSECT(JF(b)->dom, b->dom, nodewords);
258		}
259	}
260}
261
262static void
263propedom(struct edge *ep)
264{
265	SET_INSERT(ep->edom, ep->id);
266	if (ep->succ) {
267		SET_INTERSECT(ep->succ->et.edom, ep->edom, edgewords);
268		SET_INTERSECT(ep->succ->ef.edom, ep->edom, edgewords);
269	}
270}
271
272/*
273 * Compute edge dominators.
274 * Assumes graph has been leveled and predecessors established.
275 */
276static void
277find_edom(struct block *root)
278{
279	int i;
280	uset x;
281	struct block *b;
282
283	x = all_edge_sets;
284	for (i = n_edges * edgewords; --i >= 0; )
285		x[i] = ~0;
286
287	/* root->level is the highest level no found. */
288	memset(root->et.edom, 0, edgewords * sizeof(*(uset)0));
289	memset(root->ef.edom, 0, edgewords * sizeof(*(uset)0));
290	for (i = root->level; i >= 0; --i) {
291		for (b = levels[i]; b != 0; b = b->link) {
292			propedom(&b->et);
293			propedom(&b->ef);
294		}
295	}
296}
297
298/*
299 * Find the backwards transitive closure of the flow graph.  These sets
300 * are backwards in the sense that we find the set of nodes that reach
301 * a given node, not the set of nodes that can be reached by a node.
302 *
303 * Assumes graph has been leveled.
304 */
305static void
306find_closure(struct block *root)
307{
308	int i;
309	struct block *b;
310
311	/*
312	 * Initialize sets to contain no nodes.
313	 */
314	memset((char *)all_closure_sets, 0,
315	      n_blocks * nodewords * sizeof(*all_closure_sets));
316
317	/* root->level is the highest level no found. */
318	for (i = root->level; i >= 0; --i) {
319		for (b = levels[i]; b; b = b->link) {
320			SET_INSERT(b->closure, b->id);
321			if (JT(b) == 0)
322				continue;
323			SET_UNION(JT(b)->closure, b->closure, nodewords);
324			SET_UNION(JF(b)->closure, b->closure, nodewords);
325		}
326	}
327}
328
329/*
330 * Return the register number that is used by s.  If A and X are both
331 * used, return AX_ATOM.  If no register is used, return -1.
332 *
333 * The implementation should probably change to an array access.
334 */
335static int
336atomuse(struct stmt *s)
337{
338	register int c = s->code;
339
340	if (c == NOP)
341		return -1;
342
343	switch (BPF_CLASS(c)) {
344
345	case BPF_RET:
346		return (BPF_RVAL(c) == BPF_A) ? A_ATOM :
347			(BPF_RVAL(c) == BPF_X) ? X_ATOM : -1;
348
349	case BPF_LD:
350	case BPF_LDX:
351		return (BPF_MODE(c) == BPF_IND) ? X_ATOM :
352			(BPF_MODE(c) == BPF_MEM) ? s->k : -1;
353
354	case BPF_ST:
355		return A_ATOM;
356
357	case BPF_STX:
358		return X_ATOM;
359
360	case BPF_JMP:
361	case BPF_ALU:
362		if (BPF_SRC(c) == BPF_X)
363			return AX_ATOM;
364		return A_ATOM;
365
366	case BPF_MISC:
367		return BPF_MISCOP(c) == BPF_TXA ? X_ATOM : A_ATOM;
368	}
369	abort();
370	/* NOTREACHED */
371}
372
373/*
374 * Return the register number that is defined by 's'.  We assume that
375 * a single stmt cannot define more than one register.  If no register
376 * is defined, return -1.
377 *
378 * The implementation should probably change to an array access.
379 */
380static int
381atomdef(struct stmt *s)
382{
383	if (s->code == NOP)
384		return -1;
385
386	switch (BPF_CLASS(s->code)) {
387
388	case BPF_LD:
389	case BPF_ALU:
390		return A_ATOM;
391
392	case BPF_LDX:
393		return X_ATOM;
394
395	case BPF_ST:
396	case BPF_STX:
397		return s->k;
398
399	case BPF_MISC:
400		return BPF_MISCOP(s->code) == BPF_TAX ? X_ATOM : A_ATOM;
401	}
402	return -1;
403}
404
405/*
406 * Compute the sets of registers used, defined, and killed by 'b'.
407 *
408 * "Used" means that a statement in 'b' uses the register before any
409 * statement in 'b' defines it, i.e. it uses the value left in
410 * that register by a predecessor block of this block.
411 * "Defined" means that a statement in 'b' defines it.
412 * "Killed" means that a statement in 'b' defines it before any
413 * statement in 'b' uses it, i.e. it kills the value left in that
414 * register by a predecessor block of this block.
415 */
416static void
417compute_local_ud(struct block *b)
418{
419	struct slist *s;
420	atomset def = 0, use = 0, kill = 0;
421	int atom;
422
423	for (s = b->stmts; s; s = s->next) {
424		if (s->s.code == NOP)
425			continue;
426		atom = atomuse(&s->s);
427		if (atom >= 0) {
428			if (atom == AX_ATOM) {
429				if (!ATOMELEM(def, X_ATOM))
430					use |= ATOMMASK(X_ATOM);
431				if (!ATOMELEM(def, A_ATOM))
432					use |= ATOMMASK(A_ATOM);
433			}
434			else if (atom < N_ATOMS) {
435				if (!ATOMELEM(def, atom))
436					use |= ATOMMASK(atom);
437			}
438			else
439				abort();
440		}
441		atom = atomdef(&s->s);
442		if (atom >= 0) {
443			if (!ATOMELEM(use, atom))
444				kill |= ATOMMASK(atom);
445			def |= ATOMMASK(atom);
446		}
447	}
448	if (BPF_CLASS(b->s.code) == BPF_JMP) {
449		/*
450		 * XXX - what about RET?
451		 */
452		atom = atomuse(&b->s);
453		if (atom >= 0) {
454			if (atom == AX_ATOM) {
455				if (!ATOMELEM(def, X_ATOM))
456					use |= ATOMMASK(X_ATOM);
457				if (!ATOMELEM(def, A_ATOM))
458					use |= ATOMMASK(A_ATOM);
459			}
460			else if (atom < N_ATOMS) {
461				if (!ATOMELEM(def, atom))
462					use |= ATOMMASK(atom);
463			}
464			else
465				abort();
466		}
467	}
468
469	b->def = def;
470	b->kill = kill;
471	b->in_use = use;
472}
473
474/*
475 * Assume graph is already leveled.
476 */
477static void
478find_ud(struct block *root)
479{
480	int i, maxlevel;
481	struct block *p;
482
483	/*
484	 * root->level is the highest level no found;
485	 * count down from there.
486	 */
487	maxlevel = root->level;
488	for (i = maxlevel; i >= 0; --i)
489		for (p = levels[i]; p; p = p->link) {
490			compute_local_ud(p);
491			p->out_use = 0;
492		}
493
494	for (i = 1; i <= maxlevel; ++i) {
495		for (p = levels[i]; p; p = p->link) {
496			p->out_use |= JT(p)->in_use | JF(p)->in_use;
497			p->in_use |= p->out_use &~ p->kill;
498		}
499	}
500}
501
502/*
503 * These data structures are used in a Cocke and Shwarz style
504 * value numbering scheme.  Since the flowgraph is acyclic,
505 * exit values can be propagated from a node's predecessors
506 * provided it is uniquely defined.
507 */
508struct valnode {
509	int code;
510	int v0, v1;
511	int val;
512	struct valnode *next;
513};
514
515#define MODULUS 213
516static struct valnode *hashtbl[MODULUS];
517static int curval;
518static int maxval;
519
520/* Integer constants mapped with the load immediate opcode. */
521#define K(i) F(BPF_LD|BPF_IMM|BPF_W, i, 0L)
522
523struct vmapinfo {
524	int is_const;
525	bpf_int32 const_val;
526};
527
528struct vmapinfo *vmap;
529struct valnode *vnode_base;
530struct valnode *next_vnode;
531
532static void
533init_val(void)
534{
535	curval = 0;
536	next_vnode = vnode_base;
537	memset((char *)vmap, 0, maxval * sizeof(*vmap));
538	memset((char *)hashtbl, 0, sizeof hashtbl);
539}
540
541/* Because we really don't have an IR, this stuff is a little messy. */
542static int
543F(int code, int v0, int v1)
544{
545	u_int hash;
546	int val;
547	struct valnode *p;
548
549	hash = (u_int)code ^ (v0 << 4) ^ (v1 << 8);
550	hash %= MODULUS;
551
552	for (p = hashtbl[hash]; p; p = p->next)
553		if (p->code == code && p->v0 == v0 && p->v1 == v1)
554			return p->val;
555
556	val = ++curval;
557	if (BPF_MODE(code) == BPF_IMM &&
558	    (BPF_CLASS(code) == BPF_LD || BPF_CLASS(code) == BPF_LDX)) {
559		vmap[val].const_val = v0;
560		vmap[val].is_const = 1;
561	}
562	p = next_vnode++;
563	p->val = val;
564	p->code = code;
565	p->v0 = v0;
566	p->v1 = v1;
567	p->next = hashtbl[hash];
568	hashtbl[hash] = p;
569
570	return val;
571}
572
573static inline void
574vstore(struct stmt *s, int *valp, int newval, int alter)
575{
576	if (alter && *valp == newval)
577		s->code = NOP;
578	else
579		*valp = newval;
580}
581
582/*
583 * Do constant-folding on binary operators.
584 * (Unary operators are handled elsewhere.)
585 */
586static void
587fold_op(struct stmt *s, int v0, int v1)
588{
589	bpf_u_int32 a, b;
590
591	a = vmap[v0].const_val;
592	b = vmap[v1].const_val;
593
594	switch (BPF_OP(s->code)) {
595	case BPF_ADD:
596		a += b;
597		break;
598
599	case BPF_SUB:
600		a -= b;
601		break;
602
603	case BPF_MUL:
604		a *= b;
605		break;
606
607	case BPF_DIV:
608		if (b == 0)
609			bpf_error("division by zero");
610		a /= b;
611		break;
612
613	case BPF_AND:
614		a &= b;
615		break;
616
617	case BPF_OR:
618		a |= b;
619		break;
620
621	case BPF_LSH:
622		a <<= b;
623		break;
624
625	case BPF_RSH:
626		a >>= b;
627		break;
628
629	default:
630		abort();
631	}
632	s->k = a;
633	s->code = BPF_LD|BPF_IMM;
634	done = 0;
635}
636
637static inline struct slist *
638this_op(struct slist *s)
639{
640	while (s != 0 && s->s.code == NOP)
641		s = s->next;
642	return s;
643}
644
645static void
646opt_not(struct block *b)
647{
648	struct block *tmp = JT(b);
649
650	JT(b) = JF(b);
651	JF(b) = tmp;
652}
653
654static void
655opt_peep(struct block *b)
656{
657	struct slist *s;
658	struct slist *next, *last;
659	int val;
660
661	s = b->stmts;
662	if (s == 0)
663		return;
664
665	last = s;
666	for (/*empty*/; /*empty*/; s = next) {
667		/*
668		 * Skip over nops.
669		 */
670		s = this_op(s);
671		if (s == 0)
672			break;	/* nothing left in the block */
673
674		/*
675		 * Find the next real instruction after that one
676		 * (skipping nops).
677		 */
678		next = this_op(s->next);
679		if (next == 0)
680			break;	/* no next instruction */
681		last = next;
682
683		/*
684		 * st  M[k]	-->	st  M[k]
685		 * ldx M[k]		tax
686		 */
687		if (s->s.code == BPF_ST &&
688		    next->s.code == (BPF_LDX|BPF_MEM) &&
689		    s->s.k == next->s.k) {
690			done = 0;
691			next->s.code = BPF_MISC|BPF_TAX;
692		}
693		/*
694		 * ld  #k	-->	ldx  #k
695		 * tax			txa
696		 */
697		if (s->s.code == (BPF_LD|BPF_IMM) &&
698		    next->s.code == (BPF_MISC|BPF_TAX)) {
699			s->s.code = BPF_LDX|BPF_IMM;
700			next->s.code = BPF_MISC|BPF_TXA;
701			done = 0;
702		}
703		/*
704		 * This is an ugly special case, but it happens
705		 * when you say tcp[k] or udp[k] where k is a constant.
706		 */
707		if (s->s.code == (BPF_LD|BPF_IMM)) {
708			struct slist *add, *tax, *ild;
709
710			/*
711			 * Check that X isn't used on exit from this
712			 * block (which the optimizer might cause).
713			 * We know the code generator won't generate
714			 * any local dependencies.
715			 */
716			if (ATOMELEM(b->out_use, X_ATOM))
717				continue;
718
719			/*
720			 * Check that the instruction following the ldi
721			 * is an addx, or it's an ldxms with an addx
722			 * following it (with 0 or more nops between the
723			 * ldxms and addx).
724			 */
725			if (next->s.code != (BPF_LDX|BPF_MSH|BPF_B))
726				add = next;
727			else
728				add = this_op(next->next);
729			if (add == 0 || add->s.code != (BPF_ALU|BPF_ADD|BPF_X))
730				continue;
731
732			/*
733			 * Check that a tax follows that (with 0 or more
734			 * nops between them).
735			 */
736			tax = this_op(add->next);
737			if (tax == 0 || tax->s.code != (BPF_MISC|BPF_TAX))
738				continue;
739
740			/*
741			 * Check that an ild follows that (with 0 or more
742			 * nops between them).
743			 */
744			ild = this_op(tax->next);
745			if (ild == 0 || BPF_CLASS(ild->s.code) != BPF_LD ||
746			    BPF_MODE(ild->s.code) != BPF_IND)
747				continue;
748			/*
749			 * We want to turn this sequence:
750			 *
751			 * (004) ldi     #0x2		{s}
752			 * (005) ldxms   [14]		{next}  -- optional
753			 * (006) addx			{add}
754			 * (007) tax			{tax}
755			 * (008) ild     [x+0]		{ild}
756			 *
757			 * into this sequence:
758			 *
759			 * (004) nop
760			 * (005) ldxms   [14]
761			 * (006) nop
762			 * (007) nop
763			 * (008) ild     [x+2]
764			 *
765			 * XXX We need to check that X is not
766			 * subsequently used, because we want to change
767			 * what'll be in it after this sequence.
768			 *
769			 * We know we can eliminate the accumulator
770			 * modifications earlier in the sequence since
771			 * it is defined by the last stmt of this sequence
772			 * (i.e., the last statement of the sequence loads
773			 * a value into the accumulator, so we can eliminate
774			 * earlier operations on the accumulator).
775			 */
776			ild->s.k += s->s.k;
777			s->s.code = NOP;
778			add->s.code = NOP;
779			tax->s.code = NOP;
780			done = 0;
781		}
782	}
783	/*
784	 * If the comparison at the end of a block is an equality
785	 * comparison against a constant, and nobody uses the value
786	 * we leave in the A register at the end of a block, and
787	 * the operation preceding the comparison is an arithmetic
788	 * operation, we can sometime optimize it away.
789	 */
790	if (b->s.code == (BPF_JMP|BPF_JEQ|BPF_K) &&
791	    !ATOMELEM(b->out_use, A_ATOM)) {
792	    	/*
793	    	 * We can optimize away certain subtractions of the
794	    	 * X register.
795	    	 */
796		if (last->s.code == (BPF_ALU|BPF_SUB|BPF_X)) {
797			val = b->val[X_ATOM];
798			if (vmap[val].is_const) {
799				/*
800				 * If we have a subtract to do a comparison,
801				 * and the X register is a known constant,
802				 * we can merge this value into the
803				 * comparison:
804				 *
805				 * sub x  ->	nop
806				 * jeq #y	jeq #(x+y)
807				 */
808				b->s.k += vmap[val].const_val;
809				last->s.code = NOP;
810				done = 0;
811			} else if (b->s.k == 0) {
812				/*
813				 * If the X register isn't a constant,
814				 * and the comparison in the test is
815				 * against 0, we can compare with the
816				 * X register, instead:
817				 *
818				 * sub x  ->	nop
819				 * jeq #0	jeq x
820				 */
821				last->s.code = NOP;
822				b->s.code = BPF_JMP|BPF_JEQ|BPF_X;
823				done = 0;
824			}
825		}
826		/*
827		 * Likewise, a constant subtract can be simplified:
828		 *
829		 * sub #x ->	nop
830		 * jeq #y ->	jeq #(x+y)
831		 */
832		else if (last->s.code == (BPF_ALU|BPF_SUB|BPF_K)) {
833			last->s.code = NOP;
834			b->s.k += last->s.k;
835			done = 0;
836		}
837		/*
838		 * And, similarly, a constant AND can be simplified
839		 * if we're testing against 0, i.e.:
840		 *
841		 * and #k	nop
842		 * jeq #0  ->	jset #k
843		 */
844		else if (last->s.code == (BPF_ALU|BPF_AND|BPF_K) &&
845		    b->s.k == 0) {
846			b->s.k = last->s.k;
847			b->s.code = BPF_JMP|BPF_K|BPF_JSET;
848			last->s.code = NOP;
849			done = 0;
850			opt_not(b);
851		}
852	}
853	/*
854	 * jset #0        ->   never
855	 * jset #ffffffff ->   always
856	 */
857	if (b->s.code == (BPF_JMP|BPF_K|BPF_JSET)) {
858		if (b->s.k == 0)
859			JT(b) = JF(b);
860		if (b->s.k == 0xffffffff)
861			JF(b) = JT(b);
862	}
863	/*
864	 * If we're comparing against the index register, and the index
865	 * register is a known constant, we can just compare against that
866	 * constant.
867	 */
868	val = b->val[X_ATOM];
869	if (vmap[val].is_const && BPF_SRC(b->s.code) == BPF_X) {
870		bpf_int32 v = vmap[val].const_val;
871		b->s.code &= ~BPF_X;
872		b->s.k = v;
873	}
874	/*
875	 * If the accumulator is a known constant, we can compute the
876	 * comparison result.
877	 */
878	val = b->val[A_ATOM];
879	if (vmap[val].is_const && BPF_SRC(b->s.code) == BPF_K) {
880		bpf_int32 v = vmap[val].const_val;
881		switch (BPF_OP(b->s.code)) {
882
883		case BPF_JEQ:
884			v = v == b->s.k;
885			break;
886
887		case BPF_JGT:
888			v = (unsigned)v > b->s.k;
889			break;
890
891		case BPF_JGE:
892			v = (unsigned)v >= b->s.k;
893			break;
894
895		case BPF_JSET:
896			v &= b->s.k;
897			break;
898
899		default:
900			abort();
901		}
902		if (JF(b) != JT(b))
903			done = 0;
904		if (v)
905			JF(b) = JT(b);
906		else
907			JT(b) = JF(b);
908	}
909}
910
911/*
912 * Compute the symbolic value of expression of 's', and update
913 * anything it defines in the value table 'val'.  If 'alter' is true,
914 * do various optimizations.  This code would be cleaner if symbolic
915 * evaluation and code transformations weren't folded together.
916 */
917static void
918opt_stmt(struct stmt *s, int val[], int alter)
919{
920	int op;
921	int v;
922
923	switch (s->code) {
924
925	case BPF_LD|BPF_ABS|BPF_W:
926	case BPF_LD|BPF_ABS|BPF_H:
927	case BPF_LD|BPF_ABS|BPF_B:
928		v = F(s->code, s->k, 0L);
929		vstore(s, &val[A_ATOM], v, alter);
930		break;
931
932	case BPF_LD|BPF_IND|BPF_W:
933	case BPF_LD|BPF_IND|BPF_H:
934	case BPF_LD|BPF_IND|BPF_B:
935		v = val[X_ATOM];
936		if (alter && vmap[v].is_const) {
937			s->code = BPF_LD|BPF_ABS|BPF_SIZE(s->code);
938			s->k += vmap[v].const_val;
939			v = F(s->code, s->k, 0L);
940			done = 0;
941		}
942		else
943			v = F(s->code, s->k, v);
944		vstore(s, &val[A_ATOM], v, alter);
945		break;
946
947	case BPF_LD|BPF_LEN:
948		v = F(s->code, 0L, 0L);
949		vstore(s, &val[A_ATOM], v, alter);
950		break;
951
952	case BPF_LD|BPF_IMM:
953		v = K(s->k);
954		vstore(s, &val[A_ATOM], v, alter);
955		break;
956
957	case BPF_LDX|BPF_IMM:
958		v = K(s->k);
959		vstore(s, &val[X_ATOM], v, alter);
960		break;
961
962	case BPF_LDX|BPF_MSH|BPF_B:
963		v = F(s->code, s->k, 0L);
964		vstore(s, &val[X_ATOM], v, alter);
965		break;
966
967	case BPF_ALU|BPF_NEG:
968		if (alter && vmap[val[A_ATOM]].is_const) {
969			s->code = BPF_LD|BPF_IMM;
970			s->k = -vmap[val[A_ATOM]].const_val;
971			val[A_ATOM] = K(s->k);
972		}
973		else
974			val[A_ATOM] = F(s->code, val[A_ATOM], 0L);
975		break;
976
977	case BPF_ALU|BPF_ADD|BPF_K:
978	case BPF_ALU|BPF_SUB|BPF_K:
979	case BPF_ALU|BPF_MUL|BPF_K:
980	case BPF_ALU|BPF_DIV|BPF_K:
981	case BPF_ALU|BPF_AND|BPF_K:
982	case BPF_ALU|BPF_OR|BPF_K:
983	case BPF_ALU|BPF_LSH|BPF_K:
984	case BPF_ALU|BPF_RSH|BPF_K:
985		op = BPF_OP(s->code);
986		if (alter) {
987			if (s->k == 0) {
988				/* don't optimize away "sub #0"
989				 * as it may be needed later to
990				 * fixup the generated math code */
991				if (op == BPF_ADD ||
992				    op == BPF_LSH || op == BPF_RSH ||
993				    op == BPF_OR) {
994					s->code = NOP;
995					break;
996				}
997				if (op == BPF_MUL || op == BPF_AND) {
998					s->code = BPF_LD|BPF_IMM;
999					val[A_ATOM] = K(s->k);
1000					break;
1001				}
1002			}
1003			if (vmap[val[A_ATOM]].is_const) {
1004				fold_op(s, val[A_ATOM], K(s->k));
1005				val[A_ATOM] = K(s->k);
1006				break;
1007			}
1008		}
1009		val[A_ATOM] = F(s->code, val[A_ATOM], K(s->k));
1010		break;
1011
1012	case BPF_ALU|BPF_ADD|BPF_X:
1013	case BPF_ALU|BPF_SUB|BPF_X:
1014	case BPF_ALU|BPF_MUL|BPF_X:
1015	case BPF_ALU|BPF_DIV|BPF_X:
1016	case BPF_ALU|BPF_AND|BPF_X:
1017	case BPF_ALU|BPF_OR|BPF_X:
1018	case BPF_ALU|BPF_LSH|BPF_X:
1019	case BPF_ALU|BPF_RSH|BPF_X:
1020		op = BPF_OP(s->code);
1021		if (alter && vmap[val[X_ATOM]].is_const) {
1022			if (vmap[val[A_ATOM]].is_const) {
1023				fold_op(s, val[A_ATOM], val[X_ATOM]);
1024				val[A_ATOM] = K(s->k);
1025			}
1026			else {
1027				s->code = BPF_ALU|BPF_K|op;
1028				s->k = vmap[val[X_ATOM]].const_val;
1029				done = 0;
1030				val[A_ATOM] =
1031					F(s->code, val[A_ATOM], K(s->k));
1032			}
1033			break;
1034		}
1035		/*
1036		 * Check if we're doing something to an accumulator
1037		 * that is 0, and simplify.  This may not seem like
1038		 * much of a simplification but it could open up further
1039		 * optimizations.
1040		 * XXX We could also check for mul by 1, etc.
1041		 */
1042		if (alter && vmap[val[A_ATOM]].is_const
1043		    && vmap[val[A_ATOM]].const_val == 0) {
1044			if (op == BPF_ADD || op == BPF_OR) {
1045				s->code = BPF_MISC|BPF_TXA;
1046				vstore(s, &val[A_ATOM], val[X_ATOM], alter);
1047				break;
1048			}
1049			else if (op == BPF_MUL || op == BPF_DIV ||
1050				 op == BPF_AND || op == BPF_LSH || op == BPF_RSH) {
1051				s->code = BPF_LD|BPF_IMM;
1052				s->k = 0;
1053				vstore(s, &val[A_ATOM], K(s->k), alter);
1054				break;
1055			}
1056			else if (op == BPF_NEG) {
1057				s->code = NOP;
1058				break;
1059			}
1060		}
1061		val[A_ATOM] = F(s->code, val[A_ATOM], val[X_ATOM]);
1062		break;
1063
1064	case BPF_MISC|BPF_TXA:
1065		vstore(s, &val[A_ATOM], val[X_ATOM], alter);
1066		break;
1067
1068	case BPF_LD|BPF_MEM:
1069		v = val[s->k];
1070		if (alter && vmap[v].is_const) {
1071			s->code = BPF_LD|BPF_IMM;
1072			s->k = vmap[v].const_val;
1073			done = 0;
1074		}
1075		vstore(s, &val[A_ATOM], v, alter);
1076		break;
1077
1078	case BPF_MISC|BPF_TAX:
1079		vstore(s, &val[X_ATOM], val[A_ATOM], alter);
1080		break;
1081
1082	case BPF_LDX|BPF_MEM:
1083		v = val[s->k];
1084		if (alter && vmap[v].is_const) {
1085			s->code = BPF_LDX|BPF_IMM;
1086			s->k = vmap[v].const_val;
1087			done = 0;
1088		}
1089		vstore(s, &val[X_ATOM], v, alter);
1090		break;
1091
1092	case BPF_ST:
1093		vstore(s, &val[s->k], val[A_ATOM], alter);
1094		break;
1095
1096	case BPF_STX:
1097		vstore(s, &val[s->k], val[X_ATOM], alter);
1098		break;
1099	}
1100}
1101
1102static void
1103deadstmt(register struct stmt *s, register struct stmt *last[])
1104{
1105	register int atom;
1106
1107	atom = atomuse(s);
1108	if (atom >= 0) {
1109		if (atom == AX_ATOM) {
1110			last[X_ATOM] = 0;
1111			last[A_ATOM] = 0;
1112		}
1113		else
1114			last[atom] = 0;
1115	}
1116	atom = atomdef(s);
1117	if (atom >= 0) {
1118		if (last[atom]) {
1119			done = 0;
1120			last[atom]->code = NOP;
1121		}
1122		last[atom] = s;
1123	}
1124}
1125
1126static void
1127opt_deadstores(register struct block *b)
1128{
1129	register struct slist *s;
1130	register int atom;
1131	struct stmt *last[N_ATOMS];
1132
1133	memset((char *)last, 0, sizeof last);
1134
1135	for (s = b->stmts; s != 0; s = s->next)
1136		deadstmt(&s->s, last);
1137	deadstmt(&b->s, last);
1138
1139	for (atom = 0; atom < N_ATOMS; ++atom)
1140		if (last[atom] && !ATOMELEM(b->out_use, atom)) {
1141			last[atom]->code = NOP;
1142			done = 0;
1143		}
1144}
1145
1146static void
1147opt_blk(struct block *b, int do_stmts)
1148{
1149	struct slist *s;
1150	struct edge *p;
1151	int i;
1152	bpf_int32 aval, xval;
1153
1154#if 0
1155	for (s = b->stmts; s && s->next; s = s->next)
1156		if (BPF_CLASS(s->s.code) == BPF_JMP) {
1157			do_stmts = 0;
1158			break;
1159		}
1160#endif
1161
1162	/*
1163	 * Initialize the atom values.
1164	 */
1165	p = b->in_edges;
1166	if (p == 0) {
1167		/*
1168		 * We have no predecessors, so everything is undefined
1169		 * upon entry to this block.
1170		 */
1171		memset((char *)b->val, 0, sizeof(b->val));
1172	} else {
1173		/*
1174		 * Inherit values from our predecessors.
1175		 *
1176		 * First, get the values from the predecessor along the
1177		 * first edge leading to this node.
1178		 */
1179		memcpy((char *)b->val, (char *)p->pred->val, sizeof(b->val));
1180		/*
1181		 * Now look at all the other nodes leading to this node.
1182		 * If, for the predecessor along that edge, a register
1183		 * has a different value from the one we have (i.e.,
1184		 * control paths are merging, and the merging paths
1185		 * assign different values to that register), give the
1186		 * register the undefined value of 0.
1187		 */
1188		while ((p = p->next) != NULL) {
1189			for (i = 0; i < N_ATOMS; ++i)
1190				if (b->val[i] != p->pred->val[i])
1191					b->val[i] = 0;
1192		}
1193	}
1194	aval = b->val[A_ATOM];
1195	xval = b->val[X_ATOM];
1196	for (s = b->stmts; s; s = s->next)
1197		opt_stmt(&s->s, b->val, do_stmts);
1198
1199	/*
1200	 * This is a special case: if we don't use anything from this
1201	 * block, and we load the accumulator or index register with a
1202	 * value that is already there, or if this block is a return,
1203	 * eliminate all the statements.
1204	 *
1205	 * XXX - what if it does a store?
1206	 *
1207	 * XXX - why does it matter whether we use anything from this
1208	 * block?  If the accumulator or index register doesn't change
1209	 * its value, isn't that OK even if we use that value?
1210	 *
1211	 * XXX - if we load the accumulator with a different value,
1212	 * and the block ends with a conditional branch, we obviously
1213	 * can't eliminate it, as the branch depends on that value.
1214	 * For the index register, the conditional branch only depends
1215	 * on the index register value if the test is against the index
1216	 * register value rather than a constant; if nothing uses the
1217	 * value we put into the index register, and we're not testing
1218	 * against the index register's value, and there aren't any
1219	 * other problems that would keep us from eliminating this
1220	 * block, can we eliminate it?
1221	 */
1222	if (do_stmts &&
1223	    ((b->out_use == 0 && aval != 0 && b->val[A_ATOM] == aval &&
1224	      xval != 0 && b->val[X_ATOM] == xval) ||
1225	     BPF_CLASS(b->s.code) == BPF_RET)) {
1226		if (b->stmts != 0) {
1227			b->stmts = 0;
1228			done = 0;
1229		}
1230	} else {
1231		opt_peep(b);
1232		opt_deadstores(b);
1233	}
1234	/*
1235	 * Set up values for branch optimizer.
1236	 */
1237	if (BPF_SRC(b->s.code) == BPF_K)
1238		b->oval = K(b->s.k);
1239	else
1240		b->oval = b->val[X_ATOM];
1241	b->et.code = b->s.code;
1242	b->ef.code = -b->s.code;
1243}
1244
1245/*
1246 * Return true if any register that is used on exit from 'succ', has
1247 * an exit value that is different from the corresponding exit value
1248 * from 'b'.
1249 */
1250static int
1251use_conflict(struct block *b, struct block *succ)
1252{
1253	int atom;
1254	atomset use = succ->out_use;
1255
1256	if (use == 0)
1257		return 0;
1258
1259	for (atom = 0; atom < N_ATOMS; ++atom)
1260		if (ATOMELEM(use, atom))
1261			if (b->val[atom] != succ->val[atom])
1262				return 1;
1263	return 0;
1264}
1265
1266static struct block *
1267fold_edge(struct block *child, struct edge *ep)
1268{
1269	int sense;
1270	int aval0, aval1, oval0, oval1;
1271	int code = ep->code;
1272
1273	if (code < 0) {
1274		code = -code;
1275		sense = 0;
1276	} else
1277		sense = 1;
1278
1279	if (child->s.code != code)
1280		return 0;
1281
1282	aval0 = child->val[A_ATOM];
1283	oval0 = child->oval;
1284	aval1 = ep->pred->val[A_ATOM];
1285	oval1 = ep->pred->oval;
1286
1287	if (aval0 != aval1)
1288		return 0;
1289
1290	if (oval0 == oval1)
1291		/*
1292		 * The operands of the branch instructions are
1293		 * identical, so the result is true if a true
1294		 * branch was taken to get here, otherwise false.
1295		 */
1296		return sense ? JT(child) : JF(child);
1297
1298	if (sense && code == (BPF_JMP|BPF_JEQ|BPF_K))
1299		/*
1300		 * At this point, we only know the comparison if we
1301		 * came down the true branch, and it was an equality
1302		 * comparison with a constant.
1303		 *
1304		 * I.e., if we came down the true branch, and the branch
1305		 * was an equality comparison with a constant, we know the
1306		 * accumulator contains that constant.  If we came down
1307		 * the false branch, or the comparison wasn't with a
1308		 * constant, we don't know what was in the accumulator.
1309		 *
1310		 * We rely on the fact that distinct constants have distinct
1311		 * value numbers.
1312		 */
1313		return JF(child);
1314
1315	return 0;
1316}
1317
1318static void
1319opt_j(struct edge *ep)
1320{
1321	register int i, k;
1322	register struct block *target;
1323
1324	if (JT(ep->succ) == 0)
1325		return;
1326
1327	if (JT(ep->succ) == JF(ep->succ)) {
1328		/*
1329		 * Common branch targets can be eliminated, provided
1330		 * there is no data dependency.
1331		 */
1332		if (!use_conflict(ep->pred, ep->succ->et.succ)) {
1333			done = 0;
1334			ep->succ = JT(ep->succ);
1335		}
1336	}
1337	/*
1338	 * For each edge dominator that matches the successor of this
1339	 * edge, promote the edge successor to the its grandchild.
1340	 *
1341	 * XXX We violate the set abstraction here in favor a reasonably
1342	 * efficient loop.
1343	 */
1344 top:
1345	for (i = 0; i < edgewords; ++i) {
1346		register bpf_u_int32 x = ep->edom[i];
1347
1348		while (x != 0) {
1349			k = ffs(x) - 1;
1350			x &=~ (1 << k);
1351			k += i * BITS_PER_WORD;
1352
1353			target = fold_edge(ep->succ, edges[k]);
1354			/*
1355			 * Check that there is no data dependency between
1356			 * nodes that will be violated if we move the edge.
1357			 */
1358			if (target != 0 && !use_conflict(ep->pred, target)) {
1359				done = 0;
1360				ep->succ = target;
1361				if (JT(target) != 0)
1362					/*
1363					 * Start over unless we hit a leaf.
1364					 */
1365					goto top;
1366				return;
1367			}
1368		}
1369	}
1370}
1371
1372
1373static void
1374or_pullup(struct block *b)
1375{
1376	int val, at_top;
1377	struct block *pull;
1378	struct block **diffp, **samep;
1379	struct edge *ep;
1380
1381	ep = b->in_edges;
1382	if (ep == 0)
1383		return;
1384
1385	/*
1386	 * Make sure each predecessor loads the same value.
1387	 * XXX why?
1388	 */
1389	val = ep->pred->val[A_ATOM];
1390	for (ep = ep->next; ep != 0; ep = ep->next)
1391		if (val != ep->pred->val[A_ATOM])
1392			return;
1393
1394	if (JT(b->in_edges->pred) == b)
1395		diffp = &JT(b->in_edges->pred);
1396	else
1397		diffp = &JF(b->in_edges->pred);
1398
1399	at_top = 1;
1400	while (1) {
1401		if (*diffp == 0)
1402			return;
1403
1404		if (JT(*diffp) != JT(b))
1405			return;
1406
1407		if (!SET_MEMBER((*diffp)->dom, b->id))
1408			return;
1409
1410		if ((*diffp)->val[A_ATOM] != val)
1411			break;
1412
1413		diffp = &JF(*diffp);
1414		at_top = 0;
1415	}
1416	samep = &JF(*diffp);
1417	while (1) {
1418		if (*samep == 0)
1419			return;
1420
1421		if (JT(*samep) != JT(b))
1422			return;
1423
1424		if (!SET_MEMBER((*samep)->dom, b->id))
1425			return;
1426
1427		if ((*samep)->val[A_ATOM] == val)
1428			break;
1429
1430		/* XXX Need to check that there are no data dependencies
1431		   between dp0 and dp1.  Currently, the code generator
1432		   will not produce such dependencies. */
1433		samep = &JF(*samep);
1434	}
1435#ifdef notdef
1436	/* XXX This doesn't cover everything. */
1437	for (i = 0; i < N_ATOMS; ++i)
1438		if ((*samep)->val[i] != pred->val[i])
1439			return;
1440#endif
1441	/* Pull up the node. */
1442	pull = *samep;
1443	*samep = JF(pull);
1444	JF(pull) = *diffp;
1445
1446	/*
1447	 * At the top of the chain, each predecessor needs to point at the
1448	 * pulled up node.  Inside the chain, there is only one predecessor
1449	 * to worry about.
1450	 */
1451	if (at_top) {
1452		for (ep = b->in_edges; ep != 0; ep = ep->next) {
1453			if (JT(ep->pred) == b)
1454				JT(ep->pred) = pull;
1455			else
1456				JF(ep->pred) = pull;
1457		}
1458	}
1459	else
1460		*diffp = pull;
1461
1462	done = 0;
1463}
1464
1465static void
1466and_pullup(struct block *b)
1467{
1468	int val, at_top;
1469	struct block *pull;
1470	struct block **diffp, **samep;
1471	struct edge *ep;
1472
1473	ep = b->in_edges;
1474	if (ep == 0)
1475		return;
1476
1477	/*
1478	 * Make sure each predecessor loads the same value.
1479	 */
1480	val = ep->pred->val[A_ATOM];
1481	for (ep = ep->next; ep != 0; ep = ep->next)
1482		if (val != ep->pred->val[A_ATOM])
1483			return;
1484
1485	if (JT(b->in_edges->pred) == b)
1486		diffp = &JT(b->in_edges->pred);
1487	else
1488		diffp = &JF(b->in_edges->pred);
1489
1490	at_top = 1;
1491	while (1) {
1492		if (*diffp == 0)
1493			return;
1494
1495		if (JF(*diffp) != JF(b))
1496			return;
1497
1498		if (!SET_MEMBER((*diffp)->dom, b->id))
1499			return;
1500
1501		if ((*diffp)->val[A_ATOM] != val)
1502			break;
1503
1504		diffp = &JT(*diffp);
1505		at_top = 0;
1506	}
1507	samep = &JT(*diffp);
1508	while (1) {
1509		if (*samep == 0)
1510			return;
1511
1512		if (JF(*samep) != JF(b))
1513			return;
1514
1515		if (!SET_MEMBER((*samep)->dom, b->id))
1516			return;
1517
1518		if ((*samep)->val[A_ATOM] == val)
1519			break;
1520
1521		/* XXX Need to check that there are no data dependencies
1522		   between diffp and samep.  Currently, the code generator
1523		   will not produce such dependencies. */
1524		samep = &JT(*samep);
1525	}
1526#ifdef notdef
1527	/* XXX This doesn't cover everything. */
1528	for (i = 0; i < N_ATOMS; ++i)
1529		if ((*samep)->val[i] != pred->val[i])
1530			return;
1531#endif
1532	/* Pull up the node. */
1533	pull = *samep;
1534	*samep = JT(pull);
1535	JT(pull) = *diffp;
1536
1537	/*
1538	 * At the top of the chain, each predecessor needs to point at the
1539	 * pulled up node.  Inside the chain, there is only one predecessor
1540	 * to worry about.
1541	 */
1542	if (at_top) {
1543		for (ep = b->in_edges; ep != 0; ep = ep->next) {
1544			if (JT(ep->pred) == b)
1545				JT(ep->pred) = pull;
1546			else
1547				JF(ep->pred) = pull;
1548		}
1549	}
1550	else
1551		*diffp = pull;
1552
1553	done = 0;
1554}
1555
1556static void
1557opt_blks(struct block *root, int do_stmts)
1558{
1559	int i, maxlevel;
1560	struct block *p;
1561
1562	init_val();
1563	maxlevel = root->level;
1564
1565	find_inedges(root);
1566	for (i = maxlevel; i >= 0; --i)
1567		for (p = levels[i]; p; p = p->link)
1568			opt_blk(p, do_stmts);
1569
1570	if (do_stmts)
1571		/*
1572		 * No point trying to move branches; it can't possibly
1573		 * make a difference at this point.
1574		 */
1575		return;
1576
1577	for (i = 1; i <= maxlevel; ++i) {
1578		for (p = levels[i]; p; p = p->link) {
1579			opt_j(&p->et);
1580			opt_j(&p->ef);
1581		}
1582	}
1583
1584	find_inedges(root);
1585	for (i = 1; i <= maxlevel; ++i) {
1586		for (p = levels[i]; p; p = p->link) {
1587			or_pullup(p);
1588			and_pullup(p);
1589		}
1590	}
1591}
1592
1593static inline void
1594link_inedge(struct edge *parent, struct block *child)
1595{
1596	parent->next = child->in_edges;
1597	child->in_edges = parent;
1598}
1599
1600static void
1601find_inedges(struct block *root)
1602{
1603	int i;
1604	struct block *b;
1605
1606	for (i = 0; i < n_blocks; ++i)
1607		blocks[i]->in_edges = 0;
1608
1609	/*
1610	 * Traverse the graph, adding each edge to the predecessor
1611	 * list of its successors.  Skip the leaves (i.e. level 0).
1612	 */
1613	for (i = root->level; i > 0; --i) {
1614		for (b = levels[i]; b != 0; b = b->link) {
1615			link_inedge(&b->et, JT(b));
1616			link_inedge(&b->ef, JF(b));
1617		}
1618	}
1619}
1620
1621static void
1622opt_root(struct block **b)
1623{
1624	struct slist *tmp, *s;
1625
1626	s = (*b)->stmts;
1627	(*b)->stmts = 0;
1628	while (BPF_CLASS((*b)->s.code) == BPF_JMP && JT(*b) == JF(*b))
1629		*b = JT(*b);
1630
1631	tmp = (*b)->stmts;
1632	if (tmp != 0)
1633		sappend(s, tmp);
1634	(*b)->stmts = s;
1635
1636	/*
1637	 * If the root node is a return, then there is no
1638	 * point executing any statements (since the bpf machine
1639	 * has no side effects).
1640	 */
1641	if (BPF_CLASS((*b)->s.code) == BPF_RET)
1642		(*b)->stmts = 0;
1643}
1644
1645static void
1646opt_loop(struct block *root, int do_stmts)
1647{
1648
1649#ifdef BDEBUG
1650	if (dflag > 1) {
1651		printf("opt_loop(root, %d) begin\n", do_stmts);
1652		opt_dump(root);
1653	}
1654#endif
1655	do {
1656		done = 1;
1657		find_levels(root);
1658		find_dom(root);
1659		find_closure(root);
1660		find_ud(root);
1661		find_edom(root);
1662		opt_blks(root, do_stmts);
1663#ifdef BDEBUG
1664		if (dflag > 1) {
1665			printf("opt_loop(root, %d) bottom, done=%d\n", do_stmts, done);
1666			opt_dump(root);
1667		}
1668#endif
1669	} while (!done);
1670}
1671
1672/*
1673 * Optimize the filter code in its dag representation.
1674 */
1675void
1676bpf_optimize(struct block **rootp)
1677{
1678	struct block *root;
1679
1680	root = *rootp;
1681
1682	opt_init(root);
1683	opt_loop(root, 0);
1684	opt_loop(root, 1);
1685	intern_blocks(root);
1686#ifdef BDEBUG
1687	if (dflag > 1) {
1688		printf("after intern_blocks()\n");
1689		opt_dump(root);
1690	}
1691#endif
1692	opt_root(rootp);
1693#ifdef BDEBUG
1694	if (dflag > 1) {
1695		printf("after opt_root()\n");
1696		opt_dump(root);
1697	}
1698#endif
1699	opt_cleanup();
1700}
1701
1702static void
1703make_marks(struct block *p)
1704{
1705	if (!isMarked(p)) {
1706		Mark(p);
1707		if (BPF_CLASS(p->s.code) != BPF_RET) {
1708			make_marks(JT(p));
1709			make_marks(JF(p));
1710		}
1711	}
1712}
1713
1714/*
1715 * Mark code array such that isMarked(i) is true
1716 * only for nodes that are alive.
1717 */
1718static void
1719mark_code(struct block *p)
1720{
1721	cur_mark += 1;
1722	make_marks(p);
1723}
1724
1725/*
1726 * True iff the two stmt lists load the same value from the packet into
1727 * the accumulator.
1728 */
1729static int
1730eq_slist(struct slist *x, struct slist *y)
1731{
1732	while (1) {
1733		while (x && x->s.code == NOP)
1734			x = x->next;
1735		while (y && y->s.code == NOP)
1736			y = y->next;
1737		if (x == 0)
1738			return y == 0;
1739		if (y == 0)
1740			return x == 0;
1741		if (x->s.code != y->s.code || x->s.k != y->s.k)
1742			return 0;
1743		x = x->next;
1744		y = y->next;
1745	}
1746}
1747
1748static inline int
1749eq_blk(struct block *b0, struct block *b1)
1750{
1751	if (b0->s.code == b1->s.code &&
1752	    b0->s.k == b1->s.k &&
1753	    b0->et.succ == b1->et.succ &&
1754	    b0->ef.succ == b1->ef.succ)
1755		return eq_slist(b0->stmts, b1->stmts);
1756	return 0;
1757}
1758
1759static void
1760intern_blocks(struct block *root)
1761{
1762	struct block *p;
1763	int i, j;
1764	int done1; /* don't shadow global */
1765 top:
1766	done1 = 1;
1767	for (i = 0; i < n_blocks; ++i)
1768		blocks[i]->link = 0;
1769
1770	mark_code(root);
1771
1772	for (i = n_blocks - 1; --i >= 0; ) {
1773		if (!isMarked(blocks[i]))
1774			continue;
1775		for (j = i + 1; j < n_blocks; ++j) {
1776			if (!isMarked(blocks[j]))
1777				continue;
1778			if (eq_blk(blocks[i], blocks[j])) {
1779				blocks[i]->link = blocks[j]->link ?
1780					blocks[j]->link : blocks[j];
1781				break;
1782			}
1783		}
1784	}
1785	for (i = 0; i < n_blocks; ++i) {
1786		p = blocks[i];
1787		if (JT(p) == 0)
1788			continue;
1789		if (JT(p)->link) {
1790			done1 = 0;
1791			JT(p) = JT(p)->link;
1792		}
1793		if (JF(p)->link) {
1794			done1 = 0;
1795			JF(p) = JF(p)->link;
1796		}
1797	}
1798	if (!done1)
1799		goto top;
1800}
1801
1802static void
1803opt_cleanup(void)
1804{
1805	free((void *)vnode_base);
1806	free((void *)vmap);
1807	free((void *)edges);
1808	free((void *)space);
1809	free((void *)levels);
1810	free((void *)blocks);
1811}
1812
1813/*
1814 * Return the number of stmts in 's'.
1815 */
1816static u_int
1817slength(struct slist *s)
1818{
1819	u_int n = 0;
1820
1821	for (; s; s = s->next)
1822		if (s->s.code != NOP)
1823			++n;
1824	return n;
1825}
1826
1827/*
1828 * Return the number of nodes reachable by 'p'.
1829 * All nodes should be initially unmarked.
1830 */
1831static int
1832count_blocks(struct block *p)
1833{
1834	if (p == 0 || isMarked(p))
1835		return 0;
1836	Mark(p);
1837	return count_blocks(JT(p)) + count_blocks(JF(p)) + 1;
1838}
1839
1840/*
1841 * Do a depth first search on the flow graph, numbering the
1842 * the basic blocks, and entering them into the 'blocks' array.`
1843 */
1844static void
1845number_blks_r(struct block *p)
1846{
1847	int n;
1848
1849	if (p == 0 || isMarked(p))
1850		return;
1851
1852	Mark(p);
1853	n = n_blocks++;
1854	p->id = n;
1855	blocks[n] = p;
1856
1857	number_blks_r(JT(p));
1858	number_blks_r(JF(p));
1859}
1860
1861/*
1862 * Return the number of stmts in the flowgraph reachable by 'p'.
1863 * The nodes should be unmarked before calling.
1864 *
1865 * Note that "stmts" means "instructions", and that this includes
1866 *
1867 *	side-effect statements in 'p' (slength(p->stmts));
1868 *
1869 *	statements in the true branch from 'p' (count_stmts(JT(p)));
1870 *
1871 *	statements in the false branch from 'p' (count_stmts(JF(p)));
1872 *
1873 *	the conditional jump itself (1);
1874 *
1875 *	an extra long jump if the true branch requires it (p->longjt);
1876 *
1877 *	an extra long jump if the false branch requires it (p->longjf).
1878 */
1879static u_int
1880count_stmts(struct block *p)
1881{
1882	u_int n;
1883
1884	if (p == 0 || isMarked(p))
1885		return 0;
1886	Mark(p);
1887	n = count_stmts(JT(p)) + count_stmts(JF(p));
1888	return slength(p->stmts) + n + 1 + p->longjt + p->longjf;
1889}
1890
1891/*
1892 * Allocate memory.  All allocation is done before optimization
1893 * is begun.  A linear bound on the size of all data structures is computed
1894 * from the total number of blocks and/or statements.
1895 */
1896static void
1897opt_init(struct block *root)
1898{
1899	bpf_u_int32 *p;
1900	int i, n, max_stmts;
1901
1902	/*
1903	 * First, count the blocks, so we can malloc an array to map
1904	 * block number to block.  Then, put the blocks into the array.
1905	 */
1906	unMarkAll();
1907	n = count_blocks(root);
1908	blocks = (struct block **)calloc(n, sizeof(*blocks));
1909	if (blocks == NULL)
1910		bpf_error("malloc");
1911	unMarkAll();
1912	n_blocks = 0;
1913	number_blks_r(root);
1914
1915	n_edges = 2 * n_blocks;
1916	edges = (struct edge **)calloc(n_edges, sizeof(*edges));
1917	if (edges == NULL)
1918		bpf_error("malloc");
1919
1920	/*
1921	 * The number of levels is bounded by the number of nodes.
1922	 */
1923	levels = (struct block **)calloc(n_blocks, sizeof(*levels));
1924	if (levels == NULL)
1925		bpf_error("malloc");
1926
1927	edgewords = n_edges / (8 * sizeof(bpf_u_int32)) + 1;
1928	nodewords = n_blocks / (8 * sizeof(bpf_u_int32)) + 1;
1929
1930	/* XXX */
1931	space = (bpf_u_int32 *)malloc(2 * n_blocks * nodewords * sizeof(*space)
1932				 + n_edges * edgewords * sizeof(*space));
1933	if (space == NULL)
1934		bpf_error("malloc");
1935	p = space;
1936	all_dom_sets = p;
1937	for (i = 0; i < n; ++i) {
1938		blocks[i]->dom = p;
1939		p += nodewords;
1940	}
1941	all_closure_sets = p;
1942	for (i = 0; i < n; ++i) {
1943		blocks[i]->closure = p;
1944		p += nodewords;
1945	}
1946	all_edge_sets = p;
1947	for (i = 0; i < n; ++i) {
1948		register struct block *b = blocks[i];
1949
1950		b->et.edom = p;
1951		p += edgewords;
1952		b->ef.edom = p;
1953		p += edgewords;
1954		b->et.id = i;
1955		edges[i] = &b->et;
1956		b->ef.id = n_blocks + i;
1957		edges[n_blocks + i] = &b->ef;
1958		b->et.pred = b;
1959		b->ef.pred = b;
1960	}
1961	max_stmts = 0;
1962	for (i = 0; i < n; ++i)
1963		max_stmts += slength(blocks[i]->stmts) + 1;
1964	/*
1965	 * We allocate at most 3 value numbers per statement,
1966	 * so this is an upper bound on the number of valnodes
1967	 * we'll need.
1968	 */
1969	maxval = 3 * max_stmts;
1970	vmap = (struct vmapinfo *)calloc(maxval, sizeof(*vmap));
1971	vnode_base = (struct valnode *)calloc(maxval, sizeof(*vnode_base));
1972	if (vmap == NULL || vnode_base == NULL)
1973		bpf_error("malloc");
1974}
1975
1976/*
1977 * Some pointers used to convert the basic block form of the code,
1978 * into the array form that BPF requires.  'fstart' will point to
1979 * the malloc'd array while 'ftail' is used during the recursive traversal.
1980 */
1981static struct bpf_insn *fstart;
1982static struct bpf_insn *ftail;
1983
1984#ifdef BDEBUG
1985int bids[1000];
1986#endif
1987
1988/*
1989 * Returns true if successful.  Returns false if a branch has
1990 * an offset that is too large.  If so, we have marked that
1991 * branch so that on a subsequent iteration, it will be treated
1992 * properly.
1993 */
1994static int
1995convert_code_r(struct block *p)
1996{
1997	struct bpf_insn *dst;
1998	struct slist *src;
1999	int slen;
2000	u_int off;
2001	int extrajmps;		/* number of extra jumps inserted */
2002	struct slist **offset = NULL;
2003
2004	if (p == 0 || isMarked(p))
2005		return (1);
2006	Mark(p);
2007
2008	if (convert_code_r(JF(p)) == 0)
2009		return (0);
2010	if (convert_code_r(JT(p)) == 0)
2011		return (0);
2012
2013	slen = slength(p->stmts);
2014	dst = ftail -= (slen + 1 + p->longjt + p->longjf);
2015		/* inflate length by any extra jumps */
2016
2017	p->offset = dst - fstart;
2018
2019	/* generate offset[] for convenience  */
2020	if (slen) {
2021		offset = (struct slist **)calloc(slen, sizeof(struct slist *));
2022		if (!offset) {
2023			bpf_error("not enough core");
2024			/*NOTREACHED*/
2025		}
2026	}
2027	src = p->stmts;
2028	for (off = 0; off < slen && src; off++) {
2029#if 0
2030		printf("off=%d src=%x\n", off, src);
2031#endif
2032		offset[off] = src;
2033		src = src->next;
2034	}
2035
2036	off = 0;
2037	for (src = p->stmts; src; src = src->next) {
2038		if (src->s.code == NOP)
2039			continue;
2040		dst->code = (u_short)src->s.code;
2041		dst->k = src->s.k;
2042
2043		/* fill block-local relative jump */
2044		if (BPF_CLASS(src->s.code) != BPF_JMP || src->s.code == (BPF_JMP|BPF_JA)) {
2045#if 0
2046			if (src->s.jt || src->s.jf) {
2047				bpf_error("illegal jmp destination");
2048				/*NOTREACHED*/
2049			}
2050#endif
2051			goto filled;
2052		}
2053		if (off == slen - 2)	/*???*/
2054			goto filled;
2055
2056	    {
2057		int i;
2058		int jt, jf;
2059		const char *ljerr = "%s for block-local relative jump: off=%d";
2060
2061#if 0
2062		printf("code=%x off=%d %x %x\n", src->s.code,
2063			off, src->s.jt, src->s.jf);
2064#endif
2065
2066		if (!src->s.jt || !src->s.jf) {
2067			bpf_error(ljerr, "no jmp destination", off);
2068			/*NOTREACHED*/
2069		}
2070
2071		jt = jf = 0;
2072		for (i = 0; i < slen; i++) {
2073			if (offset[i] == src->s.jt) {
2074				if (jt) {
2075					bpf_error(ljerr, "multiple matches", off);
2076					/*NOTREACHED*/
2077				}
2078
2079				dst->jt = i - off - 1;
2080				jt++;
2081			}
2082			if (offset[i] == src->s.jf) {
2083				if (jf) {
2084					bpf_error(ljerr, "multiple matches", off);
2085					/*NOTREACHED*/
2086				}
2087				dst->jf = i - off - 1;
2088				jf++;
2089			}
2090		}
2091		if (!jt || !jf) {
2092			bpf_error(ljerr, "no destination found", off);
2093			/*NOTREACHED*/
2094		}
2095	    }
2096filled:
2097		++dst;
2098		++off;
2099	}
2100	if (offset)
2101		free(offset);
2102
2103#ifdef BDEBUG
2104	bids[dst - fstart] = p->id + 1;
2105#endif
2106	dst->code = (u_short)p->s.code;
2107	dst->k = p->s.k;
2108	if (JT(p)) {
2109		extrajmps = 0;
2110		off = JT(p)->offset - (p->offset + slen) - 1;
2111		if (off >= 256) {
2112		    /* offset too large for branch, must add a jump */
2113		    if (p->longjt == 0) {
2114		    	/* mark this instruction and retry */
2115			p->longjt++;
2116			return(0);
2117		    }
2118		    /* branch if T to following jump */
2119		    dst->jt = extrajmps;
2120		    extrajmps++;
2121		    dst[extrajmps].code = BPF_JMP|BPF_JA;
2122		    dst[extrajmps].k = off - extrajmps;
2123		}
2124		else
2125		    dst->jt = off;
2126		off = JF(p)->offset - (p->offset + slen) - 1;
2127		if (off >= 256) {
2128		    /* offset too large for branch, must add a jump */
2129		    if (p->longjf == 0) {
2130		    	/* mark this instruction and retry */
2131			p->longjf++;
2132			return(0);
2133		    }
2134		    /* branch if F to following jump */
2135		    /* if two jumps are inserted, F goes to second one */
2136		    dst->jf = extrajmps;
2137		    extrajmps++;
2138		    dst[extrajmps].code = BPF_JMP|BPF_JA;
2139		    dst[extrajmps].k = off - extrajmps;
2140		}
2141		else
2142		    dst->jf = off;
2143	}
2144	return (1);
2145}
2146
2147
2148/*
2149 * Convert flowgraph intermediate representation to the
2150 * BPF array representation.  Set *lenp to the number of instructions.
2151 *
2152 * This routine does *NOT* leak the memory pointed to by fp.  It *must
2153 * not* do free(fp) before returning fp; doing so would make no sense,
2154 * as the BPF array pointed to by the return value of icode_to_fcode()
2155 * must be valid - it's being returned for use in a bpf_program structure.
2156 *
2157 * If it appears that icode_to_fcode() is leaking, the problem is that
2158 * the program using pcap_compile() is failing to free the memory in
2159 * the BPF program when it's done - the leak is in the program, not in
2160 * the routine that happens to be allocating the memory.  (By analogy, if
2161 * a program calls fopen() without ever calling fclose() on the FILE *,
2162 * it will leak the FILE structure; the leak is not in fopen(), it's in
2163 * the program.)  Change the program to use pcap_freecode() when it's
2164 * done with the filter program.  See the pcap man page.
2165 */
2166struct bpf_insn *
2167icode_to_fcode(struct block *root, u_int *lenp)
2168{
2169	u_int n;
2170	struct bpf_insn *fp;
2171
2172	/*
2173	 * Loop doing convert_code_r() until no branches remain
2174	 * with too-large offsets.
2175	 */
2176	while (1) {
2177	    unMarkAll();
2178	    n = *lenp = count_stmts(root);
2179
2180	    fp = (struct bpf_insn *)malloc(sizeof(*fp) * n);
2181	    if (fp == NULL)
2182		    bpf_error("malloc");
2183	    memset((char *)fp, 0, sizeof(*fp) * n);
2184	    fstart = fp;
2185	    ftail = fp + n;
2186
2187	    unMarkAll();
2188	    if (convert_code_r(root))
2189		break;
2190	    free(fp);
2191	}
2192
2193	return fp;
2194}
2195
2196/*
2197 * Make a copy of a BPF program and put it in the "fcode" member of
2198 * a "pcap_t".
2199 *
2200 * If we fail to allocate memory for the copy, fill in the "errbuf"
2201 * member of the "pcap_t" with an error message, and return -1;
2202 * otherwise, return 0.
2203 */
2204int
2205install_bpf_program(pcap_t *p, struct bpf_program *fp)
2206{
2207	size_t prog_size;
2208
2209	/*
2210	 * Validate the program.
2211	 */
2212	if (!bpf_validate(fp->bf_insns, fp->bf_len)) {
2213		snprintf(p->errbuf, sizeof(p->errbuf),
2214			"BPF program is not valid");
2215		return (-1);
2216	}
2217
2218	/*
2219	 * Free up any already installed program.
2220	 */
2221	pcap_freecode(&p->fcode);
2222
2223	prog_size = sizeof(*fp->bf_insns) * fp->bf_len;
2224	p->fcode.bf_len = fp->bf_len;
2225	p->fcode.bf_insns = (struct bpf_insn *)malloc(prog_size);
2226	if (p->fcode.bf_insns == NULL) {
2227		snprintf(p->errbuf, sizeof(p->errbuf),
2228			 "malloc: %s", pcap_strerror(errno));
2229		return (-1);
2230	}
2231	memcpy(p->fcode.bf_insns, fp->bf_insns, prog_size);
2232	return (0);
2233}
2234
2235#ifdef BDEBUG
2236static void
2237opt_dump(struct block *root)
2238{
2239	struct bpf_program f;
2240
2241	memset(bids, 0, sizeof bids);
2242	f.bf_insns = icode_to_fcode(root, &f.bf_len);
2243	bpf_dump(&f, 1);
2244	putchar('\n');
2245	free((char *)f.bf_insns);
2246}
2247#endif
2248