1
2/* png.c - location for general purpose libpng functions
3 *
4 * Last changed in libpng 1.6.9 [February 6, 2014]
5 * Copyright (c) 1998-2014 Glenn Randers-Pehrson
6 * (Version 0.96 Copyright (c) 1996, 1997 Andreas Dilger)
7 * (Version 0.88 Copyright (c) 1995, 1996 Guy Eric Schalnat, Group 42, Inc.)
8 *
9 * This code is released under the libpng license.
10 * For conditions of distribution and use, see the disclaimer
11 * and license in png.h
12 */
13
14#include "pngpriv.h"
15
16/* Generate a compiler error if there is an old png.h in the search path. */
17typedef png_libpng_version_1_6_10 Your_png_h_is_not_version_1_6_10;
18
19/* Tells libpng that we have already handled the first "num_bytes" bytes
20 * of the PNG file signature.  If the PNG data is embedded into another
21 * stream we can set num_bytes = 8 so that libpng will not attempt to read
22 * or write any of the magic bytes before it starts on the IHDR.
23 */
24
25#ifdef PNG_READ_SUPPORTED
26void PNGAPI
27png_set_sig_bytes(png_structrp png_ptr, int num_bytes)
28{
29   png_debug(1, "in png_set_sig_bytes");
30
31   if (png_ptr == NULL)
32      return;
33
34   if (num_bytes > 8)
35      png_error(png_ptr, "Too many bytes for PNG signature");
36
37   png_ptr->sig_bytes = (png_byte)(num_bytes < 0 ? 0 : num_bytes);
38}
39
40/* Checks whether the supplied bytes match the PNG signature.  We allow
41 * checking less than the full 8-byte signature so that those apps that
42 * already read the first few bytes of a file to determine the file type
43 * can simply check the remaining bytes for extra assurance.  Returns
44 * an integer less than, equal to, or greater than zero if sig is found,
45 * respectively, to be less than, to match, or be greater than the correct
46 * PNG signature (this is the same behavior as strcmp, memcmp, etc).
47 */
48int PNGAPI
49png_sig_cmp(png_const_bytep sig, png_size_t start, png_size_t num_to_check)
50{
51   png_byte png_signature[8] = {137, 80, 78, 71, 13, 10, 26, 10};
52
53   if (num_to_check > 8)
54      num_to_check = 8;
55
56   else if (num_to_check < 1)
57      return (-1);
58
59   if (start > 7)
60      return (-1);
61
62   if (start + num_to_check > 8)
63      num_to_check = 8 - start;
64
65   return ((int)(memcmp(&sig[start], &png_signature[start], num_to_check)));
66}
67
68#endif /* PNG_READ_SUPPORTED */
69
70#if defined(PNG_READ_SUPPORTED) || defined(PNG_WRITE_SUPPORTED)
71/* Function to allocate memory for zlib */
72PNG_FUNCTION(voidpf /* PRIVATE */,
73png_zalloc,(voidpf png_ptr, uInt items, uInt size),PNG_ALLOCATED)
74{
75   png_alloc_size_t num_bytes = size;
76
77   if (png_ptr == NULL)
78      return NULL;
79
80   if (items >= (~(png_alloc_size_t)0)/size)
81   {
82      png_warning (png_voidcast(png_structrp, png_ptr),
83         "Potential overflow in png_zalloc()");
84      return NULL;
85   }
86
87   num_bytes *= items;
88   return png_malloc_warn(png_voidcast(png_structrp, png_ptr), num_bytes);
89}
90
91/* Function to free memory for zlib */
92void /* PRIVATE */
93png_zfree(voidpf png_ptr, voidpf ptr)
94{
95   png_free(png_voidcast(png_const_structrp,png_ptr), ptr);
96}
97
98/* Reset the CRC variable to 32 bits of 1's.  Care must be taken
99 * in case CRC is > 32 bits to leave the top bits 0.
100 */
101void /* PRIVATE */
102png_reset_crc(png_structrp png_ptr)
103{
104   /* The cast is safe because the crc is a 32 bit value. */
105   png_ptr->crc = (png_uint_32)crc32(0, Z_NULL, 0);
106}
107
108/* Calculate the CRC over a section of data.  We can only pass as
109 * much data to this routine as the largest single buffer size.  We
110 * also check that this data will actually be used before going to the
111 * trouble of calculating it.
112 */
113void /* PRIVATE */
114png_calculate_crc(png_structrp png_ptr, png_const_bytep ptr, png_size_t length)
115{
116   int need_crc = 1;
117
118   if (PNG_CHUNK_ANCILLARY(png_ptr->chunk_name))
119   {
120      if ((png_ptr->flags & PNG_FLAG_CRC_ANCILLARY_MASK) ==
121          (PNG_FLAG_CRC_ANCILLARY_USE | PNG_FLAG_CRC_ANCILLARY_NOWARN))
122         need_crc = 0;
123   }
124
125   else /* critical */
126   {
127      if (png_ptr->flags & PNG_FLAG_CRC_CRITICAL_IGNORE)
128         need_crc = 0;
129   }
130
131   /* 'uLong' is defined in zlib.h as unsigned long; this means that on some
132    * systems it is a 64 bit value.  crc32, however, returns 32 bits so the
133    * following cast is safe.  'uInt' may be no more than 16 bits, so it is
134    * necessary to perform a loop here.
135    */
136   if (need_crc && length > 0)
137   {
138      uLong crc = png_ptr->crc; /* Should never issue a warning */
139
140      do
141      {
142         uInt safe_length = (uInt)length;
143         if (safe_length == 0)
144            safe_length = (uInt)-1; /* evil, but safe */
145
146         crc = crc32(crc, ptr, safe_length);
147
148         /* The following should never issue compiler warnings; if they do the
149          * target system has characteristics that will probably violate other
150          * assumptions within the libpng code.
151          */
152         ptr += safe_length;
153         length -= safe_length;
154      }
155      while (length > 0);
156
157      /* And the following is always safe because the crc is only 32 bits. */
158      png_ptr->crc = (png_uint_32)crc;
159   }
160}
161
162/* Check a user supplied version number, called from both read and write
163 * functions that create a png_struct.
164 */
165int
166png_user_version_check(png_structrp png_ptr, png_const_charp user_png_ver)
167{
168   if (user_png_ver)
169   {
170      int i = 0;
171
172      do
173      {
174         if (user_png_ver[i] != png_libpng_ver[i])
175            png_ptr->flags |= PNG_FLAG_LIBRARY_MISMATCH;
176      } while (png_libpng_ver[i++]);
177   }
178
179   else
180      png_ptr->flags |= PNG_FLAG_LIBRARY_MISMATCH;
181
182   if (png_ptr->flags & PNG_FLAG_LIBRARY_MISMATCH)
183   {
184     /* Libpng 0.90 and later are binary incompatible with libpng 0.89, so
185      * we must recompile any applications that use any older library version.
186      * For versions after libpng 1.0, we will be compatible, so we need
187      * only check the first and third digits (note that when we reach version
188      * 1.10 we will need to check the fourth symbol, namely user_png_ver[3]).
189      */
190      if (user_png_ver == NULL || user_png_ver[0] != png_libpng_ver[0] ||
191          (user_png_ver[0] == '1' && (user_png_ver[2] != png_libpng_ver[2] ||
192          user_png_ver[3] != png_libpng_ver[3])) ||
193          (user_png_ver[0] == '0' && user_png_ver[2] < '9'))
194      {
195#ifdef PNG_WARNINGS_SUPPORTED
196         size_t pos = 0;
197         char m[128];
198
199         pos = png_safecat(m, (sizeof m), pos,
200             "Application built with libpng-");
201         pos = png_safecat(m, (sizeof m), pos, user_png_ver);
202         pos = png_safecat(m, (sizeof m), pos, " but running with ");
203         pos = png_safecat(m, (sizeof m), pos, png_libpng_ver);
204         PNG_UNUSED(pos)
205
206         png_warning(png_ptr, m);
207#endif
208
209#ifdef PNG_ERROR_NUMBERS_SUPPORTED
210         png_ptr->flags = 0;
211#endif
212
213         return 0;
214      }
215   }
216
217   /* Success return. */
218   return 1;
219}
220
221/* Generic function to create a png_struct for either read or write - this
222 * contains the common initialization.
223 */
224PNG_FUNCTION(png_structp /* PRIVATE */,
225png_create_png_struct,(png_const_charp user_png_ver, png_voidp error_ptr,
226    png_error_ptr error_fn, png_error_ptr warn_fn, png_voidp mem_ptr,
227    png_malloc_ptr malloc_fn, png_free_ptr free_fn),PNG_ALLOCATED)
228{
229   png_struct create_struct;
230#  ifdef PNG_SETJMP_SUPPORTED
231      jmp_buf create_jmp_buf;
232#  endif
233
234   /* This temporary stack-allocated structure is used to provide a place to
235    * build enough context to allow the user provided memory allocator (if any)
236    * to be called.
237    */
238   memset(&create_struct, 0, (sizeof create_struct));
239
240   /* Added at libpng-1.2.6 */
241#  ifdef PNG_USER_LIMITS_SUPPORTED
242      create_struct.user_width_max = PNG_USER_WIDTH_MAX;
243      create_struct.user_height_max = PNG_USER_HEIGHT_MAX;
244
245#     ifdef PNG_USER_CHUNK_CACHE_MAX
246         /* Added at libpng-1.2.43 and 1.4.0 */
247         create_struct.user_chunk_cache_max = PNG_USER_CHUNK_CACHE_MAX;
248#     endif
249
250#     ifdef PNG_USER_CHUNK_MALLOC_MAX
251         /* Added at libpng-1.2.43 and 1.4.1, required only for read but exists
252          * in png_struct regardless.
253          */
254         create_struct.user_chunk_malloc_max = PNG_USER_CHUNK_MALLOC_MAX;
255#     endif
256#  endif
257
258   /* The following two API calls simply set fields in png_struct, so it is safe
259    * to do them now even though error handling is not yet set up.
260    */
261#  ifdef PNG_USER_MEM_SUPPORTED
262      png_set_mem_fn(&create_struct, mem_ptr, malloc_fn, free_fn);
263#  else
264      PNG_UNUSED(mem_ptr)
265      PNG_UNUSED(malloc_fn)
266      PNG_UNUSED(free_fn)
267#  endif
268
269   /* (*error_fn) can return control to the caller after the error_ptr is set,
270    * this will result in a memory leak unless the error_fn does something
271    * extremely sophisticated.  The design lacks merit but is implicit in the
272    * API.
273    */
274   png_set_error_fn(&create_struct, error_ptr, error_fn, warn_fn);
275
276#  ifdef PNG_SETJMP_SUPPORTED
277      if (!setjmp(create_jmp_buf))
278      {
279         /* Temporarily fake out the longjmp information until we have
280          * successfully completed this function.  This only works if we have
281          * setjmp() support compiled in, but it is safe - this stuff should
282          * never happen.
283          */
284         create_struct.jmp_buf_ptr = &create_jmp_buf;
285         create_struct.jmp_buf_size = 0; /*stack allocation*/
286         create_struct.longjmp_fn = longjmp;
287#  else
288      {
289#  endif
290         /* Call the general version checker (shared with read and write code):
291          */
292         if (png_user_version_check(&create_struct, user_png_ver))
293         {
294            png_structrp png_ptr = png_voidcast(png_structrp,
295               png_malloc_warn(&create_struct, (sizeof *png_ptr)));
296
297            if (png_ptr != NULL)
298            {
299               /* png_ptr->zstream holds a back-pointer to the png_struct, so
300                * this can only be done now:
301                */
302               create_struct.zstream.zalloc = png_zalloc;
303               create_struct.zstream.zfree = png_zfree;
304               create_struct.zstream.opaque = png_ptr;
305
306#              ifdef PNG_SETJMP_SUPPORTED
307                  /* Eliminate the local error handling: */
308                  create_struct.jmp_buf_ptr = NULL;
309                  create_struct.jmp_buf_size = 0;
310                  create_struct.longjmp_fn = 0;
311#              endif
312
313               *png_ptr = create_struct;
314
315               /* This is the successful return point */
316               return png_ptr;
317            }
318         }
319      }
320
321   /* A longjmp because of a bug in the application storage allocator or a
322    * simple failure to allocate the png_struct.
323    */
324   return NULL;
325}
326
327/* Allocate the memory for an info_struct for the application. */
328PNG_FUNCTION(png_infop,PNGAPI
329png_create_info_struct,(png_const_structrp png_ptr),PNG_ALLOCATED)
330{
331   png_inforp info_ptr;
332
333   png_debug(1, "in png_create_info_struct");
334
335   if (png_ptr == NULL)
336      return NULL;
337
338   /* Use the internal API that does not (or at least should not) error out, so
339    * that this call always returns ok.  The application typically sets up the
340    * error handling *after* creating the info_struct because this is the way it
341    * has always been done in 'example.c'.
342    */
343   info_ptr = png_voidcast(png_inforp, png_malloc_base(png_ptr,
344      (sizeof *info_ptr)));
345
346   if (info_ptr != NULL)
347      memset(info_ptr, 0, (sizeof *info_ptr));
348
349   return info_ptr;
350}
351
352/* This function frees the memory associated with a single info struct.
353 * Normally, one would use either png_destroy_read_struct() or
354 * png_destroy_write_struct() to free an info struct, but this may be
355 * useful for some applications.  From libpng 1.6.0 this function is also used
356 * internally to implement the png_info release part of the 'struct' destroy
357 * APIs.  This ensures that all possible approaches free the same data (all of
358 * it).
359 */
360void PNGAPI
361png_destroy_info_struct(png_const_structrp png_ptr, png_infopp info_ptr_ptr)
362{
363   png_inforp info_ptr = NULL;
364
365   png_debug(1, "in png_destroy_info_struct");
366
367   if (png_ptr == NULL)
368      return;
369
370   if (info_ptr_ptr != NULL)
371      info_ptr = *info_ptr_ptr;
372
373   if (info_ptr != NULL)
374   {
375      /* Do this first in case of an error below; if the app implements its own
376       * memory management this can lead to png_free calling png_error, which
377       * will abort this routine and return control to the app error handler.
378       * An infinite loop may result if it then tries to free the same info
379       * ptr.
380       */
381      *info_ptr_ptr = NULL;
382
383      png_free_data(png_ptr, info_ptr, PNG_FREE_ALL, -1);
384      memset(info_ptr, 0, (sizeof *info_ptr));
385      png_free(png_ptr, info_ptr);
386   }
387}
388
389/* Initialize the info structure.  This is now an internal function (0.89)
390 * and applications using it are urged to use png_create_info_struct()
391 * instead.  Use deprecated in 1.6.0, internal use removed (used internally it
392 * is just a memset).
393 *
394 * NOTE: it is almost inconceivable that this API is used because it bypasses
395 * the user-memory mechanism and the user error handling/warning mechanisms in
396 * those cases where it does anything other than a memset.
397 */
398PNG_FUNCTION(void,PNGAPI
399png_info_init_3,(png_infopp ptr_ptr, png_size_t png_info_struct_size),
400   PNG_DEPRECATED)
401{
402   png_inforp info_ptr = *ptr_ptr;
403
404   png_debug(1, "in png_info_init_3");
405
406   if (info_ptr == NULL)
407      return;
408
409   if ((sizeof (png_info)) > png_info_struct_size)
410   {
411      *ptr_ptr = NULL;
412      /* The following line is why this API should not be used: */
413      free(info_ptr);
414      info_ptr = png_voidcast(png_inforp, png_malloc_base(NULL,
415         (sizeof *info_ptr)));
416      *ptr_ptr = info_ptr;
417   }
418
419   /* Set everything to 0 */
420   memset(info_ptr, 0, (sizeof *info_ptr));
421}
422
423/* The following API is not called internally */
424void PNGAPI
425png_data_freer(png_const_structrp png_ptr, png_inforp info_ptr,
426   int freer, png_uint_32 mask)
427{
428   png_debug(1, "in png_data_freer");
429
430   if (png_ptr == NULL || info_ptr == NULL)
431      return;
432
433   if (freer == PNG_DESTROY_WILL_FREE_DATA)
434      info_ptr->free_me |= mask;
435
436   else if (freer == PNG_USER_WILL_FREE_DATA)
437      info_ptr->free_me &= ~mask;
438
439   else
440      png_error(png_ptr, "Unknown freer parameter in png_data_freer");
441}
442
443void PNGAPI
444png_free_data(png_const_structrp png_ptr, png_inforp info_ptr, png_uint_32 mask,
445   int num)
446{
447   png_debug(1, "in png_free_data");
448
449   if (png_ptr == NULL || info_ptr == NULL)
450      return;
451
452#ifdef PNG_TEXT_SUPPORTED
453   /* Free text item num or (if num == -1) all text items */
454   if ((mask & PNG_FREE_TEXT) & info_ptr->free_me)
455   {
456      if (num != -1)
457      {
458         if (info_ptr->text && info_ptr->text[num].key)
459         {
460            png_free(png_ptr, info_ptr->text[num].key);
461            info_ptr->text[num].key = NULL;
462         }
463      }
464
465      else
466      {
467         int i;
468         for (i = 0; i < info_ptr->num_text; i++)
469             png_free_data(png_ptr, info_ptr, PNG_FREE_TEXT, i);
470         png_free(png_ptr, info_ptr->text);
471         info_ptr->text = NULL;
472         info_ptr->num_text=0;
473      }
474   }
475#endif
476
477#ifdef PNG_tRNS_SUPPORTED
478   /* Free any tRNS entry */
479   if ((mask & PNG_FREE_TRNS) & info_ptr->free_me)
480   {
481      png_free(png_ptr, info_ptr->trans_alpha);
482      info_ptr->trans_alpha = NULL;
483      info_ptr->valid &= ~PNG_INFO_tRNS;
484   }
485#endif
486
487#ifdef PNG_sCAL_SUPPORTED
488   /* Free any sCAL entry */
489   if ((mask & PNG_FREE_SCAL) & info_ptr->free_me)
490   {
491      png_free(png_ptr, info_ptr->scal_s_width);
492      png_free(png_ptr, info_ptr->scal_s_height);
493      info_ptr->scal_s_width = NULL;
494      info_ptr->scal_s_height = NULL;
495      info_ptr->valid &= ~PNG_INFO_sCAL;
496   }
497#endif
498
499#ifdef PNG_pCAL_SUPPORTED
500   /* Free any pCAL entry */
501   if ((mask & PNG_FREE_PCAL) & info_ptr->free_me)
502   {
503      png_free(png_ptr, info_ptr->pcal_purpose);
504      png_free(png_ptr, info_ptr->pcal_units);
505      info_ptr->pcal_purpose = NULL;
506      info_ptr->pcal_units = NULL;
507      if (info_ptr->pcal_params != NULL)
508         {
509            unsigned int i;
510            for (i = 0; i < info_ptr->pcal_nparams; i++)
511            {
512               png_free(png_ptr, info_ptr->pcal_params[i]);
513               info_ptr->pcal_params[i] = NULL;
514            }
515            png_free(png_ptr, info_ptr->pcal_params);
516            info_ptr->pcal_params = NULL;
517         }
518      info_ptr->valid &= ~PNG_INFO_pCAL;
519   }
520#endif
521
522#ifdef PNG_iCCP_SUPPORTED
523   /* Free any profile entry */
524   if ((mask & PNG_FREE_ICCP) & info_ptr->free_me)
525   {
526      png_free(png_ptr, info_ptr->iccp_name);
527      png_free(png_ptr, info_ptr->iccp_profile);
528      info_ptr->iccp_name = NULL;
529      info_ptr->iccp_profile = NULL;
530      info_ptr->valid &= ~PNG_INFO_iCCP;
531   }
532#endif
533
534#ifdef PNG_sPLT_SUPPORTED
535   /* Free a given sPLT entry, or (if num == -1) all sPLT entries */
536   if ((mask & PNG_FREE_SPLT) & info_ptr->free_me)
537   {
538      if (num != -1)
539      {
540         if (info_ptr->splt_palettes)
541         {
542            png_free(png_ptr, info_ptr->splt_palettes[num].name);
543            png_free(png_ptr, info_ptr->splt_palettes[num].entries);
544            info_ptr->splt_palettes[num].name = NULL;
545            info_ptr->splt_palettes[num].entries = NULL;
546         }
547      }
548
549      else
550      {
551         if (info_ptr->splt_palettes_num)
552         {
553            int i;
554            for (i = 0; i < info_ptr->splt_palettes_num; i++)
555               png_free_data(png_ptr, info_ptr, PNG_FREE_SPLT, (int)i);
556
557            png_free(png_ptr, info_ptr->splt_palettes);
558            info_ptr->splt_palettes = NULL;
559            info_ptr->splt_palettes_num = 0;
560         }
561         info_ptr->valid &= ~PNG_INFO_sPLT;
562      }
563   }
564#endif
565
566#ifdef PNG_STORE_UNKNOWN_CHUNKS_SUPPORTED
567   if ((mask & PNG_FREE_UNKN) & info_ptr->free_me)
568   {
569      if (num != -1)
570      {
571          if (info_ptr->unknown_chunks)
572          {
573             png_free(png_ptr, info_ptr->unknown_chunks[num].data);
574             info_ptr->unknown_chunks[num].data = NULL;
575          }
576      }
577
578      else
579      {
580         int i;
581
582         if (info_ptr->unknown_chunks_num)
583         {
584            for (i = 0; i < info_ptr->unknown_chunks_num; i++)
585               png_free_data(png_ptr, info_ptr, PNG_FREE_UNKN, (int)i);
586
587            png_free(png_ptr, info_ptr->unknown_chunks);
588            info_ptr->unknown_chunks = NULL;
589            info_ptr->unknown_chunks_num = 0;
590         }
591      }
592   }
593#endif
594
595#ifdef PNG_hIST_SUPPORTED
596   /* Free any hIST entry */
597   if ((mask & PNG_FREE_HIST)  & info_ptr->free_me)
598   {
599      png_free(png_ptr, info_ptr->hist);
600      info_ptr->hist = NULL;
601      info_ptr->valid &= ~PNG_INFO_hIST;
602   }
603#endif
604
605   /* Free any PLTE entry that was internally allocated */
606   if ((mask & PNG_FREE_PLTE) & info_ptr->free_me)
607   {
608      png_free(png_ptr, info_ptr->palette);
609      info_ptr->palette = NULL;
610      info_ptr->valid &= ~PNG_INFO_PLTE;
611      info_ptr->num_palette = 0;
612   }
613
614#ifdef PNG_INFO_IMAGE_SUPPORTED
615   /* Free any image bits attached to the info structure */
616   if ((mask & PNG_FREE_ROWS) & info_ptr->free_me)
617   {
618      if (info_ptr->row_pointers)
619      {
620         png_uint_32 row;
621         for (row = 0; row < info_ptr->height; row++)
622         {
623            png_free(png_ptr, info_ptr->row_pointers[row]);
624            info_ptr->row_pointers[row] = NULL;
625         }
626         png_free(png_ptr, info_ptr->row_pointers);
627         info_ptr->row_pointers = NULL;
628      }
629      info_ptr->valid &= ~PNG_INFO_IDAT;
630   }
631#endif
632
633   if (num != -1)
634      mask &= ~PNG_FREE_MUL;
635
636   info_ptr->free_me &= ~mask;
637}
638#endif /* defined(PNG_READ_SUPPORTED) || defined(PNG_WRITE_SUPPORTED) */
639
640/* This function returns a pointer to the io_ptr associated with the user
641 * functions.  The application should free any memory associated with this
642 * pointer before png_write_destroy() or png_read_destroy() are called.
643 */
644png_voidp PNGAPI
645png_get_io_ptr(png_const_structrp png_ptr)
646{
647   if (png_ptr == NULL)
648      return (NULL);
649
650   return (png_ptr->io_ptr);
651}
652
653#if defined(PNG_READ_SUPPORTED) || defined(PNG_WRITE_SUPPORTED)
654#  ifdef PNG_STDIO_SUPPORTED
655/* Initialize the default input/output functions for the PNG file.  If you
656 * use your own read or write routines, you can call either png_set_read_fn()
657 * or png_set_write_fn() instead of png_init_io().  If you have defined
658 * PNG_NO_STDIO or otherwise disabled PNG_STDIO_SUPPORTED, you must use a
659 * function of your own because "FILE *" isn't necessarily available.
660 */
661void PNGAPI
662png_init_io(png_structrp png_ptr, png_FILE_p fp)
663{
664   png_debug(1, "in png_init_io");
665
666   if (png_ptr == NULL)
667      return;
668
669   png_ptr->io_ptr = (png_voidp)fp;
670}
671#  endif
672
673#ifdef PNG_SAVE_INT_32_SUPPORTED
674/* The png_save_int_32 function assumes integers are stored in two's
675 * complement format.  If this isn't the case, then this routine needs to
676 * be modified to write data in two's complement format.  Note that,
677 * the following works correctly even if png_int_32 has more than 32 bits
678 * (compare the more complex code required on read for sign extension.)
679 */
680void PNGAPI
681png_save_int_32(png_bytep buf, png_int_32 i)
682{
683   buf[0] = (png_byte)((i >> 24) & 0xff);
684   buf[1] = (png_byte)((i >> 16) & 0xff);
685   buf[2] = (png_byte)((i >> 8) & 0xff);
686   buf[3] = (png_byte)(i & 0xff);
687}
688#endif
689
690#  ifdef PNG_TIME_RFC1123_SUPPORTED
691/* Convert the supplied time into an RFC 1123 string suitable for use in
692 * a "Creation Time" or other text-based time string.
693 */
694int PNGAPI
695png_convert_to_rfc1123_buffer(char out[29], png_const_timep ptime)
696{
697   static PNG_CONST char short_months[12][4] =
698        {"Jan", "Feb", "Mar", "Apr", "May", "Jun",
699         "Jul", "Aug", "Sep", "Oct", "Nov", "Dec"};
700
701   if (out == NULL)
702      return 0;
703
704   if (ptime->year > 9999 /* RFC1123 limitation */ ||
705       ptime->month == 0    ||  ptime->month > 12  ||
706       ptime->day   == 0    ||  ptime->day   > 31  ||
707       ptime->hour  > 23    ||  ptime->minute > 59 ||
708       ptime->second > 60)
709      return 0;
710
711   {
712      size_t pos = 0;
713      char number_buf[5]; /* enough for a four-digit year */
714
715#     define APPEND_STRING(string) pos = png_safecat(out, 29, pos, (string))
716#     define APPEND_NUMBER(format, value)\
717         APPEND_STRING(PNG_FORMAT_NUMBER(number_buf, format, (value)))
718#     define APPEND(ch) if (pos < 28) out[pos++] = (ch)
719
720      APPEND_NUMBER(PNG_NUMBER_FORMAT_u, (unsigned)ptime->day);
721      APPEND(' ');
722      APPEND_STRING(short_months[(ptime->month - 1)]);
723      APPEND(' ');
724      APPEND_NUMBER(PNG_NUMBER_FORMAT_u, ptime->year);
725      APPEND(' ');
726      APPEND_NUMBER(PNG_NUMBER_FORMAT_02u, (unsigned)ptime->hour);
727      APPEND(':');
728      APPEND_NUMBER(PNG_NUMBER_FORMAT_02u, (unsigned)ptime->minute);
729      APPEND(':');
730      APPEND_NUMBER(PNG_NUMBER_FORMAT_02u, (unsigned)ptime->second);
731      APPEND_STRING(" +0000"); /* This reliably terminates the buffer */
732
733#     undef APPEND
734#     undef APPEND_NUMBER
735#     undef APPEND_STRING
736   }
737
738   return 1;
739}
740
741#     if PNG_LIBPNG_VER < 10700
742/* To do: remove the following from libpng-1.7 */
743/* Original API that uses a private buffer in png_struct.
744 * Deprecated because it causes png_struct to carry a spurious temporary
745 * buffer (png_struct::time_buffer), better to have the caller pass this in.
746 */
747png_const_charp PNGAPI
748png_convert_to_rfc1123(png_structrp png_ptr, png_const_timep ptime)
749{
750   if (png_ptr != NULL)
751   {
752      /* The only failure above if png_ptr != NULL is from an invalid ptime */
753      if (!png_convert_to_rfc1123_buffer(png_ptr->time_buffer, ptime))
754         png_warning(png_ptr, "Ignoring invalid time value");
755
756      else
757         return png_ptr->time_buffer;
758   }
759
760   return NULL;
761}
762#     endif
763#  endif /* PNG_TIME_RFC1123_SUPPORTED */
764
765#endif /* defined(PNG_READ_SUPPORTED) || defined(PNG_WRITE_SUPPORTED) */
766
767png_const_charp PNGAPI
768png_get_copyright(png_const_structrp png_ptr)
769{
770   PNG_UNUSED(png_ptr)  /* Silence compiler warning about unused png_ptr */
771#ifdef PNG_STRING_COPYRIGHT
772   return PNG_STRING_COPYRIGHT
773#else
774#  ifdef __STDC__
775   return PNG_STRING_NEWLINE \
776     "libpng version 1.6.10 - March 6, 2014" PNG_STRING_NEWLINE \
777     "Copyright (c) 1998-2014 Glenn Randers-Pehrson" PNG_STRING_NEWLINE \
778     "Copyright (c) 1996-1997 Andreas Dilger" PNG_STRING_NEWLINE \
779     "Copyright (c) 1995-1996 Guy Eric Schalnat, Group 42, Inc." \
780     PNG_STRING_NEWLINE;
781#  else
782      return "libpng version 1.6.10 - March 6, 2014\
783      Copyright (c) 1998-2014 Glenn Randers-Pehrson\
784      Copyright (c) 1996-1997 Andreas Dilger\
785      Copyright (c) 1995-1996 Guy Eric Schalnat, Group 42, Inc.";
786#  endif
787#endif
788}
789
790/* The following return the library version as a short string in the
791 * format 1.0.0 through 99.99.99zz.  To get the version of *.h files
792 * used with your application, print out PNG_LIBPNG_VER_STRING, which
793 * is defined in png.h.
794 * Note: now there is no difference between png_get_libpng_ver() and
795 * png_get_header_ver().  Due to the version_nn_nn_nn typedef guard,
796 * it is guaranteed that png.c uses the correct version of png.h.
797 */
798png_const_charp PNGAPI
799png_get_libpng_ver(png_const_structrp png_ptr)
800{
801   /* Version of *.c files used when building libpng */
802   return png_get_header_ver(png_ptr);
803}
804
805png_const_charp PNGAPI
806png_get_header_ver(png_const_structrp png_ptr)
807{
808   /* Version of *.h files used when building libpng */
809   PNG_UNUSED(png_ptr)  /* Silence compiler warning about unused png_ptr */
810   return PNG_LIBPNG_VER_STRING;
811}
812
813png_const_charp PNGAPI
814png_get_header_version(png_const_structrp png_ptr)
815{
816   /* Returns longer string containing both version and date */
817   PNG_UNUSED(png_ptr)  /* Silence compiler warning about unused png_ptr */
818#ifdef __STDC__
819   return PNG_HEADER_VERSION_STRING
820#  ifndef PNG_READ_SUPPORTED
821   "     (NO READ SUPPORT)"
822#  endif
823   PNG_STRING_NEWLINE;
824#else
825   return PNG_HEADER_VERSION_STRING;
826#endif
827}
828
829#ifdef PNG_BUILD_GRAYSCALE_PALETTE_SUPPORTED
830/* NOTE: this routine is not used internally! */
831/* Build a grayscale palette.  Palette is assumed to be 1 << bit_depth
832 * large of png_color.  This lets grayscale images be treated as
833 * paletted.  Most useful for gamma correction and simplification
834 * of code.  This API is not used internally.
835 */
836void PNGAPI
837png_build_grayscale_palette(int bit_depth, png_colorp palette)
838{
839   int num_palette;
840   int color_inc;
841   int i;
842   int v;
843
844   png_debug(1, "in png_do_build_grayscale_palette");
845
846   if (palette == NULL)
847      return;
848
849   switch (bit_depth)
850   {
851      case 1:
852         num_palette = 2;
853         color_inc = 0xff;
854         break;
855
856      case 2:
857         num_palette = 4;
858         color_inc = 0x55;
859         break;
860
861      case 4:
862         num_palette = 16;
863         color_inc = 0x11;
864         break;
865
866      case 8:
867         num_palette = 256;
868         color_inc = 1;
869         break;
870
871      default:
872         num_palette = 0;
873         color_inc = 0;
874         break;
875   }
876
877   for (i = 0, v = 0; i < num_palette; i++, v += color_inc)
878   {
879      palette[i].red = (png_byte)v;
880      palette[i].green = (png_byte)v;
881      palette[i].blue = (png_byte)v;
882   }
883}
884#endif
885
886#ifdef PNG_SET_UNKNOWN_CHUNKS_SUPPORTED
887int PNGAPI
888png_handle_as_unknown(png_const_structrp png_ptr, png_const_bytep chunk_name)
889{
890   /* Check chunk_name and return "keep" value if it's on the list, else 0 */
891   png_const_bytep p, p_end;
892
893   if (png_ptr == NULL || chunk_name == NULL || png_ptr->num_chunk_list == 0)
894      return PNG_HANDLE_CHUNK_AS_DEFAULT;
895
896   p_end = png_ptr->chunk_list;
897   p = p_end + png_ptr->num_chunk_list*5; /* beyond end */
898
899   /* The code is the fifth byte after each four byte string.  Historically this
900    * code was always searched from the end of the list, this is no longer
901    * necessary because the 'set' routine handles duplicate entries correcty.
902    */
903   do /* num_chunk_list > 0, so at least one */
904   {
905      p -= 5;
906
907      if (!memcmp(chunk_name, p, 4))
908         return p[4];
909   }
910   while (p > p_end);
911
912   /* This means that known chunks should be processed and unknown chunks should
913    * be handled according to the value of png_ptr->unknown_default; this can be
914    * confusing because, as a result, there are two levels of defaulting for
915    * unknown chunks.
916    */
917   return PNG_HANDLE_CHUNK_AS_DEFAULT;
918}
919
920#if defined(PNG_READ_UNKNOWN_CHUNKS_SUPPORTED) ||\
921   defined(PNG_HANDLE_AS_UNKNOWN_SUPPORTED)
922int /* PRIVATE */
923png_chunk_unknown_handling(png_const_structrp png_ptr, png_uint_32 chunk_name)
924{
925   png_byte chunk_string[5];
926
927   PNG_CSTRING_FROM_CHUNK(chunk_string, chunk_name);
928   return png_handle_as_unknown(png_ptr, chunk_string);
929}
930#endif /* READ_UNKNOWN_CHUNKS || HANDLE_AS_UNKNOWN */
931#endif /* SET_UNKNOWN_CHUNKS */
932
933#ifdef PNG_READ_SUPPORTED
934/* This function, added to libpng-1.0.6g, is untested. */
935int PNGAPI
936png_reset_zstream(png_structrp png_ptr)
937{
938   if (png_ptr == NULL)
939      return Z_STREAM_ERROR;
940
941   /* WARNING: this resets the window bits to the maximum! */
942   return (inflateReset(&png_ptr->zstream));
943}
944#endif /* PNG_READ_SUPPORTED */
945
946/* This function was added to libpng-1.0.7 */
947png_uint_32 PNGAPI
948png_access_version_number(void)
949{
950   /* Version of *.c files used when building libpng */
951   return((png_uint_32)PNG_LIBPNG_VER);
952}
953
954
955
956#if defined(PNG_READ_SUPPORTED) || defined(PNG_WRITE_SUPPORTED)
957/* Ensure that png_ptr->zstream.msg holds some appropriate error message string.
958 * If it doesn't 'ret' is used to set it to something appropriate, even in cases
959 * like Z_OK or Z_STREAM_END where the error code is apparently a success code.
960 */
961void /* PRIVATE */
962png_zstream_error(png_structrp png_ptr, int ret)
963{
964   /* Translate 'ret' into an appropriate error string, priority is given to the
965    * one in zstream if set.  This always returns a string, even in cases like
966    * Z_OK or Z_STREAM_END where the error code is a success code.
967    */
968   if (png_ptr->zstream.msg == NULL) switch (ret)
969   {
970      default:
971      case Z_OK:
972         png_ptr->zstream.msg = PNGZ_MSG_CAST("unexpected zlib return code");
973         break;
974
975      case Z_STREAM_END:
976         /* Normal exit */
977         png_ptr->zstream.msg = PNGZ_MSG_CAST("unexpected end of LZ stream");
978         break;
979
980      case Z_NEED_DICT:
981         /* This means the deflate stream did not have a dictionary; this
982          * indicates a bogus PNG.
983          */
984         png_ptr->zstream.msg = PNGZ_MSG_CAST("missing LZ dictionary");
985         break;
986
987      case Z_ERRNO:
988         /* gz APIs only: should not happen */
989         png_ptr->zstream.msg = PNGZ_MSG_CAST("zlib IO error");
990         break;
991
992      case Z_STREAM_ERROR:
993         /* internal libpng error */
994         png_ptr->zstream.msg = PNGZ_MSG_CAST("bad parameters to zlib");
995         break;
996
997      case Z_DATA_ERROR:
998         png_ptr->zstream.msg = PNGZ_MSG_CAST("damaged LZ stream");
999         break;
1000
1001      case Z_MEM_ERROR:
1002         png_ptr->zstream.msg = PNGZ_MSG_CAST("insufficient memory");
1003         break;
1004
1005      case Z_BUF_ERROR:
1006         /* End of input or output; not a problem if the caller is doing
1007          * incremental read or write.
1008          */
1009         png_ptr->zstream.msg = PNGZ_MSG_CAST("truncated");
1010         break;
1011
1012      case Z_VERSION_ERROR:
1013         png_ptr->zstream.msg = PNGZ_MSG_CAST("unsupported zlib version");
1014         break;
1015
1016      case PNG_UNEXPECTED_ZLIB_RETURN:
1017         /* Compile errors here mean that zlib now uses the value co-opted in
1018          * pngpriv.h for PNG_UNEXPECTED_ZLIB_RETURN; update the switch above
1019          * and change pngpriv.h.  Note that this message is "... return",
1020          * whereas the default/Z_OK one is "... return code".
1021          */
1022         png_ptr->zstream.msg = PNGZ_MSG_CAST("unexpected zlib return");
1023         break;
1024   }
1025}
1026
1027/* png_convert_size: a PNGAPI but no longer in png.h, so deleted
1028 * at libpng 1.5.5!
1029 */
1030
1031/* Added at libpng version 1.2.34 and 1.4.0 (moved from pngset.c) */
1032#ifdef PNG_GAMMA_SUPPORTED /* always set if COLORSPACE */
1033static int
1034png_colorspace_check_gamma(png_const_structrp png_ptr,
1035   png_colorspacerp colorspace, png_fixed_point gAMA, int from)
1036   /* This is called to check a new gamma value against an existing one.  The
1037    * routine returns false if the new gamma value should not be written.
1038    *
1039    * 'from' says where the new gamma value comes from:
1040    *
1041    *    0: the new gamma value is the libpng estimate for an ICC profile
1042    *    1: the new gamma value comes from a gAMA chunk
1043    *    2: the new gamma value comes from an sRGB chunk
1044    */
1045{
1046   png_fixed_point gtest;
1047
1048   if ((colorspace->flags & PNG_COLORSPACE_HAVE_GAMMA) != 0 &&
1049      (!png_muldiv(&gtest, colorspace->gamma, PNG_FP_1, gAMA) ||
1050      png_gamma_significant(gtest)))
1051   {
1052      /* Either this is an sRGB image, in which case the calculated gamma
1053       * approximation should match, or this is an image with a profile and the
1054       * value libpng calculates for the gamma of the profile does not match the
1055       * value recorded in the file.  The former, sRGB, case is an error, the
1056       * latter is just a warning.
1057       */
1058      if ((colorspace->flags & PNG_COLORSPACE_FROM_sRGB) != 0 || from == 2)
1059      {
1060         png_chunk_report(png_ptr, "gamma value does not match sRGB",
1061            PNG_CHUNK_ERROR);
1062         /* Do not overwrite an sRGB value */
1063         return from == 2;
1064      }
1065
1066      else /* sRGB tag not involved */
1067      {
1068         png_chunk_report(png_ptr, "gamma value does not match libpng estimate",
1069            PNG_CHUNK_WARNING);
1070         return from == 1;
1071      }
1072   }
1073
1074   return 1;
1075}
1076
1077void /* PRIVATE */
1078png_colorspace_set_gamma(png_const_structrp png_ptr,
1079   png_colorspacerp colorspace, png_fixed_point gAMA)
1080{
1081   /* Changed in libpng-1.5.4 to limit the values to ensure overflow can't
1082    * occur.  Since the fixed point representation is assymetrical it is
1083    * possible for 1/gamma to overflow the limit of 21474 and this means the
1084    * gamma value must be at least 5/100000 and hence at most 20000.0.  For
1085    * safety the limits here are a little narrower.  The values are 0.00016 to
1086    * 6250.0, which are truly ridiculous gamma values (and will produce
1087    * displays that are all black or all white.)
1088    *
1089    * In 1.6.0 this test replaces the ones in pngrutil.c, in the gAMA chunk
1090    * handling code, which only required the value to be >0.
1091    */
1092   png_const_charp errmsg;
1093
1094   if (gAMA < 16 || gAMA > 625000000)
1095      errmsg = "gamma value out of range";
1096
1097#  ifdef PNG_READ_gAMA_SUPPORTED
1098      /* Allow the application to set the gamma value more than once */
1099      else if ((png_ptr->mode & PNG_IS_READ_STRUCT) != 0 &&
1100         (colorspace->flags & PNG_COLORSPACE_FROM_gAMA) != 0)
1101         errmsg = "duplicate";
1102#  endif
1103
1104   /* Do nothing if the colorspace is already invalid */
1105   else if (colorspace->flags & PNG_COLORSPACE_INVALID)
1106      return;
1107
1108   else
1109   {
1110      if (png_colorspace_check_gamma(png_ptr, colorspace, gAMA, 1/*from gAMA*/))
1111      {
1112         /* Store this gamma value. */
1113         colorspace->gamma = gAMA;
1114         colorspace->flags |=
1115            (PNG_COLORSPACE_HAVE_GAMMA | PNG_COLORSPACE_FROM_gAMA);
1116      }
1117
1118      /* At present if the check_gamma test fails the gamma of the colorspace is
1119       * not updated however the colorspace is not invalidated.  This
1120       * corresponds to the case where the existing gamma comes from an sRGB
1121       * chunk or profile.  An error message has already been output.
1122       */
1123      return;
1124   }
1125
1126   /* Error exit - errmsg has been set. */
1127   colorspace->flags |= PNG_COLORSPACE_INVALID;
1128   png_chunk_report(png_ptr, errmsg, PNG_CHUNK_WRITE_ERROR);
1129}
1130
1131void /* PRIVATE */
1132png_colorspace_sync_info(png_const_structrp png_ptr, png_inforp info_ptr)
1133{
1134   if (info_ptr->colorspace.flags & PNG_COLORSPACE_INVALID)
1135   {
1136      /* Everything is invalid */
1137      info_ptr->valid &= ~(PNG_INFO_gAMA|PNG_INFO_cHRM|PNG_INFO_sRGB|
1138         PNG_INFO_iCCP);
1139
1140#     ifdef PNG_COLORSPACE_SUPPORTED
1141         /* Clean up the iCCP profile now if it won't be used. */
1142         png_free_data(png_ptr, info_ptr, PNG_FREE_ICCP, -1/*not used*/);
1143#     else
1144         PNG_UNUSED(png_ptr)
1145#     endif
1146   }
1147
1148   else
1149   {
1150#     ifdef PNG_COLORSPACE_SUPPORTED
1151         /* Leave the INFO_iCCP flag set if the pngset.c code has already set
1152          * it; this allows a PNG to contain a profile which matches sRGB and
1153          * yet still have that profile retrievable by the application.
1154          */
1155         if (info_ptr->colorspace.flags & PNG_COLORSPACE_MATCHES_sRGB)
1156            info_ptr->valid |= PNG_INFO_sRGB;
1157
1158         else
1159            info_ptr->valid &= ~PNG_INFO_sRGB;
1160
1161         if (info_ptr->colorspace.flags & PNG_COLORSPACE_HAVE_ENDPOINTS)
1162            info_ptr->valid |= PNG_INFO_cHRM;
1163
1164         else
1165            info_ptr->valid &= ~PNG_INFO_cHRM;
1166#     endif
1167
1168      if (info_ptr->colorspace.flags & PNG_COLORSPACE_HAVE_GAMMA)
1169         info_ptr->valid |= PNG_INFO_gAMA;
1170
1171      else
1172         info_ptr->valid &= ~PNG_INFO_gAMA;
1173   }
1174}
1175
1176#ifdef PNG_READ_SUPPORTED
1177void /* PRIVATE */
1178png_colorspace_sync(png_const_structrp png_ptr, png_inforp info_ptr)
1179{
1180   if (info_ptr == NULL) /* reduce code size; check here not in the caller */
1181      return;
1182
1183   info_ptr->colorspace = png_ptr->colorspace;
1184   png_colorspace_sync_info(png_ptr, info_ptr);
1185}
1186#endif
1187#endif
1188
1189#ifdef PNG_COLORSPACE_SUPPORTED
1190/* Added at libpng-1.5.5 to support read and write of true CIEXYZ values for
1191 * cHRM, as opposed to using chromaticities.  These internal APIs return
1192 * non-zero on a parameter error.  The X, Y and Z values are required to be
1193 * positive and less than 1.0.
1194 */
1195static int
1196png_xy_from_XYZ(png_xy *xy, const png_XYZ *XYZ)
1197{
1198   png_int_32 d, dwhite, whiteX, whiteY;
1199
1200   d = XYZ->red_X + XYZ->red_Y + XYZ->red_Z;
1201   if (!png_muldiv(&xy->redx, XYZ->red_X, PNG_FP_1, d)) return 1;
1202   if (!png_muldiv(&xy->redy, XYZ->red_Y, PNG_FP_1, d)) return 1;
1203   dwhite = d;
1204   whiteX = XYZ->red_X;
1205   whiteY = XYZ->red_Y;
1206
1207   d = XYZ->green_X + XYZ->green_Y + XYZ->green_Z;
1208   if (!png_muldiv(&xy->greenx, XYZ->green_X, PNG_FP_1, d)) return 1;
1209   if (!png_muldiv(&xy->greeny, XYZ->green_Y, PNG_FP_1, d)) return 1;
1210   dwhite += d;
1211   whiteX += XYZ->green_X;
1212   whiteY += XYZ->green_Y;
1213
1214   d = XYZ->blue_X + XYZ->blue_Y + XYZ->blue_Z;
1215   if (!png_muldiv(&xy->bluex, XYZ->blue_X, PNG_FP_1, d)) return 1;
1216   if (!png_muldiv(&xy->bluey, XYZ->blue_Y, PNG_FP_1, d)) return 1;
1217   dwhite += d;
1218   whiteX += XYZ->blue_X;
1219   whiteY += XYZ->blue_Y;
1220
1221   /* The reference white is simply the sum of the end-point (X,Y,Z) vectors,
1222    * thus:
1223    */
1224   if (!png_muldiv(&xy->whitex, whiteX, PNG_FP_1, dwhite)) return 1;
1225   if (!png_muldiv(&xy->whitey, whiteY, PNG_FP_1, dwhite)) return 1;
1226
1227   return 0;
1228}
1229
1230static int
1231png_XYZ_from_xy(png_XYZ *XYZ, const png_xy *xy)
1232{
1233   png_fixed_point red_inverse, green_inverse, blue_scale;
1234   png_fixed_point left, right, denominator;
1235
1236   /* Check xy and, implicitly, z.  Note that wide gamut color spaces typically
1237    * have end points with 0 tristimulus values (these are impossible end
1238    * points, but they are used to cover the possible colors.)
1239    */
1240   if (xy->redx < 0 || xy->redx > PNG_FP_1) return 1;
1241   if (xy->redy < 0 || xy->redy > PNG_FP_1-xy->redx) return 1;
1242   if (xy->greenx < 0 || xy->greenx > PNG_FP_1) return 1;
1243   if (xy->greeny < 0 || xy->greeny > PNG_FP_1-xy->greenx) return 1;
1244   if (xy->bluex < 0 || xy->bluex > PNG_FP_1) return 1;
1245   if (xy->bluey < 0 || xy->bluey > PNG_FP_1-xy->bluex) return 1;
1246   if (xy->whitex < 0 || xy->whitex > PNG_FP_1) return 1;
1247   if (xy->whitey < 0 || xy->whitey > PNG_FP_1-xy->whitex) return 1;
1248
1249   /* The reverse calculation is more difficult because the original tristimulus
1250    * value had 9 independent values (red,green,blue)x(X,Y,Z) however only 8
1251    * derived values were recorded in the cHRM chunk;
1252    * (red,green,blue,white)x(x,y).  This loses one degree of freedom and
1253    * therefore an arbitrary ninth value has to be introduced to undo the
1254    * original transformations.
1255    *
1256    * Think of the original end-points as points in (X,Y,Z) space.  The
1257    * chromaticity values (c) have the property:
1258    *
1259    *           C
1260    *   c = ---------
1261    *       X + Y + Z
1262    *
1263    * For each c (x,y,z) from the corresponding original C (X,Y,Z).  Thus the
1264    * three chromaticity values (x,y,z) for each end-point obey the
1265    * relationship:
1266    *
1267    *   x + y + z = 1
1268    *
1269    * This describes the plane in (X,Y,Z) space that intersects each axis at the
1270    * value 1.0; call this the chromaticity plane.  Thus the chromaticity
1271    * calculation has scaled each end-point so that it is on the x+y+z=1 plane
1272    * and chromaticity is the intersection of the vector from the origin to the
1273    * (X,Y,Z) value with the chromaticity plane.
1274    *
1275    * To fully invert the chromaticity calculation we would need the three
1276    * end-point scale factors, (red-scale, green-scale, blue-scale), but these
1277    * were not recorded.  Instead we calculated the reference white (X,Y,Z) and
1278    * recorded the chromaticity of this.  The reference white (X,Y,Z) would have
1279    * given all three of the scale factors since:
1280    *
1281    *    color-C = color-c * color-scale
1282    *    white-C = red-C + green-C + blue-C
1283    *            = red-c*red-scale + green-c*green-scale + blue-c*blue-scale
1284    *
1285    * But cHRM records only white-x and white-y, so we have lost the white scale
1286    * factor:
1287    *
1288    *    white-C = white-c*white-scale
1289    *
1290    * To handle this the inverse transformation makes an arbitrary assumption
1291    * about white-scale:
1292    *
1293    *    Assume: white-Y = 1.0
1294    *    Hence:  white-scale = 1/white-y
1295    *    Or:     red-Y + green-Y + blue-Y = 1.0
1296    *
1297    * Notice the last statement of the assumption gives an equation in three of
1298    * the nine values we want to calculate.  8 more equations come from the
1299    * above routine as summarised at the top above (the chromaticity
1300    * calculation):
1301    *
1302    *    Given: color-x = color-X / (color-X + color-Y + color-Z)
1303    *    Hence: (color-x - 1)*color-X + color.x*color-Y + color.x*color-Z = 0
1304    *
1305    * This is 9 simultaneous equations in the 9 variables "color-C" and can be
1306    * solved by Cramer's rule.  Cramer's rule requires calculating 10 9x9 matrix
1307    * determinants, however this is not as bad as it seems because only 28 of
1308    * the total of 90 terms in the various matrices are non-zero.  Nevertheless
1309    * Cramer's rule is notoriously numerically unstable because the determinant
1310    * calculation involves the difference of large, but similar, numbers.  It is
1311    * difficult to be sure that the calculation is stable for real world values
1312    * and it is certain that it becomes unstable where the end points are close
1313    * together.
1314    *
1315    * So this code uses the perhaps slightly less optimal but more
1316    * understandable and totally obvious approach of calculating color-scale.
1317    *
1318    * This algorithm depends on the precision in white-scale and that is
1319    * (1/white-y), so we can immediately see that as white-y approaches 0 the
1320    * accuracy inherent in the cHRM chunk drops off substantially.
1321    *
1322    * libpng arithmetic: a simple invertion of the above equations
1323    * ------------------------------------------------------------
1324    *
1325    *    white_scale = 1/white-y
1326    *    white-X = white-x * white-scale
1327    *    white-Y = 1.0
1328    *    white-Z = (1 - white-x - white-y) * white_scale
1329    *
1330    *    white-C = red-C + green-C + blue-C
1331    *            = red-c*red-scale + green-c*green-scale + blue-c*blue-scale
1332    *
1333    * This gives us three equations in (red-scale,green-scale,blue-scale) where
1334    * all the coefficients are now known:
1335    *
1336    *    red-x*red-scale + green-x*green-scale + blue-x*blue-scale
1337    *       = white-x/white-y
1338    *    red-y*red-scale + green-y*green-scale + blue-y*blue-scale = 1
1339    *    red-z*red-scale + green-z*green-scale + blue-z*blue-scale
1340    *       = (1 - white-x - white-y)/white-y
1341    *
1342    * In the last equation color-z is (1 - color-x - color-y) so we can add all
1343    * three equations together to get an alternative third:
1344    *
1345    *    red-scale + green-scale + blue-scale = 1/white-y = white-scale
1346    *
1347    * So now we have a Cramer's rule solution where the determinants are just
1348    * 3x3 - far more tractible.  Unfortunately 3x3 determinants still involve
1349    * multiplication of three coefficients so we can't guarantee to avoid
1350    * overflow in the libpng fixed point representation.  Using Cramer's rule in
1351    * floating point is probably a good choice here, but it's not an option for
1352    * fixed point.  Instead proceed to simplify the first two equations by
1353    * eliminating what is likely to be the largest value, blue-scale:
1354    *
1355    *    blue-scale = white-scale - red-scale - green-scale
1356    *
1357    * Hence:
1358    *
1359    *    (red-x - blue-x)*red-scale + (green-x - blue-x)*green-scale =
1360    *                (white-x - blue-x)*white-scale
1361    *
1362    *    (red-y - blue-y)*red-scale + (green-y - blue-y)*green-scale =
1363    *                1 - blue-y*white-scale
1364    *
1365    * And now we can trivially solve for (red-scale,green-scale):
1366    *
1367    *    green-scale =
1368    *                (white-x - blue-x)*white-scale - (red-x - blue-x)*red-scale
1369    *                -----------------------------------------------------------
1370    *                                  green-x - blue-x
1371    *
1372    *    red-scale =
1373    *                1 - blue-y*white-scale - (green-y - blue-y) * green-scale
1374    *                ---------------------------------------------------------
1375    *                                  red-y - blue-y
1376    *
1377    * Hence:
1378    *
1379    *    red-scale =
1380    *          ( (green-x - blue-x) * (white-y - blue-y) -
1381    *            (green-y - blue-y) * (white-x - blue-x) ) / white-y
1382    * -------------------------------------------------------------------------
1383    *  (green-x - blue-x)*(red-y - blue-y)-(green-y - blue-y)*(red-x - blue-x)
1384    *
1385    *    green-scale =
1386    *          ( (red-y - blue-y) * (white-x - blue-x) -
1387    *            (red-x - blue-x) * (white-y - blue-y) ) / white-y
1388    * -------------------------------------------------------------------------
1389    *  (green-x - blue-x)*(red-y - blue-y)-(green-y - blue-y)*(red-x - blue-x)
1390    *
1391    * Accuracy:
1392    * The input values have 5 decimal digits of accuracy.  The values are all in
1393    * the range 0 < value < 1, so simple products are in the same range but may
1394    * need up to 10 decimal digits to preserve the original precision and avoid
1395    * underflow.  Because we are using a 32-bit signed representation we cannot
1396    * match this; the best is a little over 9 decimal digits, less than 10.
1397    *
1398    * The approach used here is to preserve the maximum precision within the
1399    * signed representation.  Because the red-scale calculation above uses the
1400    * difference between two products of values that must be in the range -1..+1
1401    * it is sufficient to divide the product by 7; ceil(100,000/32767*2).  The
1402    * factor is irrelevant in the calculation because it is applied to both
1403    * numerator and denominator.
1404    *
1405    * Note that the values of the differences of the products of the
1406    * chromaticities in the above equations tend to be small, for example for
1407    * the sRGB chromaticities they are:
1408    *
1409    * red numerator:    -0.04751
1410    * green numerator:  -0.08788
1411    * denominator:      -0.2241 (without white-y multiplication)
1412    *
1413    *  The resultant Y coefficients from the chromaticities of some widely used
1414    *  color space definitions are (to 15 decimal places):
1415    *
1416    *  sRGB
1417    *    0.212639005871510 0.715168678767756 0.072192315360734
1418    *  Kodak ProPhoto
1419    *    0.288071128229293 0.711843217810102 0.000085653960605
1420    *  Adobe RGB
1421    *    0.297344975250536 0.627363566255466 0.075291458493998
1422    *  Adobe Wide Gamut RGB
1423    *    0.258728243040113 0.724682314948566 0.016589442011321
1424    */
1425   /* By the argument, above overflow should be impossible here. The return
1426    * value of 2 indicates an internal error to the caller.
1427    */
1428   if (!png_muldiv(&left, xy->greenx-xy->bluex, xy->redy - xy->bluey, 7))
1429      return 2;
1430   if (!png_muldiv(&right, xy->greeny-xy->bluey, xy->redx - xy->bluex, 7))
1431      return 2;
1432   denominator = left - right;
1433
1434   /* Now find the red numerator. */
1435   if (!png_muldiv(&left, xy->greenx-xy->bluex, xy->whitey-xy->bluey, 7))
1436      return 2;
1437   if (!png_muldiv(&right, xy->greeny-xy->bluey, xy->whitex-xy->bluex, 7))
1438      return 2;
1439
1440   /* Overflow is possible here and it indicates an extreme set of PNG cHRM
1441    * chunk values.  This calculation actually returns the reciprocal of the
1442    * scale value because this allows us to delay the multiplication of white-y
1443    * into the denominator, which tends to produce a small number.
1444    */
1445   if (!png_muldiv(&red_inverse, xy->whitey, denominator, left-right) ||
1446       red_inverse <= xy->whitey /* r+g+b scales = white scale */)
1447      return 1;
1448
1449   /* Similarly for green_inverse: */
1450   if (!png_muldiv(&left, xy->redy-xy->bluey, xy->whitex-xy->bluex, 7))
1451      return 2;
1452   if (!png_muldiv(&right, xy->redx-xy->bluex, xy->whitey-xy->bluey, 7))
1453      return 2;
1454   if (!png_muldiv(&green_inverse, xy->whitey, denominator, left-right) ||
1455       green_inverse <= xy->whitey)
1456      return 1;
1457
1458   /* And the blue scale, the checks above guarantee this can't overflow but it
1459    * can still produce 0 for extreme cHRM values.
1460    */
1461   blue_scale = png_reciprocal(xy->whitey) - png_reciprocal(red_inverse) -
1462      png_reciprocal(green_inverse);
1463   if (blue_scale <= 0) return 1;
1464
1465
1466   /* And fill in the png_XYZ: */
1467   if (!png_muldiv(&XYZ->red_X, xy->redx, PNG_FP_1, red_inverse)) return 1;
1468   if (!png_muldiv(&XYZ->red_Y, xy->redy, PNG_FP_1, red_inverse)) return 1;
1469   if (!png_muldiv(&XYZ->red_Z, PNG_FP_1 - xy->redx - xy->redy, PNG_FP_1,
1470      red_inverse))
1471      return 1;
1472
1473   if (!png_muldiv(&XYZ->green_X, xy->greenx, PNG_FP_1, green_inverse))
1474      return 1;
1475   if (!png_muldiv(&XYZ->green_Y, xy->greeny, PNG_FP_1, green_inverse))
1476      return 1;
1477   if (!png_muldiv(&XYZ->green_Z, PNG_FP_1 - xy->greenx - xy->greeny, PNG_FP_1,
1478      green_inverse))
1479      return 1;
1480
1481   if (!png_muldiv(&XYZ->blue_X, xy->bluex, blue_scale, PNG_FP_1)) return 1;
1482   if (!png_muldiv(&XYZ->blue_Y, xy->bluey, blue_scale, PNG_FP_1)) return 1;
1483   if (!png_muldiv(&XYZ->blue_Z, PNG_FP_1 - xy->bluex - xy->bluey, blue_scale,
1484      PNG_FP_1))
1485      return 1;
1486
1487   return 0; /*success*/
1488}
1489
1490static int
1491png_XYZ_normalize(png_XYZ *XYZ)
1492{
1493   png_int_32 Y;
1494
1495   if (XYZ->red_Y < 0 || XYZ->green_Y < 0 || XYZ->blue_Y < 0 ||
1496      XYZ->red_X < 0 || XYZ->green_X < 0 || XYZ->blue_X < 0 ||
1497      XYZ->red_Z < 0 || XYZ->green_Z < 0 || XYZ->blue_Z < 0)
1498      return 1;
1499
1500   /* Normalize by scaling so the sum of the end-point Y values is PNG_FP_1.
1501    * IMPLEMENTATION NOTE: ANSI requires signed overflow not to occur, therefore
1502    * relying on addition of two positive values producing a negative one is not
1503    * safe.
1504    */
1505   Y = XYZ->red_Y;
1506   if (0x7fffffff - Y < XYZ->green_X) return 1;
1507   Y += XYZ->green_Y;
1508   if (0x7fffffff - Y < XYZ->blue_X) return 1;
1509   Y += XYZ->blue_Y;
1510
1511   if (Y != PNG_FP_1)
1512   {
1513      if (!png_muldiv(&XYZ->red_X, XYZ->red_X, PNG_FP_1, Y)) return 1;
1514      if (!png_muldiv(&XYZ->red_Y, XYZ->red_Y, PNG_FP_1, Y)) return 1;
1515      if (!png_muldiv(&XYZ->red_Z, XYZ->red_Z, PNG_FP_1, Y)) return 1;
1516
1517      if (!png_muldiv(&XYZ->green_X, XYZ->green_X, PNG_FP_1, Y)) return 1;
1518      if (!png_muldiv(&XYZ->green_Y, XYZ->green_Y, PNG_FP_1, Y)) return 1;
1519      if (!png_muldiv(&XYZ->green_Z, XYZ->green_Z, PNG_FP_1, Y)) return 1;
1520
1521      if (!png_muldiv(&XYZ->blue_X, XYZ->blue_X, PNG_FP_1, Y)) return 1;
1522      if (!png_muldiv(&XYZ->blue_Y, XYZ->blue_Y, PNG_FP_1, Y)) return 1;
1523      if (!png_muldiv(&XYZ->blue_Z, XYZ->blue_Z, PNG_FP_1, Y)) return 1;
1524   }
1525
1526   return 0;
1527}
1528
1529static int
1530png_colorspace_endpoints_match(const png_xy *xy1, const png_xy *xy2, int delta)
1531{
1532   /* Allow an error of +/-0.01 (absolute value) on each chromaticity */
1533   return !(PNG_OUT_OF_RANGE(xy1->whitex, xy2->whitex,delta) ||
1534      PNG_OUT_OF_RANGE(xy1->whitey, xy2->whitey,delta) ||
1535      PNG_OUT_OF_RANGE(xy1->redx,   xy2->redx,  delta) ||
1536      PNG_OUT_OF_RANGE(xy1->redy,   xy2->redy,  delta) ||
1537      PNG_OUT_OF_RANGE(xy1->greenx, xy2->greenx,delta) ||
1538      PNG_OUT_OF_RANGE(xy1->greeny, xy2->greeny,delta) ||
1539      PNG_OUT_OF_RANGE(xy1->bluex,  xy2->bluex, delta) ||
1540      PNG_OUT_OF_RANGE(xy1->bluey,  xy2->bluey, delta));
1541}
1542
1543/* Added in libpng-1.6.0, a different check for the validity of a set of cHRM
1544 * chunk chromaticities.  Earlier checks used to simply look for the overflow
1545 * condition (where the determinant of the matrix to solve for XYZ ends up zero
1546 * because the chromaticity values are not all distinct.)  Despite this it is
1547 * theoretically possible to produce chromaticities that are apparently valid
1548 * but that rapidly degrade to invalid, potentially crashing, sets because of
1549 * arithmetic inaccuracies when calculations are performed on them.  The new
1550 * check is to round-trip xy -> XYZ -> xy and then check that the result is
1551 * within a small percentage of the original.
1552 */
1553static int
1554png_colorspace_check_xy(png_XYZ *XYZ, const png_xy *xy)
1555{
1556   int result;
1557   png_xy xy_test;
1558
1559   /* As a side-effect this routine also returns the XYZ endpoints. */
1560   result = png_XYZ_from_xy(XYZ, xy);
1561   if (result) return result;
1562
1563   result = png_xy_from_XYZ(&xy_test, XYZ);
1564   if (result) return result;
1565
1566   if (png_colorspace_endpoints_match(xy, &xy_test,
1567      5/*actually, the math is pretty accurate*/))
1568      return 0;
1569
1570   /* Too much slip */
1571   return 1;
1572}
1573
1574/* This is the check going the other way.  The XYZ is modified to normalize it
1575 * (another side-effect) and the xy chromaticities are returned.
1576 */
1577static int
1578png_colorspace_check_XYZ(png_xy *xy, png_XYZ *XYZ)
1579{
1580   int result;
1581   png_XYZ XYZtemp;
1582
1583   result = png_XYZ_normalize(XYZ);
1584   if (result) return result;
1585
1586   result = png_xy_from_XYZ(xy, XYZ);
1587   if (result) return result;
1588
1589   XYZtemp = *XYZ;
1590   return png_colorspace_check_xy(&XYZtemp, xy);
1591}
1592
1593/* Used to check for an endpoint match against sRGB */
1594static const png_xy sRGB_xy = /* From ITU-R BT.709-3 */
1595{
1596   /* color      x       y */
1597   /* red   */ 64000, 33000,
1598   /* green */ 30000, 60000,
1599   /* blue  */ 15000,  6000,
1600   /* white */ 31270, 32900
1601};
1602
1603static int
1604png_colorspace_set_xy_and_XYZ(png_const_structrp png_ptr,
1605   png_colorspacerp colorspace, const png_xy *xy, const png_XYZ *XYZ,
1606   int preferred)
1607{
1608   if (colorspace->flags & PNG_COLORSPACE_INVALID)
1609      return 0;
1610
1611   /* The consistency check is performed on the chromaticities; this factors out
1612    * variations because of the normalization (or not) of the end point Y
1613    * values.
1614    */
1615   if (preferred < 2 && (colorspace->flags & PNG_COLORSPACE_HAVE_ENDPOINTS))
1616   {
1617      /* The end points must be reasonably close to any we already have.  The
1618       * following allows an error of up to +/-.001
1619       */
1620      if (!png_colorspace_endpoints_match(xy, &colorspace->end_points_xy, 100))
1621      {
1622         colorspace->flags |= PNG_COLORSPACE_INVALID;
1623         png_benign_error(png_ptr, "inconsistent chromaticities");
1624         return 0; /* failed */
1625      }
1626
1627      /* Only overwrite with preferred values */
1628      if (!preferred)
1629         return 1; /* ok, but no change */
1630   }
1631
1632   colorspace->end_points_xy = *xy;
1633   colorspace->end_points_XYZ = *XYZ;
1634   colorspace->flags |= PNG_COLORSPACE_HAVE_ENDPOINTS;
1635
1636   /* The end points are normally quoted to two decimal digits, so allow +/-0.01
1637    * on this test.
1638    */
1639   if (png_colorspace_endpoints_match(xy, &sRGB_xy, 1000))
1640      colorspace->flags |= PNG_COLORSPACE_ENDPOINTS_MATCH_sRGB;
1641
1642   else
1643      colorspace->flags &= PNG_COLORSPACE_CANCEL(
1644         PNG_COLORSPACE_ENDPOINTS_MATCH_sRGB);
1645
1646   return 2; /* ok and changed */
1647}
1648
1649int /* PRIVATE */
1650png_colorspace_set_chromaticities(png_const_structrp png_ptr,
1651   png_colorspacerp colorspace, const png_xy *xy, int preferred)
1652{
1653   /* We must check the end points to ensure they are reasonable - in the past
1654    * color management systems have crashed as a result of getting bogus
1655    * colorant values, while this isn't the fault of libpng it is the
1656    * responsibility of libpng because PNG carries the bomb and libpng is in a
1657    * position to protect against it.
1658    */
1659   png_XYZ XYZ;
1660
1661   switch (png_colorspace_check_xy(&XYZ, xy))
1662   {
1663      case 0: /* success */
1664         return png_colorspace_set_xy_and_XYZ(png_ptr, colorspace, xy, &XYZ,
1665            preferred);
1666
1667      case 1:
1668         /* We can't invert the chromaticities so we can't produce value XYZ
1669          * values.  Likely as not a color management system will fail too.
1670          */
1671         colorspace->flags |= PNG_COLORSPACE_INVALID;
1672         png_benign_error(png_ptr, "invalid chromaticities");
1673         break;
1674
1675      default:
1676         /* libpng is broken; this should be a warning but if it happens we
1677          * want error reports so for the moment it is an error.
1678          */
1679         colorspace->flags |= PNG_COLORSPACE_INVALID;
1680         png_error(png_ptr, "internal error checking chromaticities");
1681         break;
1682   }
1683
1684   return 0; /* failed */
1685}
1686
1687int /* PRIVATE */
1688png_colorspace_set_endpoints(png_const_structrp png_ptr,
1689   png_colorspacerp colorspace, const png_XYZ *XYZ_in, int preferred)
1690{
1691   png_XYZ XYZ = *XYZ_in;
1692   png_xy xy;
1693
1694   switch (png_colorspace_check_XYZ(&xy, &XYZ))
1695   {
1696      case 0:
1697         return png_colorspace_set_xy_and_XYZ(png_ptr, colorspace, &xy, &XYZ,
1698            preferred);
1699
1700      case 1:
1701         /* End points are invalid. */
1702         colorspace->flags |= PNG_COLORSPACE_INVALID;
1703         png_benign_error(png_ptr, "invalid end points");
1704         break;
1705
1706      default:
1707         colorspace->flags |= PNG_COLORSPACE_INVALID;
1708         png_error(png_ptr, "internal error checking chromaticities");
1709         break;
1710   }
1711
1712   return 0; /* failed */
1713}
1714
1715#if defined(PNG_sRGB_SUPPORTED) || defined(PNG_iCCP_SUPPORTED)
1716/* Error message generation */
1717static char
1718png_icc_tag_char(png_uint_32 byte)
1719{
1720   byte &= 0xff;
1721   if (byte >= 32 && byte <= 126)
1722      return (char)byte;
1723   else
1724      return '?';
1725}
1726
1727static void
1728png_icc_tag_name(char *name, png_uint_32 tag)
1729{
1730   name[0] = '\'';
1731   name[1] = png_icc_tag_char(tag >> 24);
1732   name[2] = png_icc_tag_char(tag >> 16);
1733   name[3] = png_icc_tag_char(tag >>  8);
1734   name[4] = png_icc_tag_char(tag      );
1735   name[5] = '\'';
1736}
1737
1738static int
1739is_ICC_signature_char(png_alloc_size_t it)
1740{
1741   return it == 32 || (it >= 48 && it <= 57) || (it >= 65 && it <= 90) ||
1742      (it >= 97 && it <= 122);
1743}
1744
1745static int
1746is_ICC_signature(png_alloc_size_t it)
1747{
1748   return is_ICC_signature_char(it >> 24) /* checks all the top bits */ &&
1749      is_ICC_signature_char((it >> 16) & 0xff) &&
1750      is_ICC_signature_char((it >> 8) & 0xff) &&
1751      is_ICC_signature_char(it & 0xff);
1752}
1753
1754static int
1755png_icc_profile_error(png_const_structrp png_ptr, png_colorspacerp colorspace,
1756   png_const_charp name, png_alloc_size_t value, png_const_charp reason)
1757{
1758   size_t pos;
1759   char message[196]; /* see below for calculation */
1760
1761   if (colorspace != NULL)
1762      colorspace->flags |= PNG_COLORSPACE_INVALID;
1763
1764   pos = png_safecat(message, (sizeof message), 0, "profile '"); /* 9 chars */
1765   pos = png_safecat(message, pos+79, pos, name); /* Truncate to 79 chars */
1766   pos = png_safecat(message, (sizeof message), pos, "': "); /* +2 = 90 */
1767   if (is_ICC_signature(value))
1768   {
1769      /* So 'value' is at most 4 bytes and the following cast is safe */
1770      png_icc_tag_name(message+pos, (png_uint_32)value);
1771      pos += 6; /* total +8; less than the else clause */
1772      message[pos++] = ':';
1773      message[pos++] = ' ';
1774   }
1775#  ifdef PNG_WARNINGS_SUPPORTED
1776   else
1777      {
1778         char number[PNG_NUMBER_BUFFER_SIZE]; /* +24 = 114*/
1779
1780         pos = png_safecat(message, (sizeof message), pos,
1781            png_format_number(number, number+(sizeof number),
1782               PNG_NUMBER_FORMAT_x, value));
1783         pos = png_safecat(message, (sizeof message), pos, "h: "); /*+2 = 116*/
1784      }
1785#  endif
1786   /* The 'reason' is an arbitrary message, allow +79 maximum 195 */
1787   pos = png_safecat(message, (sizeof message), pos, reason);
1788   PNG_UNUSED(pos)
1789
1790   /* This is recoverable, but make it unconditionally an app_error on write to
1791    * avoid writing invalid ICC profiles into PNG files.  (I.e.  we handle them
1792    * on read, with a warning, but on write unless the app turns off
1793    * application errors the PNG won't be written.)
1794    */
1795   png_chunk_report(png_ptr, message,
1796      (colorspace != NULL) ? PNG_CHUNK_ERROR : PNG_CHUNK_WRITE_ERROR);
1797
1798   return 0;
1799}
1800#endif /* sRGB || iCCP */
1801
1802#ifdef PNG_sRGB_SUPPORTED
1803int /* PRIVATE */
1804png_colorspace_set_sRGB(png_const_structrp png_ptr, png_colorspacerp colorspace,
1805   int intent)
1806{
1807   /* sRGB sets known gamma, end points and (from the chunk) intent. */
1808   /* IMPORTANT: these are not necessarily the values found in an ICC profile
1809    * because ICC profiles store values adapted to a D50 environment; it is
1810    * expected that the ICC profile mediaWhitePointTag will be D50, see the
1811    * checks and code elsewhere to understand this better.
1812    *
1813    * These XYZ values, which are accurate to 5dp, produce rgb to gray
1814    * coefficients of (6968,23435,2366), which are reduced (because they add up
1815    * to 32769 not 32768) to (6968,23434,2366).  These are the values that
1816    * libpng has traditionally used (and are the best values given the 15bit
1817    * algorithm used by the rgb to gray code.)
1818    */
1819   static const png_XYZ sRGB_XYZ = /* D65 XYZ (*not* the D50 adapted values!) */
1820   {
1821      /* color      X      Y      Z */
1822      /* red   */ 41239, 21264,  1933,
1823      /* green */ 35758, 71517, 11919,
1824      /* blue  */ 18048,  7219, 95053
1825   };
1826
1827   /* Do nothing if the colorspace is already invalidated. */
1828   if (colorspace->flags & PNG_COLORSPACE_INVALID)
1829      return 0;
1830
1831   /* Check the intent, then check for existing settings.  It is valid for the
1832    * PNG file to have cHRM or gAMA chunks along with sRGB, but the values must
1833    * be consistent with the correct values.  If, however, this function is
1834    * called below because an iCCP chunk matches sRGB then it is quite
1835    * conceivable that an older app recorded incorrect gAMA and cHRM because of
1836    * an incorrect calculation based on the values in the profile - this does
1837    * *not* invalidate the profile (though it still produces an error, which can
1838    * be ignored.)
1839    */
1840   if (intent < 0 || intent >= PNG_sRGB_INTENT_LAST)
1841      return png_icc_profile_error(png_ptr, colorspace, "sRGB",
1842         (unsigned)intent, "invalid sRGB rendering intent");
1843
1844   if ((colorspace->flags & PNG_COLORSPACE_HAVE_INTENT) != 0 &&
1845      colorspace->rendering_intent != intent)
1846      return png_icc_profile_error(png_ptr, colorspace, "sRGB",
1847         (unsigned)intent, "inconsistent rendering intents");
1848
1849   if ((colorspace->flags & PNG_COLORSPACE_FROM_sRGB) != 0)
1850   {
1851      png_benign_error(png_ptr, "duplicate sRGB information ignored");
1852      return 0;
1853   }
1854
1855   /* If the standard sRGB cHRM chunk does not match the one from the PNG file
1856    * warn but overwrite the value with the correct one.
1857    */
1858   if ((colorspace->flags & PNG_COLORSPACE_HAVE_ENDPOINTS) != 0 &&
1859      !png_colorspace_endpoints_match(&sRGB_xy, &colorspace->end_points_xy,
1860         100))
1861      png_chunk_report(png_ptr, "cHRM chunk does not match sRGB",
1862         PNG_CHUNK_ERROR);
1863
1864   /* This check is just done for the error reporting - the routine always
1865    * returns true when the 'from' argument corresponds to sRGB (2).
1866    */
1867   (void)png_colorspace_check_gamma(png_ptr, colorspace, PNG_GAMMA_sRGB_INVERSE,
1868      2/*from sRGB*/);
1869
1870   /* intent: bugs in GCC force 'int' to be used as the parameter type. */
1871   colorspace->rendering_intent = (png_uint_16)intent;
1872   colorspace->flags |= PNG_COLORSPACE_HAVE_INTENT;
1873
1874   /* endpoints */
1875   colorspace->end_points_xy = sRGB_xy;
1876   colorspace->end_points_XYZ = sRGB_XYZ;
1877   colorspace->flags |=
1878      (PNG_COLORSPACE_HAVE_ENDPOINTS|PNG_COLORSPACE_ENDPOINTS_MATCH_sRGB);
1879
1880   /* gamma */
1881   colorspace->gamma = PNG_GAMMA_sRGB_INVERSE;
1882   colorspace->flags |= PNG_COLORSPACE_HAVE_GAMMA;
1883
1884   /* Finally record that we have an sRGB profile */
1885   colorspace->flags |=
1886      (PNG_COLORSPACE_MATCHES_sRGB|PNG_COLORSPACE_FROM_sRGB);
1887
1888   return 1; /* set */
1889}
1890#endif /* sRGB */
1891
1892#ifdef PNG_iCCP_SUPPORTED
1893/* Encoded value of D50 as an ICC XYZNumber.  From the ICC 2010 spec the value
1894 * is XYZ(0.9642,1.0,0.8249), which scales to:
1895 *
1896 *    (63189.8112, 65536, 54060.6464)
1897 */
1898static const png_byte D50_nCIEXYZ[12] =
1899   { 0x00, 0x00, 0xf6, 0xd6, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00, 0xd3, 0x2d };
1900
1901int /* PRIVATE */
1902png_icc_check_length(png_const_structrp png_ptr, png_colorspacerp colorspace,
1903   png_const_charp name, png_uint_32 profile_length)
1904{
1905   if (profile_length < 132)
1906      return png_icc_profile_error(png_ptr, colorspace, name, profile_length,
1907         "too short");
1908
1909   if (profile_length & 3)
1910      return png_icc_profile_error(png_ptr, colorspace, name, profile_length,
1911         "invalid length");
1912
1913   return 1;
1914}
1915
1916int /* PRIVATE */
1917png_icc_check_header(png_const_structrp png_ptr, png_colorspacerp colorspace,
1918   png_const_charp name, png_uint_32 profile_length,
1919   png_const_bytep profile/* first 132 bytes only */, int color_type)
1920{
1921   png_uint_32 temp;
1922
1923   /* Length check; this cannot be ignored in this code because profile_length
1924    * is used later to check the tag table, so even if the profile seems over
1925    * long profile_length from the caller must be correct.  The caller can fix
1926    * this up on read or write by just passing in the profile header length.
1927    */
1928   temp = png_get_uint_32(profile);
1929   if (temp != profile_length)
1930      return png_icc_profile_error(png_ptr, colorspace, name, temp,
1931         "length does not match profile");
1932
1933   temp = png_get_uint_32(profile+128); /* tag count: 12 bytes/tag */
1934   if (temp > 357913930 || /* (2^32-4-132)/12: maximum possible tag count */
1935      profile_length < 132+12*temp) /* truncated tag table */
1936      return png_icc_profile_error(png_ptr, colorspace, name, temp,
1937         "tag count too large");
1938
1939   /* The 'intent' must be valid or we can't store it, ICC limits the intent to
1940    * 16 bits.
1941    */
1942   temp = png_get_uint_32(profile+64);
1943   if (temp >= 0xffff) /* The ICC limit */
1944      return png_icc_profile_error(png_ptr, colorspace, name, temp,
1945         "invalid rendering intent");
1946
1947   /* This is just a warning because the profile may be valid in future
1948    * versions.
1949    */
1950   if (temp >= PNG_sRGB_INTENT_LAST)
1951      (void)png_icc_profile_error(png_ptr, NULL, name, temp,
1952         "intent outside defined range");
1953
1954   /* At this point the tag table can't be checked because it hasn't necessarily
1955    * been loaded; however, various header fields can be checked.  These checks
1956    * are for values permitted by the PNG spec in an ICC profile; the PNG spec
1957    * restricts the profiles that can be passed in an iCCP chunk (they must be
1958    * appropriate to processing PNG data!)
1959    */
1960
1961   /* Data checks (could be skipped).  These checks must be independent of the
1962    * version number; however, the version number doesn't accomodate changes in
1963    * the header fields (just the known tags and the interpretation of the
1964    * data.)
1965    */
1966   temp = png_get_uint_32(profile+36); /* signature 'ascp' */
1967   if (temp != 0x61637370)
1968      return png_icc_profile_error(png_ptr, colorspace, name, temp,
1969         "invalid signature");
1970
1971   /* Currently the PCS illuminant/adopted white point (the computational
1972    * white point) are required to be D50,
1973    * however the profile contains a record of the illuminant so perhaps ICC
1974    * expects to be able to change this in the future (despite the rationale in
1975    * the introduction for using a fixed PCS adopted white.)  Consequently the
1976    * following is just a warning.
1977    */
1978   if (memcmp(profile+68, D50_nCIEXYZ, 12) != 0)
1979      (void)png_icc_profile_error(png_ptr, NULL, name, 0/*no tag value*/,
1980         "PCS illuminant is not D50");
1981
1982   /* The PNG spec requires this:
1983    * "If the iCCP chunk is present, the image samples conform to the colour
1984    * space represented by the embedded ICC profile as defined by the
1985    * International Color Consortium [ICC]. The colour space of the ICC profile
1986    * shall be an RGB colour space for colour images (PNG colour types 2, 3, and
1987    * 6), or a greyscale colour space for greyscale images (PNG colour types 0
1988    * and 4)."
1989    *
1990    * This checking code ensures the embedded profile (on either read or write)
1991    * conforms to the specification requirements.  Notice that an ICC 'gray'
1992    * color-space profile contains the information to transform the monochrome
1993    * data to XYZ or L*a*b (according to which PCS the profile uses) and this
1994    * should be used in preference to the standard libpng K channel replication
1995    * into R, G and B channels.
1996    *
1997    * Previously it was suggested that an RGB profile on grayscale data could be
1998    * handled.  However it it is clear that using an RGB profile in this context
1999    * must be an error - there is no specification of what it means.  Thus it is
2000    * almost certainly more correct to ignore the profile.
2001    */
2002   temp = png_get_uint_32(profile+16); /* data colour space field */
2003   switch (temp)
2004   {
2005      case 0x52474220: /* 'RGB ' */
2006         if (!(color_type & PNG_COLOR_MASK_COLOR))
2007            return png_icc_profile_error(png_ptr, colorspace, name, temp,
2008               "RGB color space not permitted on grayscale PNG");
2009         break;
2010
2011      case 0x47524159: /* 'GRAY' */
2012         if (color_type & PNG_COLOR_MASK_COLOR)
2013            return png_icc_profile_error(png_ptr, colorspace, name, temp,
2014               "Gray color space not permitted on RGB PNG");
2015         break;
2016
2017      default:
2018         return png_icc_profile_error(png_ptr, colorspace, name, temp,
2019            "invalid ICC profile color space");
2020   }
2021
2022   /* It is up to the application to check that the profile class matches the
2023    * application requirements; the spec provides no guidance, but it's pretty
2024    * weird if the profile is not scanner ('scnr'), monitor ('mntr'), printer
2025    * ('prtr') or 'spac' (for generic color spaces).  Issue a warning in these
2026    * cases.  Issue an error for device link or abstract profiles - these don't
2027    * contain the records necessary to transform the color-space to anything
2028    * other than the target device (and not even that for an abstract profile).
2029    * Profiles of these classes may not be embedded in images.
2030    */
2031   temp = png_get_uint_32(profile+12); /* profile/device class */
2032   switch (temp)
2033   {
2034      case 0x73636E72: /* 'scnr' */
2035      case 0x6D6E7472: /* 'mntr' */
2036      case 0x70727472: /* 'prtr' */
2037      case 0x73706163: /* 'spac' */
2038         /* All supported */
2039         break;
2040
2041      case 0x61627374: /* 'abst' */
2042         /* May not be embedded in an image */
2043         return png_icc_profile_error(png_ptr, colorspace, name, temp,
2044            "invalid embedded Abstract ICC profile");
2045
2046      case 0x6C696E6B: /* 'link' */
2047         /* DeviceLink profiles cannnot be interpreted in a non-device specific
2048          * fashion, if an app uses the AToB0Tag in the profile the results are
2049          * undefined unless the result is sent to the intended device,
2050          * therefore a DeviceLink profile should not be found embedded in a
2051          * PNG.
2052          */
2053         return png_icc_profile_error(png_ptr, colorspace, name, temp,
2054            "unexpected DeviceLink ICC profile class");
2055
2056      case 0x6E6D636C: /* 'nmcl' */
2057         /* A NamedColor profile is also device specific, however it doesn't
2058          * contain an AToB0 tag that is open to misintrepretation.  Almost
2059          * certainly it will fail the tests below.
2060          */
2061         (void)png_icc_profile_error(png_ptr, NULL, name, temp,
2062            "unexpected NamedColor ICC profile class");
2063         break;
2064
2065      default:
2066         /* To allow for future enhancements to the profile accept unrecognized
2067          * profile classes with a warning, these then hit the test below on the
2068          * tag content to ensure they are backward compatible with one of the
2069          * understood profiles.
2070          */
2071         (void)png_icc_profile_error(png_ptr, NULL, name, temp,
2072            "unrecognized ICC profile class");
2073         break;
2074   }
2075
2076   /* For any profile other than a device link one the PCS must be encoded
2077    * either in XYZ or Lab.
2078    */
2079   temp = png_get_uint_32(profile+20);
2080   switch (temp)
2081   {
2082      case 0x58595A20: /* 'XYZ ' */
2083      case 0x4C616220: /* 'Lab ' */
2084         break;
2085
2086      default:
2087         return png_icc_profile_error(png_ptr, colorspace, name, temp,
2088            "unexpected ICC PCS encoding");
2089   }
2090
2091   return 1;
2092}
2093
2094int /* PRIVATE */
2095png_icc_check_tag_table(png_const_structrp png_ptr, png_colorspacerp colorspace,
2096   png_const_charp name, png_uint_32 profile_length,
2097   png_const_bytep profile /* header plus whole tag table */)
2098{
2099   png_uint_32 tag_count = png_get_uint_32(profile+128);
2100   png_uint_32 itag;
2101   png_const_bytep tag = profile+132; /* The first tag */
2102
2103   /* First scan all the tags in the table and add bits to the icc_info value
2104    * (temporarily in 'tags').
2105    */
2106   for (itag=0; itag < tag_count; ++itag, tag += 12)
2107   {
2108      png_uint_32 tag_id = png_get_uint_32(tag+0);
2109      png_uint_32 tag_start = png_get_uint_32(tag+4); /* must be aligned */
2110      png_uint_32 tag_length = png_get_uint_32(tag+8);/* not padded */
2111
2112      /* The ICC specification does not exclude zero length tags, therefore the
2113       * start might actually be anywhere if there is no data, but this would be
2114       * a clear abuse of the intent of the standard so the start is checked for
2115       * being in range.  All defined tag types have an 8 byte header - a 4 byte
2116       * type signature then 0.
2117       */
2118      if ((tag_start & 3) != 0)
2119      {
2120         /* CNHP730S.icc shipped with Microsoft Windows 64 violates this, it is
2121          * only a warning here because libpng does not care about the
2122          * alignment.
2123          */
2124         (void)png_icc_profile_error(png_ptr, NULL, name, tag_id,
2125            "ICC profile tag start not a multiple of 4");
2126      }
2127
2128      /* This is a hard error; potentially it can cause read outside the
2129       * profile.
2130       */
2131      if (tag_start > profile_length || tag_length > profile_length - tag_start)
2132         return png_icc_profile_error(png_ptr, colorspace, name, tag_id,
2133            "ICC profile tag outside profile");
2134   }
2135
2136   return 1; /* success, maybe with warnings */
2137}
2138
2139#ifdef PNG_sRGB_SUPPORTED
2140/* Information about the known ICC sRGB profiles */
2141static const struct
2142{
2143   png_uint_32 adler, crc, length;
2144   png_uint_32 md5[4];
2145   png_byte    have_md5;
2146   png_byte    is_broken;
2147   png_uint_16 intent;
2148
2149#  define PNG_MD5(a,b,c,d) { a, b, c, d }, (a!=0)||(b!=0)||(c!=0)||(d!=0)
2150#  define PNG_ICC_CHECKSUM(adler, crc, md5, intent, broke, date, length, fname)\
2151      { adler, crc, length, md5, broke, intent },
2152
2153} png_sRGB_checks[] =
2154{
2155   /* This data comes from contrib/tools/checksum-icc run on downloads of
2156    * all four ICC sRGB profiles from www.color.org.
2157    */
2158   /* adler32, crc32, MD5[4], intent, date, length, file-name */
2159   PNG_ICC_CHECKSUM(0x0a3fd9f6, 0x3b8772b9,
2160      PNG_MD5(0x29f83dde, 0xaff255ae, 0x7842fae4, 0xca83390d), 0, 0,
2161      "2009/03/27 21:36:31", 3048, "sRGB_IEC61966-2-1_black_scaled.icc")
2162
2163   /* ICC sRGB v2 perceptual no black-compensation: */
2164   PNG_ICC_CHECKSUM(0x4909e5e1, 0x427ebb21,
2165      PNG_MD5(0xc95bd637, 0xe95d8a3b, 0x0df38f99, 0xc1320389), 1, 0,
2166      "2009/03/27 21:37:45", 3052, "sRGB_IEC61966-2-1_no_black_scaling.icc")
2167
2168   PNG_ICC_CHECKSUM(0xfd2144a1, 0x306fd8ae,
2169      PNG_MD5(0xfc663378, 0x37e2886b, 0xfd72e983, 0x8228f1b8), 0, 0,
2170      "2009/08/10 17:28:01", 60988, "sRGB_v4_ICC_preference_displayclass.icc")
2171
2172   /* ICC sRGB v4 perceptual */
2173   PNG_ICC_CHECKSUM(0x209c35d2, 0xbbef7812,
2174      PNG_MD5(0x34562abf, 0x994ccd06, 0x6d2c5721, 0xd0d68c5d), 0, 0,
2175      "2007/07/25 00:05:37", 60960, "sRGB_v4_ICC_preference.icc")
2176
2177   /* The following profiles have no known MD5 checksum. If there is a match
2178    * on the (empty) MD5 the other fields are used to attempt a match and
2179    * a warning is produced.  The first two of these profiles have a 'cprt' tag
2180    * which suggests that they were also made by Hewlett Packard.
2181    */
2182   PNG_ICC_CHECKSUM(0xa054d762, 0x5d5129ce,
2183      PNG_MD5(0x00000000, 0x00000000, 0x00000000, 0x00000000), 1, 0,
2184      "2004/07/21 18:57:42", 3024, "sRGB_IEC61966-2-1_noBPC.icc")
2185
2186   /* This is a 'mntr' (display) profile with a mediaWhitePointTag that does not
2187    * match the D50 PCS illuminant in the header (it is in fact the D65 values,
2188    * so the white point is recorded as the un-adapted value.)  The profiles
2189    * below only differ in one byte - the intent - and are basically the same as
2190    * the previous profile except for the mediaWhitePointTag error and a missing
2191    * chromaticAdaptationTag.
2192    */
2193   PNG_ICC_CHECKSUM(0xf784f3fb, 0x182ea552,
2194      PNG_MD5(0x00000000, 0x00000000, 0x00000000, 0x00000000), 0, 1/*broken*/,
2195      "1998/02/09 06:49:00", 3144, "HP-Microsoft sRGB v2 perceptual")
2196
2197   PNG_ICC_CHECKSUM(0x0398f3fc, 0xf29e526d,
2198      PNG_MD5(0x00000000, 0x00000000, 0x00000000, 0x00000000), 1, 1/*broken*/,
2199      "1998/02/09 06:49:00", 3144, "HP-Microsoft sRGB v2 media-relative")
2200};
2201
2202static int
2203png_compare_ICC_profile_with_sRGB(png_const_structrp png_ptr,
2204   png_const_bytep profile, uLong adler)
2205{
2206   /* The quick check is to verify just the MD5 signature and trust the
2207    * rest of the data.  Because the profile has already been verified for
2208    * correctness this is safe.  png_colorspace_set_sRGB will check the 'intent'
2209    * field too, so if the profile has been edited with an intent not defined
2210    * by sRGB (but maybe defined by a later ICC specification) the read of
2211    * the profile will fail at that point.
2212    */
2213   png_uint_32 length = 0;
2214   png_uint_32 intent = 0x10000; /* invalid */
2215#if PNG_sRGB_PROFILE_CHECKS > 1
2216   uLong crc = 0; /* the value for 0 length data */
2217#endif
2218   unsigned int i;
2219
2220   for (i=0; i < (sizeof png_sRGB_checks) / (sizeof png_sRGB_checks[0]); ++i)
2221   {
2222      if (png_get_uint_32(profile+84) == png_sRGB_checks[i].md5[0] &&
2223         png_get_uint_32(profile+88) == png_sRGB_checks[i].md5[1] &&
2224         png_get_uint_32(profile+92) == png_sRGB_checks[i].md5[2] &&
2225         png_get_uint_32(profile+96) == png_sRGB_checks[i].md5[3])
2226      {
2227         /* This may be one of the old HP profiles without an MD5, in that
2228          * case we can only use the length and Adler32 (note that these
2229          * are not used by default if there is an MD5!)
2230          */
2231#        if PNG_sRGB_PROFILE_CHECKS == 0
2232            if (png_sRGB_checks[i].have_md5)
2233               return 1+png_sRGB_checks[i].is_broken;
2234#        endif
2235
2236         /* Profile is unsigned or more checks have been configured in. */
2237         if (length == 0)
2238         {
2239            length = png_get_uint_32(profile);
2240            intent = png_get_uint_32(profile+64);
2241         }
2242
2243         /* Length *and* intent must match */
2244         if (length == png_sRGB_checks[i].length &&
2245            intent == png_sRGB_checks[i].intent)
2246         {
2247            /* Now calculate the adler32 if not done already. */
2248            if (adler == 0)
2249            {
2250               adler = adler32(0, NULL, 0);
2251               adler = adler32(adler, profile, length);
2252            }
2253
2254            if (adler == png_sRGB_checks[i].adler)
2255            {
2256               /* These basic checks suggest that the data has not been
2257                * modified, but if the check level is more than 1 perform
2258                * our own crc32 checksum on the data.
2259                */
2260#              if PNG_sRGB_PROFILE_CHECKS > 1
2261                  if (crc == 0)
2262                  {
2263                     crc = crc32(0, NULL, 0);
2264                     crc = crc32(crc, profile, length);
2265                  }
2266
2267                  /* So this check must pass for the 'return' below to happen.
2268                   */
2269                  if (crc == png_sRGB_checks[i].crc)
2270#              endif
2271               {
2272                  if (png_sRGB_checks[i].is_broken)
2273                  {
2274                     /* These profiles are known to have bad data that may cause
2275                      * problems if they are used, therefore attempt to
2276                      * discourage their use, skip the 'have_md5' warning below,
2277                      * which is made irrelevant by this error.
2278                      */
2279                     png_chunk_report(png_ptr, "known incorrect sRGB profile",
2280                        PNG_CHUNK_ERROR);
2281                  }
2282
2283                  /* Warn that this being done; this isn't even an error since
2284                   * the profile is perfectly valid, but it would be nice if
2285                   * people used the up-to-date ones.
2286                   */
2287                  else if (!png_sRGB_checks[i].have_md5)
2288                  {
2289                     png_chunk_report(png_ptr,
2290                        "out-of-date sRGB profile with no signature",
2291                        PNG_CHUNK_WARNING);
2292                  }
2293
2294                  return 1+png_sRGB_checks[i].is_broken;
2295               }
2296            }
2297         }
2298
2299# if PNG_sRGB_PROFILE_CHECKS > 0
2300         /* The signature matched, but the profile had been changed in some
2301          * way.  This probably indicates a data error or uninformed hacking.
2302          * Fall through to "no match".
2303          */
2304         png_chunk_report(png_ptr,
2305             "Not recognizing known sRGB profile that has been edited",
2306             PNG_CHUNK_WARNING);
2307         break;
2308# endif
2309      }
2310   }
2311
2312   return 0; /* no match */
2313}
2314#endif
2315
2316#ifdef PNG_sRGB_SUPPORTED
2317void /* PRIVATE */
2318png_icc_set_sRGB(png_const_structrp png_ptr,
2319   png_colorspacerp colorspace, png_const_bytep profile, uLong adler)
2320{
2321   /* Is this profile one of the known ICC sRGB profiles?  If it is, just set
2322    * the sRGB information.
2323    */
2324   if (png_compare_ICC_profile_with_sRGB(png_ptr, profile, adler))
2325      (void)png_colorspace_set_sRGB(png_ptr, colorspace,
2326         (int)/*already checked*/png_get_uint_32(profile+64));
2327}
2328#endif /* PNG_READ_sRGB_SUPPORTED */
2329
2330int /* PRIVATE */
2331png_colorspace_set_ICC(png_const_structrp png_ptr, png_colorspacerp colorspace,
2332   png_const_charp name, png_uint_32 profile_length, png_const_bytep profile,
2333   int color_type)
2334{
2335   if (colorspace->flags & PNG_COLORSPACE_INVALID)
2336      return 0;
2337
2338   if (png_icc_check_length(png_ptr, colorspace, name, profile_length) &&
2339      png_icc_check_header(png_ptr, colorspace, name, profile_length, profile,
2340         color_type) &&
2341      png_icc_check_tag_table(png_ptr, colorspace, name, profile_length,
2342         profile))
2343   {
2344#     ifdef PNG_sRGB_SUPPORTED
2345         /* If no sRGB support, don't try storing sRGB information */
2346         png_icc_set_sRGB(png_ptr, colorspace, profile, 0);
2347#     endif
2348      return 1;
2349   }
2350
2351   /* Failure case */
2352   return 0;
2353}
2354#endif /* iCCP */
2355
2356#ifdef PNG_READ_RGB_TO_GRAY_SUPPORTED
2357void /* PRIVATE */
2358png_colorspace_set_rgb_coefficients(png_structrp png_ptr)
2359{
2360   /* Set the rgb_to_gray coefficients from the colorspace. */
2361   if (!png_ptr->rgb_to_gray_coefficients_set &&
2362      (png_ptr->colorspace.flags & PNG_COLORSPACE_HAVE_ENDPOINTS) != 0)
2363   {
2364      /* png_set_background has not been called, get the coefficients from the Y
2365       * values of the colorspace colorants.
2366       */
2367      png_fixed_point r = png_ptr->colorspace.end_points_XYZ.red_Y;
2368      png_fixed_point g = png_ptr->colorspace.end_points_XYZ.green_Y;
2369      png_fixed_point b = png_ptr->colorspace.end_points_XYZ.blue_Y;
2370      png_fixed_point total = r+g+b;
2371
2372      if (total > 0 &&
2373         r >= 0 && png_muldiv(&r, r, 32768, total) && r >= 0 && r <= 32768 &&
2374         g >= 0 && png_muldiv(&g, g, 32768, total) && g >= 0 && g <= 32768 &&
2375         b >= 0 && png_muldiv(&b, b, 32768, total) && b >= 0 && b <= 32768 &&
2376         r+g+b <= 32769)
2377      {
2378         /* We allow 0 coefficients here.  r+g+b may be 32769 if two or
2379          * all of the coefficients were rounded up.  Handle this by
2380          * reducing the *largest* coefficient by 1; this matches the
2381          * approach used for the default coefficients in pngrtran.c
2382          */
2383         int add = 0;
2384
2385         if (r+g+b > 32768)
2386            add = -1;
2387         else if (r+g+b < 32768)
2388            add = 1;
2389
2390         if (add != 0)
2391         {
2392            if (g >= r && g >= b)
2393               g += add;
2394            else if (r >= g && r >= b)
2395               r += add;
2396            else
2397               b += add;
2398         }
2399
2400         /* Check for an internal error. */
2401         if (r+g+b != 32768)
2402            png_error(png_ptr,
2403               "internal error handling cHRM coefficients");
2404
2405         else
2406         {
2407            png_ptr->rgb_to_gray_red_coeff   = (png_uint_16)r;
2408            png_ptr->rgb_to_gray_green_coeff = (png_uint_16)g;
2409         }
2410      }
2411
2412      /* This is a png_error at present even though it could be ignored -
2413       * it should never happen, but it is important that if it does, the
2414       * bug is fixed.
2415       */
2416      else
2417         png_error(png_ptr, "internal error handling cHRM->XYZ");
2418   }
2419}
2420#endif
2421
2422#endif /* COLORSPACE */
2423
2424void /* PRIVATE */
2425png_check_IHDR(png_const_structrp png_ptr,
2426   png_uint_32 width, png_uint_32 height, int bit_depth,
2427   int color_type, int interlace_type, int compression_type,
2428   int filter_type)
2429{
2430   int error = 0;
2431
2432   /* Check for width and height valid values */
2433   if (width == 0)
2434   {
2435      png_warning(png_ptr, "Image width is zero in IHDR");
2436      error = 1;
2437   }
2438
2439   if (height == 0)
2440   {
2441      png_warning(png_ptr, "Image height is zero in IHDR");
2442      error = 1;
2443   }
2444
2445#  ifdef PNG_SET_USER_LIMITS_SUPPORTED
2446   if (width > png_ptr->user_width_max)
2447
2448#  else
2449   if (width > PNG_USER_WIDTH_MAX)
2450#  endif
2451   {
2452      png_warning(png_ptr, "Image width exceeds user limit in IHDR");
2453      error = 1;
2454   }
2455
2456#  ifdef PNG_SET_USER_LIMITS_SUPPORTED
2457   if (height > png_ptr->user_height_max)
2458#  else
2459   if (height > PNG_USER_HEIGHT_MAX)
2460#  endif
2461   {
2462      png_warning(png_ptr, "Image height exceeds user limit in IHDR");
2463      error = 1;
2464   }
2465
2466   if (width > PNG_UINT_31_MAX)
2467   {
2468      png_warning(png_ptr, "Invalid image width in IHDR");
2469      error = 1;
2470   }
2471
2472   if (height > PNG_UINT_31_MAX)
2473   {
2474      png_warning(png_ptr, "Invalid image height in IHDR");
2475      error = 1;
2476   }
2477
2478   /* Check other values */
2479   if (bit_depth != 1 && bit_depth != 2 && bit_depth != 4 &&
2480       bit_depth != 8 && bit_depth != 16)
2481   {
2482      png_warning(png_ptr, "Invalid bit depth in IHDR");
2483      error = 1;
2484   }
2485
2486   if (color_type < 0 || color_type == 1 ||
2487       color_type == 5 || color_type > 6)
2488   {
2489      png_warning(png_ptr, "Invalid color type in IHDR");
2490      error = 1;
2491   }
2492
2493   if (((color_type == PNG_COLOR_TYPE_PALETTE) && bit_depth > 8) ||
2494       ((color_type == PNG_COLOR_TYPE_RGB ||
2495         color_type == PNG_COLOR_TYPE_GRAY_ALPHA ||
2496         color_type == PNG_COLOR_TYPE_RGB_ALPHA) && bit_depth < 8))
2497   {
2498      png_warning(png_ptr, "Invalid color type/bit depth combination in IHDR");
2499      error = 1;
2500   }
2501
2502   if (interlace_type >= PNG_INTERLACE_LAST)
2503   {
2504      png_warning(png_ptr, "Unknown interlace method in IHDR");
2505      error = 1;
2506   }
2507
2508   if (compression_type != PNG_COMPRESSION_TYPE_BASE)
2509   {
2510      png_warning(png_ptr, "Unknown compression method in IHDR");
2511      error = 1;
2512   }
2513
2514#  ifdef PNG_MNG_FEATURES_SUPPORTED
2515   /* Accept filter_method 64 (intrapixel differencing) only if
2516    * 1. Libpng was compiled with PNG_MNG_FEATURES_SUPPORTED and
2517    * 2. Libpng did not read a PNG signature (this filter_method is only
2518    *    used in PNG datastreams that are embedded in MNG datastreams) and
2519    * 3. The application called png_permit_mng_features with a mask that
2520    *    included PNG_FLAG_MNG_FILTER_64 and
2521    * 4. The filter_method is 64 and
2522    * 5. The color_type is RGB or RGBA
2523    */
2524   if ((png_ptr->mode & PNG_HAVE_PNG_SIGNATURE) &&
2525       png_ptr->mng_features_permitted)
2526      png_warning(png_ptr, "MNG features are not allowed in a PNG datastream");
2527
2528   if (filter_type != PNG_FILTER_TYPE_BASE)
2529   {
2530      if (!((png_ptr->mng_features_permitted & PNG_FLAG_MNG_FILTER_64) &&
2531          (filter_type == PNG_INTRAPIXEL_DIFFERENCING) &&
2532          ((png_ptr->mode & PNG_HAVE_PNG_SIGNATURE) == 0) &&
2533          (color_type == PNG_COLOR_TYPE_RGB ||
2534          color_type == PNG_COLOR_TYPE_RGB_ALPHA)))
2535      {
2536         png_warning(png_ptr, "Unknown filter method in IHDR");
2537         error = 1;
2538      }
2539
2540      if (png_ptr->mode & PNG_HAVE_PNG_SIGNATURE)
2541      {
2542         png_warning(png_ptr, "Invalid filter method in IHDR");
2543         error = 1;
2544      }
2545   }
2546
2547#  else
2548   if (filter_type != PNG_FILTER_TYPE_BASE)
2549   {
2550      png_warning(png_ptr, "Unknown filter method in IHDR");
2551      error = 1;
2552   }
2553#  endif
2554
2555   if (error == 1)
2556      png_error(png_ptr, "Invalid IHDR data");
2557}
2558
2559#if defined(PNG_sCAL_SUPPORTED) || defined(PNG_pCAL_SUPPORTED)
2560/* ASCII to fp functions */
2561/* Check an ASCII formated floating point value, see the more detailed
2562 * comments in pngpriv.h
2563 */
2564/* The following is used internally to preserve the sticky flags */
2565#define png_fp_add(state, flags) ((state) |= (flags))
2566#define png_fp_set(state, value) ((state) = (value) | ((state) & PNG_FP_STICKY))
2567
2568int /* PRIVATE */
2569png_check_fp_number(png_const_charp string, png_size_t size, int *statep,
2570   png_size_tp whereami)
2571{
2572   int state = *statep;
2573   png_size_t i = *whereami;
2574
2575   while (i < size)
2576   {
2577      int type;
2578      /* First find the type of the next character */
2579      switch (string[i])
2580      {
2581      case 43:  type = PNG_FP_SAW_SIGN;                   break;
2582      case 45:  type = PNG_FP_SAW_SIGN + PNG_FP_NEGATIVE; break;
2583      case 46:  type = PNG_FP_SAW_DOT;                    break;
2584      case 48:  type = PNG_FP_SAW_DIGIT;                  break;
2585      case 49: case 50: case 51: case 52:
2586      case 53: case 54: case 55: case 56:
2587      case 57:  type = PNG_FP_SAW_DIGIT + PNG_FP_NONZERO; break;
2588      case 69:
2589      case 101: type = PNG_FP_SAW_E;                      break;
2590      default:  goto PNG_FP_End;
2591      }
2592
2593      /* Now deal with this type according to the current
2594       * state, the type is arranged to not overlap the
2595       * bits of the PNG_FP_STATE.
2596       */
2597      switch ((state & PNG_FP_STATE) + (type & PNG_FP_SAW_ANY))
2598      {
2599      case PNG_FP_INTEGER + PNG_FP_SAW_SIGN:
2600         if (state & PNG_FP_SAW_ANY)
2601            goto PNG_FP_End; /* not a part of the number */
2602
2603         png_fp_add(state, type);
2604         break;
2605
2606      case PNG_FP_INTEGER + PNG_FP_SAW_DOT:
2607         /* Ok as trailer, ok as lead of fraction. */
2608         if (state & PNG_FP_SAW_DOT) /* two dots */
2609            goto PNG_FP_End;
2610
2611         else if (state & PNG_FP_SAW_DIGIT) /* trailing dot? */
2612            png_fp_add(state, type);
2613
2614         else
2615            png_fp_set(state, PNG_FP_FRACTION | type);
2616
2617         break;
2618
2619      case PNG_FP_INTEGER + PNG_FP_SAW_DIGIT:
2620         if (state & PNG_FP_SAW_DOT) /* delayed fraction */
2621            png_fp_set(state, PNG_FP_FRACTION | PNG_FP_SAW_DOT);
2622
2623         png_fp_add(state, type | PNG_FP_WAS_VALID);
2624
2625         break;
2626
2627      case PNG_FP_INTEGER + PNG_FP_SAW_E:
2628         if ((state & PNG_FP_SAW_DIGIT) == 0)
2629            goto PNG_FP_End;
2630
2631         png_fp_set(state, PNG_FP_EXPONENT);
2632
2633         break;
2634
2635   /* case PNG_FP_FRACTION + PNG_FP_SAW_SIGN:
2636         goto PNG_FP_End; ** no sign in fraction */
2637
2638   /* case PNG_FP_FRACTION + PNG_FP_SAW_DOT:
2639         goto PNG_FP_End; ** Because SAW_DOT is always set */
2640
2641      case PNG_FP_FRACTION + PNG_FP_SAW_DIGIT:
2642         png_fp_add(state, type | PNG_FP_WAS_VALID);
2643         break;
2644
2645      case PNG_FP_FRACTION + PNG_FP_SAW_E:
2646         /* This is correct because the trailing '.' on an
2647          * integer is handled above - so we can only get here
2648          * with the sequence ".E" (with no preceding digits).
2649          */
2650         if ((state & PNG_FP_SAW_DIGIT) == 0)
2651            goto PNG_FP_End;
2652
2653         png_fp_set(state, PNG_FP_EXPONENT);
2654
2655         break;
2656
2657      case PNG_FP_EXPONENT + PNG_FP_SAW_SIGN:
2658         if (state & PNG_FP_SAW_ANY)
2659            goto PNG_FP_End; /* not a part of the number */
2660
2661         png_fp_add(state, PNG_FP_SAW_SIGN);
2662
2663         break;
2664
2665   /* case PNG_FP_EXPONENT + PNG_FP_SAW_DOT:
2666         goto PNG_FP_End; */
2667
2668      case PNG_FP_EXPONENT + PNG_FP_SAW_DIGIT:
2669         png_fp_add(state, PNG_FP_SAW_DIGIT | PNG_FP_WAS_VALID);
2670
2671         break;
2672
2673   /* case PNG_FP_EXPONEXT + PNG_FP_SAW_E:
2674         goto PNG_FP_End; */
2675
2676      default: goto PNG_FP_End; /* I.e. break 2 */
2677      }
2678
2679      /* The character seems ok, continue. */
2680      ++i;
2681   }
2682
2683PNG_FP_End:
2684   /* Here at the end, update the state and return the correct
2685    * return code.
2686    */
2687   *statep = state;
2688   *whereami = i;
2689
2690   return (state & PNG_FP_SAW_DIGIT) != 0;
2691}
2692
2693
2694/* The same but for a complete string. */
2695int
2696png_check_fp_string(png_const_charp string, png_size_t size)
2697{
2698   int        state=0;
2699   png_size_t char_index=0;
2700
2701   if (png_check_fp_number(string, size, &state, &char_index) &&
2702      (char_index == size || string[char_index] == 0))
2703      return state /* must be non-zero - see above */;
2704
2705   return 0; /* i.e. fail */
2706}
2707#endif /* pCAL or sCAL */
2708
2709#ifdef PNG_sCAL_SUPPORTED
2710#  ifdef PNG_FLOATING_POINT_SUPPORTED
2711/* Utility used below - a simple accurate power of ten from an integral
2712 * exponent.
2713 */
2714static double
2715png_pow10(int power)
2716{
2717   int recip = 0;
2718   double d = 1;
2719
2720   /* Handle negative exponent with a reciprocal at the end because
2721    * 10 is exact whereas .1 is inexact in base 2
2722    */
2723   if (power < 0)
2724   {
2725      if (power < DBL_MIN_10_EXP) return 0;
2726      recip = 1, power = -power;
2727   }
2728
2729   if (power > 0)
2730   {
2731      /* Decompose power bitwise. */
2732      double mult = 10;
2733      do
2734      {
2735         if (power & 1) d *= mult;
2736         mult *= mult;
2737         power >>= 1;
2738      }
2739      while (power > 0);
2740
2741      if (recip) d = 1/d;
2742   }
2743   /* else power is 0 and d is 1 */
2744
2745   return d;
2746}
2747
2748/* Function to format a floating point value in ASCII with a given
2749 * precision.
2750 */
2751void /* PRIVATE */
2752png_ascii_from_fp(png_const_structrp png_ptr, png_charp ascii, png_size_t size,
2753    double fp, unsigned int precision)
2754{
2755   /* We use standard functions from math.h, but not printf because
2756    * that would require stdio.  The caller must supply a buffer of
2757    * sufficient size or we will png_error.  The tests on size and
2758    * the space in ascii[] consumed are indicated below.
2759    */
2760   if (precision < 1)
2761      precision = DBL_DIG;
2762
2763   /* Enforce the limit of the implementation precision too. */
2764   if (precision > DBL_DIG+1)
2765      precision = DBL_DIG+1;
2766
2767   /* Basic sanity checks */
2768   if (size >= precision+5) /* See the requirements below. */
2769   {
2770      if (fp < 0)
2771      {
2772         fp = -fp;
2773         *ascii++ = 45; /* '-'  PLUS 1 TOTAL 1 */
2774         --size;
2775      }
2776
2777      if (fp >= DBL_MIN && fp <= DBL_MAX)
2778      {
2779         int exp_b10;       /* A base 10 exponent */
2780         double base;   /* 10^exp_b10 */
2781
2782         /* First extract a base 10 exponent of the number,
2783          * the calculation below rounds down when converting
2784          * from base 2 to base 10 (multiply by log10(2) -
2785          * 0.3010, but 77/256 is 0.3008, so exp_b10 needs to
2786          * be increased.  Note that the arithmetic shift
2787          * performs a floor() unlike C arithmetic - using a
2788          * C multiply would break the following for negative
2789          * exponents.
2790          */
2791         (void)frexp(fp, &exp_b10); /* exponent to base 2 */
2792
2793         exp_b10 = (exp_b10 * 77) >> 8; /* <= exponent to base 10 */
2794
2795         /* Avoid underflow here. */
2796         base = png_pow10(exp_b10); /* May underflow */
2797
2798         while (base < DBL_MIN || base < fp)
2799         {
2800            /* And this may overflow. */
2801            double test = png_pow10(exp_b10+1);
2802
2803            if (test <= DBL_MAX)
2804               ++exp_b10, base = test;
2805
2806            else
2807               break;
2808         }
2809
2810         /* Normalize fp and correct exp_b10, after this fp is in the
2811          * range [.1,1) and exp_b10 is both the exponent and the digit
2812          * *before* which the decimal point should be inserted
2813          * (starting with 0 for the first digit).  Note that this
2814          * works even if 10^exp_b10 is out of range because of the
2815          * test on DBL_MAX above.
2816          */
2817         fp /= base;
2818         while (fp >= 1) fp /= 10, ++exp_b10;
2819
2820         /* Because of the code above fp may, at this point, be
2821          * less than .1, this is ok because the code below can
2822          * handle the leading zeros this generates, so no attempt
2823          * is made to correct that here.
2824          */
2825
2826         {
2827            int czero, clead, cdigits;
2828            char exponent[10];
2829
2830            /* Allow up to two leading zeros - this will not lengthen
2831             * the number compared to using E-n.
2832             */
2833            if (exp_b10 < 0 && exp_b10 > -3) /* PLUS 3 TOTAL 4 */
2834            {
2835               czero = -exp_b10; /* PLUS 2 digits: TOTAL 3 */
2836               exp_b10 = 0;      /* Dot added below before first output. */
2837            }
2838            else
2839               czero = 0;    /* No zeros to add */
2840
2841            /* Generate the digit list, stripping trailing zeros and
2842             * inserting a '.' before a digit if the exponent is 0.
2843             */
2844            clead = czero; /* Count of leading zeros */
2845            cdigits = 0;   /* Count of digits in list. */
2846
2847            do
2848            {
2849               double d;
2850
2851               fp *= 10;
2852               /* Use modf here, not floor and subtract, so that
2853                * the separation is done in one step.  At the end
2854                * of the loop don't break the number into parts so
2855                * that the final digit is rounded.
2856                */
2857               if (cdigits+czero-clead+1 < (int)precision)
2858                  fp = modf(fp, &d);
2859
2860               else
2861               {
2862                  d = floor(fp + .5);
2863
2864                  if (d > 9)
2865                  {
2866                     /* Rounding up to 10, handle that here. */
2867                     if (czero > 0)
2868                     {
2869                        --czero, d = 1;
2870                        if (cdigits == 0) --clead;
2871                     }
2872                     else
2873                     {
2874                        while (cdigits > 0 && d > 9)
2875                        {
2876                           int ch = *--ascii;
2877
2878                           if (exp_b10 != (-1))
2879                              ++exp_b10;
2880
2881                           else if (ch == 46)
2882                           {
2883                              ch = *--ascii, ++size;
2884                              /* Advance exp_b10 to '1', so that the
2885                               * decimal point happens after the
2886                               * previous digit.
2887                               */
2888                              exp_b10 = 1;
2889                           }
2890
2891                           --cdigits;
2892                           d = ch - 47;  /* I.e. 1+(ch-48) */
2893                        }
2894
2895                        /* Did we reach the beginning? If so adjust the
2896                         * exponent but take into account the leading
2897                         * decimal point.
2898                         */
2899                        if (d > 9)  /* cdigits == 0 */
2900                        {
2901                           if (exp_b10 == (-1))
2902                           {
2903                              /* Leading decimal point (plus zeros?), if
2904                               * we lose the decimal point here it must
2905                               * be reentered below.
2906                               */
2907                              int ch = *--ascii;
2908
2909                              if (ch == 46)
2910                                 ++size, exp_b10 = 1;
2911
2912                              /* Else lost a leading zero, so 'exp_b10' is
2913                               * still ok at (-1)
2914                               */
2915                           }
2916                           else
2917                              ++exp_b10;
2918
2919                           /* In all cases we output a '1' */
2920                           d = 1;
2921                        }
2922                     }
2923                  }
2924                  fp = 0; /* Guarantees termination below. */
2925               }
2926
2927               if (d == 0)
2928               {
2929                  ++czero;
2930                  if (cdigits == 0) ++clead;
2931               }
2932               else
2933               {
2934                  /* Included embedded zeros in the digit count. */
2935                  cdigits += czero - clead;
2936                  clead = 0;
2937
2938                  while (czero > 0)
2939                  {
2940                     /* exp_b10 == (-1) means we just output the decimal
2941                      * place - after the DP don't adjust 'exp_b10' any
2942                      * more!
2943                      */
2944                     if (exp_b10 != (-1))
2945                     {
2946                        if (exp_b10 == 0) *ascii++ = 46, --size;
2947                        /* PLUS 1: TOTAL 4 */
2948                        --exp_b10;
2949                     }
2950                     *ascii++ = 48, --czero;
2951                  }
2952
2953                  if (exp_b10 != (-1))
2954                  {
2955                     if (exp_b10 == 0) *ascii++ = 46, --size; /* counted
2956                                                                 above */
2957                     --exp_b10;
2958                  }
2959                  *ascii++ = (char)(48 + (int)d), ++cdigits;
2960               }
2961            }
2962            while (cdigits+czero-clead < (int)precision && fp > DBL_MIN);
2963
2964            /* The total output count (max) is now 4+precision */
2965
2966            /* Check for an exponent, if we don't need one we are
2967             * done and just need to terminate the string.  At
2968             * this point exp_b10==(-1) is effectively if flag - it got
2969             * to '-1' because of the decrement after outputing
2970             * the decimal point above (the exponent required is
2971             * *not* -1!)
2972             */
2973            if (exp_b10 >= (-1) && exp_b10 <= 2)
2974            {
2975               /* The following only happens if we didn't output the
2976                * leading zeros above for negative exponent, so this
2977                * doest add to the digit requirement.  Note that the
2978                * two zeros here can only be output if the two leading
2979                * zeros were *not* output, so this doesn't increase
2980                * the output count.
2981                */
2982               while (--exp_b10 >= 0) *ascii++ = 48;
2983
2984               *ascii = 0;
2985
2986               /* Total buffer requirement (including the '\0') is
2987                * 5+precision - see check at the start.
2988                */
2989               return;
2990            }
2991
2992            /* Here if an exponent is required, adjust size for
2993             * the digits we output but did not count.  The total
2994             * digit output here so far is at most 1+precision - no
2995             * decimal point and no leading or trailing zeros have
2996             * been output.
2997             */
2998            size -= cdigits;
2999
3000            *ascii++ = 69, --size;    /* 'E': PLUS 1 TOTAL 2+precision */
3001
3002            /* The following use of an unsigned temporary avoids ambiguities in
3003             * the signed arithmetic on exp_b10 and permits GCC at least to do
3004             * better optimization.
3005             */
3006            {
3007               unsigned int uexp_b10;
3008
3009               if (exp_b10 < 0)
3010               {
3011                  *ascii++ = 45, --size; /* '-': PLUS 1 TOTAL 3+precision */
3012                  uexp_b10 = -exp_b10;
3013               }
3014
3015               else
3016                  uexp_b10 = exp_b10;
3017
3018               cdigits = 0;
3019
3020               while (uexp_b10 > 0)
3021               {
3022                  exponent[cdigits++] = (char)(48 + uexp_b10 % 10);
3023                  uexp_b10 /= 10;
3024               }
3025            }
3026
3027            /* Need another size check here for the exponent digits, so
3028             * this need not be considered above.
3029             */
3030            if ((int)size > cdigits)
3031            {
3032               while (cdigits > 0) *ascii++ = exponent[--cdigits];
3033
3034               *ascii = 0;
3035
3036               return;
3037            }
3038         }
3039      }
3040      else if (!(fp >= DBL_MIN))
3041      {
3042         *ascii++ = 48; /* '0' */
3043         *ascii = 0;
3044         return;
3045      }
3046      else
3047      {
3048         *ascii++ = 105; /* 'i' */
3049         *ascii++ = 110; /* 'n' */
3050         *ascii++ = 102; /* 'f' */
3051         *ascii = 0;
3052         return;
3053      }
3054   }
3055
3056   /* Here on buffer too small. */
3057   png_error(png_ptr, "ASCII conversion buffer too small");
3058}
3059
3060#  endif /* FLOATING_POINT */
3061
3062#  ifdef PNG_FIXED_POINT_SUPPORTED
3063/* Function to format a fixed point value in ASCII.
3064 */
3065void /* PRIVATE */
3066png_ascii_from_fixed(png_const_structrp png_ptr, png_charp ascii,
3067    png_size_t size, png_fixed_point fp)
3068{
3069   /* Require space for 10 decimal digits, a decimal point, a minus sign and a
3070    * trailing \0, 13 characters:
3071    */
3072   if (size > 12)
3073   {
3074      png_uint_32 num;
3075
3076      /* Avoid overflow here on the minimum integer. */
3077      if (fp < 0)
3078         *ascii++ = 45, --size, num = -fp;
3079      else
3080         num = fp;
3081
3082      if (num <= 0x80000000) /* else overflowed */
3083      {
3084         unsigned int ndigits = 0, first = 16 /* flag value */;
3085         char digits[10];
3086
3087         while (num)
3088         {
3089            /* Split the low digit off num: */
3090            unsigned int tmp = num/10;
3091            num -= tmp*10;
3092            digits[ndigits++] = (char)(48 + num);
3093            /* Record the first non-zero digit, note that this is a number
3094             * starting at 1, it's not actually the array index.
3095             */
3096            if (first == 16 && num > 0)
3097               first = ndigits;
3098            num = tmp;
3099         }
3100
3101         if (ndigits > 0)
3102         {
3103            while (ndigits > 5) *ascii++ = digits[--ndigits];
3104            /* The remaining digits are fractional digits, ndigits is '5' or
3105             * smaller at this point.  It is certainly not zero.  Check for a
3106             * non-zero fractional digit:
3107             */
3108            if (first <= 5)
3109            {
3110               unsigned int i;
3111               *ascii++ = 46; /* decimal point */
3112               /* ndigits may be <5 for small numbers, output leading zeros
3113                * then ndigits digits to first:
3114                */
3115               i = 5;
3116               while (ndigits < i) *ascii++ = 48, --i;
3117               while (ndigits >= first) *ascii++ = digits[--ndigits];
3118               /* Don't output the trailing zeros! */
3119            }
3120         }
3121         else
3122            *ascii++ = 48;
3123
3124         /* And null terminate the string: */
3125         *ascii = 0;
3126         return;
3127      }
3128   }
3129
3130   /* Here on buffer too small. */
3131   png_error(png_ptr, "ASCII conversion buffer too small");
3132}
3133#   endif /* FIXED_POINT */
3134#endif /* READ_SCAL */
3135
3136#if defined(PNG_FLOATING_POINT_SUPPORTED) && \
3137   !defined(PNG_FIXED_POINT_MACRO_SUPPORTED) && \
3138   (defined(PNG_gAMA_SUPPORTED) || defined(PNG_cHRM_SUPPORTED) || \
3139   defined(PNG_sCAL_SUPPORTED) || defined(PNG_READ_BACKGROUND_SUPPORTED) || \
3140   defined(PNG_READ_RGB_TO_GRAY_SUPPORTED)) || \
3141   (defined(PNG_sCAL_SUPPORTED) && \
3142   defined(PNG_FLOATING_ARITHMETIC_SUPPORTED))
3143png_fixed_point
3144png_fixed(png_const_structrp png_ptr, double fp, png_const_charp text)
3145{
3146   double r = floor(100000 * fp + .5);
3147
3148   if (r > 2147483647. || r < -2147483648.)
3149      png_fixed_error(png_ptr, text);
3150
3151#  ifndef PNG_ERROR_TEXT_SUPPORTED
3152      PNG_UNUSED(text)
3153#  endif
3154
3155   return (png_fixed_point)r;
3156}
3157#endif
3158
3159#if defined(PNG_GAMMA_SUPPORTED) || defined(PNG_COLORSPACE_SUPPORTED) ||\
3160    defined(PNG_INCH_CONVERSIONS_SUPPORTED) || defined(PNG_READ_pHYs_SUPPORTED)
3161/* muldiv functions */
3162/* This API takes signed arguments and rounds the result to the nearest
3163 * integer (or, for a fixed point number - the standard argument - to
3164 * the nearest .00001).  Overflow and divide by zero are signalled in
3165 * the result, a boolean - true on success, false on overflow.
3166 */
3167int
3168png_muldiv(png_fixed_point_p res, png_fixed_point a, png_int_32 times,
3169    png_int_32 divisor)
3170{
3171   /* Return a * times / divisor, rounded. */
3172   if (divisor != 0)
3173   {
3174      if (a == 0 || times == 0)
3175      {
3176         *res = 0;
3177         return 1;
3178      }
3179      else
3180      {
3181#ifdef PNG_FLOATING_ARITHMETIC_SUPPORTED
3182         double r = a;
3183         r *= times;
3184         r /= divisor;
3185         r = floor(r+.5);
3186
3187         /* A png_fixed_point is a 32-bit integer. */
3188         if (r <= 2147483647. && r >= -2147483648.)
3189         {
3190            *res = (png_fixed_point)r;
3191            return 1;
3192         }
3193#else
3194         int negative = 0;
3195         png_uint_32 A, T, D;
3196         png_uint_32 s16, s32, s00;
3197
3198         if (a < 0)
3199            negative = 1, A = -a;
3200         else
3201            A = a;
3202
3203         if (times < 0)
3204            negative = !negative, T = -times;
3205         else
3206            T = times;
3207
3208         if (divisor < 0)
3209            negative = !negative, D = -divisor;
3210         else
3211            D = divisor;
3212
3213         /* Following can't overflow because the arguments only
3214          * have 31 bits each, however the result may be 32 bits.
3215          */
3216         s16 = (A >> 16) * (T & 0xffff) +
3217                           (A & 0xffff) * (T >> 16);
3218         /* Can't overflow because the a*times bit is only 30
3219          * bits at most.
3220          */
3221         s32 = (A >> 16) * (T >> 16) + (s16 >> 16);
3222         s00 = (A & 0xffff) * (T & 0xffff);
3223
3224         s16 = (s16 & 0xffff) << 16;
3225         s00 += s16;
3226
3227         if (s00 < s16)
3228            ++s32; /* carry */
3229
3230         if (s32 < D) /* else overflow */
3231         {
3232            /* s32.s00 is now the 64-bit product, do a standard
3233             * division, we know that s32 < D, so the maximum
3234             * required shift is 31.
3235             */
3236            int bitshift = 32;
3237            png_fixed_point result = 0; /* NOTE: signed */
3238
3239            while (--bitshift >= 0)
3240            {
3241               png_uint_32 d32, d00;
3242
3243               if (bitshift > 0)
3244                  d32 = D >> (32-bitshift), d00 = D << bitshift;
3245
3246               else
3247                  d32 = 0, d00 = D;
3248
3249               if (s32 > d32)
3250               {
3251                  if (s00 < d00) --s32; /* carry */
3252                  s32 -= d32, s00 -= d00, result += 1<<bitshift;
3253               }
3254
3255               else
3256                  if (s32 == d32 && s00 >= d00)
3257                     s32 = 0, s00 -= d00, result += 1<<bitshift;
3258            }
3259
3260            /* Handle the rounding. */
3261            if (s00 >= (D >> 1))
3262               ++result;
3263
3264            if (negative)
3265               result = -result;
3266
3267            /* Check for overflow. */
3268            if ((negative && result <= 0) || (!negative && result >= 0))
3269            {
3270               *res = result;
3271               return 1;
3272            }
3273         }
3274#endif
3275      }
3276   }
3277
3278   return 0;
3279}
3280#endif /* READ_GAMMA || INCH_CONVERSIONS */
3281
3282#if defined(PNG_READ_GAMMA_SUPPORTED) || defined(PNG_INCH_CONVERSIONS_SUPPORTED)
3283/* The following is for when the caller doesn't much care about the
3284 * result.
3285 */
3286png_fixed_point
3287png_muldiv_warn(png_const_structrp png_ptr, png_fixed_point a, png_int_32 times,
3288    png_int_32 divisor)
3289{
3290   png_fixed_point result;
3291
3292   if (png_muldiv(&result, a, times, divisor))
3293      return result;
3294
3295   png_warning(png_ptr, "fixed point overflow ignored");
3296   return 0;
3297}
3298#endif
3299
3300#ifdef PNG_GAMMA_SUPPORTED /* more fixed point functions for gamma */
3301/* Calculate a reciprocal, return 0 on div-by-zero or overflow. */
3302png_fixed_point
3303png_reciprocal(png_fixed_point a)
3304{
3305#ifdef PNG_FLOATING_ARITHMETIC_SUPPORTED
3306   double r = floor(1E10/a+.5);
3307
3308   if (r <= 2147483647. && r >= -2147483648.)
3309      return (png_fixed_point)r;
3310#else
3311   png_fixed_point res;
3312
3313   if (png_muldiv(&res, 100000, 100000, a))
3314      return res;
3315#endif
3316
3317   return 0; /* error/overflow */
3318}
3319
3320/* This is the shared test on whether a gamma value is 'significant' - whether
3321 * it is worth doing gamma correction.
3322 */
3323int /* PRIVATE */
3324png_gamma_significant(png_fixed_point gamma_val)
3325{
3326   return gamma_val < PNG_FP_1 - PNG_GAMMA_THRESHOLD_FIXED ||
3327       gamma_val > PNG_FP_1 + PNG_GAMMA_THRESHOLD_FIXED;
3328}
3329#endif
3330
3331#ifdef PNG_READ_GAMMA_SUPPORTED
3332#  ifdef PNG_16BIT_SUPPORTED
3333/* A local convenience routine. */
3334static png_fixed_point
3335png_product2(png_fixed_point a, png_fixed_point b)
3336{
3337   /* The required result is 1/a * 1/b; the following preserves accuracy. */
3338#    ifdef PNG_FLOATING_ARITHMETIC_SUPPORTED
3339   double r = a * 1E-5;
3340   r *= b;
3341   r = floor(r+.5);
3342
3343   if (r <= 2147483647. && r >= -2147483648.)
3344      return (png_fixed_point)r;
3345#    else
3346   png_fixed_point res;
3347
3348   if (png_muldiv(&res, a, b, 100000))
3349      return res;
3350#    endif
3351
3352   return 0; /* overflow */
3353}
3354#  endif /* 16BIT */
3355
3356/* The inverse of the above. */
3357png_fixed_point
3358png_reciprocal2(png_fixed_point a, png_fixed_point b)
3359{
3360   /* The required result is 1/a * 1/b; the following preserves accuracy. */
3361#ifdef PNG_FLOATING_ARITHMETIC_SUPPORTED
3362   double r = 1E15/a;
3363   r /= b;
3364   r = floor(r+.5);
3365
3366   if (r <= 2147483647. && r >= -2147483648.)
3367      return (png_fixed_point)r;
3368#else
3369   /* This may overflow because the range of png_fixed_point isn't symmetric,
3370    * but this API is only used for the product of file and screen gamma so it
3371    * doesn't matter that the smallest number it can produce is 1/21474, not
3372    * 1/100000
3373    */
3374   png_fixed_point res = png_product2(a, b);
3375
3376   if (res != 0)
3377      return png_reciprocal(res);
3378#endif
3379
3380   return 0; /* overflow */
3381}
3382#endif /* READ_GAMMA */
3383
3384#ifdef PNG_READ_GAMMA_SUPPORTED /* gamma table code */
3385#ifndef PNG_FLOATING_ARITHMETIC_SUPPORTED
3386/* Fixed point gamma.
3387 *
3388 * The code to calculate the tables used below can be found in the shell script
3389 * contrib/tools/intgamma.sh
3390 *
3391 * To calculate gamma this code implements fast log() and exp() calls using only
3392 * fixed point arithmetic.  This code has sufficient precision for either 8-bit
3393 * or 16-bit sample values.
3394 *
3395 * The tables used here were calculated using simple 'bc' programs, but C double
3396 * precision floating point arithmetic would work fine.
3397 *
3398 * 8-bit log table
3399 *   This is a table of -log(value/255)/log(2) for 'value' in the range 128 to
3400 *   255, so it's the base 2 logarithm of a normalized 8-bit floating point
3401 *   mantissa.  The numbers are 32-bit fractions.
3402 */
3403static const png_uint_32
3404png_8bit_l2[128] =
3405{
3406   4270715492U, 4222494797U, 4174646467U, 4127164793U, 4080044201U, 4033279239U,
3407   3986864580U, 3940795015U, 3895065449U, 3849670902U, 3804606499U, 3759867474U,
3408   3715449162U, 3671346997U, 3627556511U, 3584073329U, 3540893168U, 3498011834U,
3409   3455425220U, 3413129301U, 3371120137U, 3329393864U, 3287946700U, 3246774933U,
3410   3205874930U, 3165243125U, 3124876025U, 3084770202U, 3044922296U, 3005329011U,
3411   2965987113U, 2926893432U, 2888044853U, 2849438323U, 2811070844U, 2772939474U,
3412   2735041326U, 2697373562U, 2659933400U, 2622718104U, 2585724991U, 2548951424U,
3413   2512394810U, 2476052606U, 2439922311U, 2404001468U, 2368287663U, 2332778523U,
3414   2297471715U, 2262364947U, 2227455964U, 2192742551U, 2158222529U, 2123893754U,
3415   2089754119U, 2055801552U, 2022034013U, 1988449497U, 1955046031U, 1921821672U,
3416   1888774511U, 1855902668U, 1823204291U, 1790677560U, 1758320682U, 1726131893U,
3417   1694109454U, 1662251657U, 1630556815U, 1599023271U, 1567649391U, 1536433567U,
3418   1505374214U, 1474469770U, 1443718700U, 1413119487U, 1382670639U, 1352370686U,
3419   1322218179U, 1292211689U, 1262349810U, 1232631153U, 1203054352U, 1173618059U,
3420   1144320946U, 1115161701U, 1086139034U, 1057251672U, 1028498358U, 999877854U,
3421   971388940U, 943030410U, 914801076U, 886699767U, 858725327U, 830876614U,
3422   803152505U, 775551890U, 748073672U, 720716771U, 693480120U, 666362667U,
3423   639363374U, 612481215U, 585715177U, 559064263U, 532527486U, 506103872U,
3424   479792461U, 453592303U, 427502463U, 401522014U, 375650043U, 349885648U,
3425   324227938U, 298676034U, 273229066U, 247886176U, 222646516U, 197509248U,
3426   172473545U, 147538590U, 122703574U, 97967701U, 73330182U, 48790236U,
3427   24347096U, 0U
3428
3429#if 0
3430   /* The following are the values for 16-bit tables - these work fine for the
3431    * 8-bit conversions but produce very slightly larger errors in the 16-bit
3432    * log (about 1.2 as opposed to 0.7 absolute error in the final value).  To
3433    * use these all the shifts below must be adjusted appropriately.
3434    */
3435   65166, 64430, 63700, 62976, 62257, 61543, 60835, 60132, 59434, 58741, 58054,
3436   57371, 56693, 56020, 55352, 54689, 54030, 53375, 52726, 52080, 51439, 50803,
3437   50170, 49542, 48918, 48298, 47682, 47070, 46462, 45858, 45257, 44661, 44068,
3438   43479, 42894, 42312, 41733, 41159, 40587, 40020, 39455, 38894, 38336, 37782,
3439   37230, 36682, 36137, 35595, 35057, 34521, 33988, 33459, 32932, 32408, 31887,
3440   31369, 30854, 30341, 29832, 29325, 28820, 28319, 27820, 27324, 26830, 26339,
3441   25850, 25364, 24880, 24399, 23920, 23444, 22970, 22499, 22029, 21562, 21098,
3442   20636, 20175, 19718, 19262, 18808, 18357, 17908, 17461, 17016, 16573, 16132,
3443   15694, 15257, 14822, 14390, 13959, 13530, 13103, 12678, 12255, 11834, 11415,
3444   10997, 10582, 10168, 9756, 9346, 8937, 8531, 8126, 7723, 7321, 6921, 6523,
3445   6127, 5732, 5339, 4947, 4557, 4169, 3782, 3397, 3014, 2632, 2251, 1872, 1495,
3446   1119, 744, 372
3447#endif
3448};
3449
3450static png_int_32
3451png_log8bit(unsigned int x)
3452{
3453   unsigned int lg2 = 0;
3454   /* Each time 'x' is multiplied by 2, 1 must be subtracted off the final log,
3455    * because the log is actually negate that means adding 1.  The final
3456    * returned value thus has the range 0 (for 255 input) to 7.994 (for 1
3457    * input), return -1 for the overflow (log 0) case, - so the result is
3458    * always at most 19 bits.
3459    */
3460   if ((x &= 0xff) == 0)
3461      return -1;
3462
3463   if ((x & 0xf0) == 0)
3464      lg2  = 4, x <<= 4;
3465
3466   if ((x & 0xc0) == 0)
3467      lg2 += 2, x <<= 2;
3468
3469   if ((x & 0x80) == 0)
3470      lg2 += 1, x <<= 1;
3471
3472   /* result is at most 19 bits, so this cast is safe: */
3473   return (png_int_32)((lg2 << 16) + ((png_8bit_l2[x-128]+32768)>>16));
3474}
3475
3476/* The above gives exact (to 16 binary places) log2 values for 8-bit images,
3477 * for 16-bit images we use the most significant 8 bits of the 16-bit value to
3478 * get an approximation then multiply the approximation by a correction factor
3479 * determined by the remaining up to 8 bits.  This requires an additional step
3480 * in the 16-bit case.
3481 *
3482 * We want log2(value/65535), we have log2(v'/255), where:
3483 *
3484 *    value = v' * 256 + v''
3485 *          = v' * f
3486 *
3487 * So f is value/v', which is equal to (256+v''/v') since v' is in the range 128
3488 * to 255 and v'' is in the range 0 to 255 f will be in the range 256 to less
3489 * than 258.  The final factor also needs to correct for the fact that our 8-bit
3490 * value is scaled by 255, whereas the 16-bit values must be scaled by 65535.
3491 *
3492 * This gives a final formula using a calculated value 'x' which is value/v' and
3493 * scaling by 65536 to match the above table:
3494 *
3495 *   log2(x/257) * 65536
3496 *
3497 * Since these numbers are so close to '1' we can use simple linear
3498 * interpolation between the two end values 256/257 (result -368.61) and 258/257
3499 * (result 367.179).  The values used below are scaled by a further 64 to give
3500 * 16-bit precision in the interpolation:
3501 *
3502 * Start (256): -23591
3503 * Zero  (257):      0
3504 * End   (258):  23499
3505 */
3506static png_int_32
3507png_log16bit(png_uint_32 x)
3508{
3509   unsigned int lg2 = 0;
3510
3511   /* As above, but now the input has 16 bits. */
3512   if ((x &= 0xffff) == 0)
3513      return -1;
3514
3515   if ((x & 0xff00) == 0)
3516      lg2  = 8, x <<= 8;
3517
3518   if ((x & 0xf000) == 0)
3519      lg2 += 4, x <<= 4;
3520
3521   if ((x & 0xc000) == 0)
3522      lg2 += 2, x <<= 2;
3523
3524   if ((x & 0x8000) == 0)
3525      lg2 += 1, x <<= 1;
3526
3527   /* Calculate the base logarithm from the top 8 bits as a 28-bit fractional
3528    * value.
3529    */
3530   lg2 <<= 28;
3531   lg2 += (png_8bit_l2[(x>>8)-128]+8) >> 4;
3532
3533   /* Now we need to interpolate the factor, this requires a division by the top
3534    * 8 bits.  Do this with maximum precision.
3535    */
3536   x = ((x << 16) + (x >> 9)) / (x >> 8);
3537
3538   /* Since we divided by the top 8 bits of 'x' there will be a '1' at 1<<24,
3539    * the value at 1<<16 (ignoring this) will be 0 or 1; this gives us exactly
3540    * 16 bits to interpolate to get the low bits of the result.  Round the
3541    * answer.  Note that the end point values are scaled by 64 to retain overall
3542    * precision and that 'lg2' is current scaled by an extra 12 bits, so adjust
3543    * the overall scaling by 6-12.  Round at every step.
3544    */
3545   x -= 1U << 24;
3546
3547   if (x <= 65536U) /* <= '257' */
3548      lg2 += ((23591U * (65536U-x)) + (1U << (16+6-12-1))) >> (16+6-12);
3549
3550   else
3551      lg2 -= ((23499U * (x-65536U)) + (1U << (16+6-12-1))) >> (16+6-12);
3552
3553   /* Safe, because the result can't have more than 20 bits: */
3554   return (png_int_32)((lg2 + 2048) >> 12);
3555}
3556
3557/* The 'exp()' case must invert the above, taking a 20-bit fixed point
3558 * logarithmic value and returning a 16 or 8-bit number as appropriate.  In
3559 * each case only the low 16 bits are relevant - the fraction - since the
3560 * integer bits (the top 4) simply determine a shift.
3561 *
3562 * The worst case is the 16-bit distinction between 65535 and 65534, this
3563 * requires perhaps spurious accuracty in the decoding of the logarithm to
3564 * distinguish log2(65535/65534.5) - 10^-5 or 17 bits.  There is little chance
3565 * of getting this accuracy in practice.
3566 *
3567 * To deal with this the following exp() function works out the exponent of the
3568 * frational part of the logarithm by using an accurate 32-bit value from the
3569 * top four fractional bits then multiplying in the remaining bits.
3570 */
3571static const png_uint_32
3572png_32bit_exp[16] =
3573{
3574   /* NOTE: the first entry is deliberately set to the maximum 32-bit value. */
3575   4294967295U, 4112874773U, 3938502376U, 3771522796U, 3611622603U, 3458501653U,
3576   3311872529U, 3171459999U, 3037000500U, 2908241642U, 2784941738U, 2666869345U,
3577   2553802834U, 2445529972U, 2341847524U, 2242560872U
3578};
3579
3580/* Adjustment table; provided to explain the numbers in the code below. */
3581#if 0
3582for (i=11;i>=0;--i){ print i, " ", (1 - e(-(2^i)/65536*l(2))) * 2^(32-i), "\n"}
3583   11 44937.64284865548751208448
3584   10 45180.98734845585101160448
3585    9 45303.31936980687359311872
3586    8 45364.65110595323018870784
3587    7 45395.35850361789624614912
3588    6 45410.72259715102037508096
3589    5 45418.40724413220722311168
3590    4 45422.25021786898173001728
3591    3 45424.17186732298419044352
3592    2 45425.13273269940811464704
3593    1 45425.61317555035558641664
3594    0 45425.85339951654943850496
3595#endif
3596
3597static png_uint_32
3598png_exp(png_fixed_point x)
3599{
3600   if (x > 0 && x <= 0xfffff) /* Else overflow or zero (underflow) */
3601   {
3602      /* Obtain a 4-bit approximation */
3603      png_uint_32 e = png_32bit_exp[(x >> 12) & 0xf];
3604
3605      /* Incorporate the low 12 bits - these decrease the returned value by
3606       * multiplying by a number less than 1 if the bit is set.  The multiplier
3607       * is determined by the above table and the shift. Notice that the values
3608       * converge on 45426 and this is used to allow linear interpolation of the
3609       * low bits.
3610       */
3611      if (x & 0x800)
3612         e -= (((e >> 16) * 44938U) +  16U) >> 5;
3613
3614      if (x & 0x400)
3615         e -= (((e >> 16) * 45181U) +  32U) >> 6;
3616
3617      if (x & 0x200)
3618         e -= (((e >> 16) * 45303U) +  64U) >> 7;
3619
3620      if (x & 0x100)
3621         e -= (((e >> 16) * 45365U) + 128U) >> 8;
3622
3623      if (x & 0x080)
3624         e -= (((e >> 16) * 45395U) + 256U) >> 9;
3625
3626      if (x & 0x040)
3627         e -= (((e >> 16) * 45410U) + 512U) >> 10;
3628
3629      /* And handle the low 6 bits in a single block. */
3630      e -= (((e >> 16) * 355U * (x & 0x3fU)) + 256U) >> 9;
3631
3632      /* Handle the upper bits of x. */
3633      e >>= x >> 16;
3634      return e;
3635   }
3636
3637   /* Check for overflow */
3638   if (x <= 0)
3639      return png_32bit_exp[0];
3640
3641   /* Else underflow */
3642   return 0;
3643}
3644
3645static png_byte
3646png_exp8bit(png_fixed_point lg2)
3647{
3648   /* Get a 32-bit value: */
3649   png_uint_32 x = png_exp(lg2);
3650
3651   /* Convert the 32-bit value to 0..255 by multiplying by 256-1, note that the
3652    * second, rounding, step can't overflow because of the first, subtraction,
3653    * step.
3654    */
3655   x -= x >> 8;
3656   return (png_byte)((x + 0x7fffffU) >> 24);
3657}
3658
3659#ifdef PNG_16BIT_SUPPORTED
3660static png_uint_16
3661png_exp16bit(png_fixed_point lg2)
3662{
3663   /* Get a 32-bit value: */
3664   png_uint_32 x = png_exp(lg2);
3665
3666   /* Convert the 32-bit value to 0..65535 by multiplying by 65536-1: */
3667   x -= x >> 16;
3668   return (png_uint_16)((x + 32767U) >> 16);
3669}
3670#endif /* 16BIT */
3671#endif /* FLOATING_ARITHMETIC */
3672
3673png_byte
3674png_gamma_8bit_correct(unsigned int value, png_fixed_point gamma_val)
3675{
3676   if (value > 0 && value < 255)
3677   {
3678#     ifdef PNG_FLOATING_ARITHMETIC_SUPPORTED
3679         double r = floor(255*pow(value/255.,gamma_val*.00001)+.5);
3680         return (png_byte)r;
3681#     else
3682         png_int_32 lg2 = png_log8bit(value);
3683         png_fixed_point res;
3684
3685         if (png_muldiv(&res, gamma_val, lg2, PNG_FP_1))
3686            return png_exp8bit(res);
3687
3688         /* Overflow. */
3689         value = 0;
3690#     endif
3691   }
3692
3693   return (png_byte)value;
3694}
3695
3696#ifdef PNG_16BIT_SUPPORTED
3697png_uint_16
3698png_gamma_16bit_correct(unsigned int value, png_fixed_point gamma_val)
3699{
3700   if (value > 0 && value < 65535)
3701   {
3702#     ifdef PNG_FLOATING_ARITHMETIC_SUPPORTED
3703         double r = floor(65535*pow(value/65535.,gamma_val*.00001)+.5);
3704         return (png_uint_16)r;
3705#     else
3706         png_int_32 lg2 = png_log16bit(value);
3707         png_fixed_point res;
3708
3709         if (png_muldiv(&res, gamma_val, lg2, PNG_FP_1))
3710            return png_exp16bit(res);
3711
3712         /* Overflow. */
3713         value = 0;
3714#     endif
3715   }
3716
3717   return (png_uint_16)value;
3718}
3719#endif /* 16BIT */
3720
3721/* This does the right thing based on the bit_depth field of the
3722 * png_struct, interpreting values as 8-bit or 16-bit.  While the result
3723 * is nominally a 16-bit value if bit depth is 8 then the result is
3724 * 8-bit (as are the arguments.)
3725 */
3726png_uint_16 /* PRIVATE */
3727png_gamma_correct(png_structrp png_ptr, unsigned int value,
3728    png_fixed_point gamma_val)
3729{
3730   if (png_ptr->bit_depth == 8)
3731      return png_gamma_8bit_correct(value, gamma_val);
3732
3733#ifdef PNG_16BIT_SUPPORTED
3734   else
3735      return png_gamma_16bit_correct(value, gamma_val);
3736#else
3737      /* should not reach this */
3738      return 0;
3739#endif /* 16BIT */
3740}
3741
3742#ifdef PNG_16BIT_SUPPORTED
3743/* Internal function to build a single 16-bit table - the table consists of
3744 * 'num' 256 entry subtables, where 'num' is determined by 'shift' - the amount
3745 * to shift the input values right (or 16-number_of_signifiant_bits).
3746 *
3747 * The caller is responsible for ensuring that the table gets cleaned up on
3748 * png_error (i.e. if one of the mallocs below fails) - i.e. the *table argument
3749 * should be somewhere that will be cleaned.
3750 */
3751static void
3752png_build_16bit_table(png_structrp png_ptr, png_uint_16pp *ptable,
3753   PNG_CONST unsigned int shift, PNG_CONST png_fixed_point gamma_val)
3754{
3755   /* Various values derived from 'shift': */
3756   PNG_CONST unsigned int num = 1U << (8U - shift);
3757   PNG_CONST unsigned int max = (1U << (16U - shift))-1U;
3758   PNG_CONST unsigned int max_by_2 = 1U << (15U-shift);
3759   unsigned int i;
3760
3761   png_uint_16pp table = *ptable =
3762       (png_uint_16pp)png_calloc(png_ptr, num * (sizeof (png_uint_16p)));
3763
3764   for (i = 0; i < num; i++)
3765   {
3766      png_uint_16p sub_table = table[i] =
3767          (png_uint_16p)png_malloc(png_ptr, 256 * (sizeof (png_uint_16)));
3768
3769      /* The 'threshold' test is repeated here because it can arise for one of
3770       * the 16-bit tables even if the others don't hit it.
3771       */
3772      if (png_gamma_significant(gamma_val))
3773      {
3774         /* The old code would overflow at the end and this would cause the
3775          * 'pow' function to return a result >1, resulting in an
3776          * arithmetic error.  This code follows the spec exactly; ig is
3777          * the recovered input sample, it always has 8-16 bits.
3778          *
3779          * We want input * 65535/max, rounded, the arithmetic fits in 32
3780          * bits (unsigned) so long as max <= 32767.
3781          */
3782         unsigned int j;
3783         for (j = 0; j < 256; j++)
3784         {
3785            png_uint_32 ig = (j << (8-shift)) + i;
3786#           ifdef PNG_FLOATING_ARITHMETIC_SUPPORTED
3787               /* Inline the 'max' scaling operation: */
3788               double d = floor(65535*pow(ig/(double)max, gamma_val*.00001)+.5);
3789               sub_table[j] = (png_uint_16)d;
3790#           else
3791               if (shift)
3792                  ig = (ig * 65535U + max_by_2)/max;
3793
3794               sub_table[j] = png_gamma_16bit_correct(ig, gamma_val);
3795#           endif
3796         }
3797      }
3798      else
3799      {
3800         /* We must still build a table, but do it the fast way. */
3801         unsigned int j;
3802
3803         for (j = 0; j < 256; j++)
3804         {
3805            png_uint_32 ig = (j << (8-shift)) + i;
3806
3807            if (shift)
3808               ig = (ig * 65535U + max_by_2)/max;
3809
3810            sub_table[j] = (png_uint_16)ig;
3811         }
3812      }
3813   }
3814}
3815
3816/* NOTE: this function expects the *inverse* of the overall gamma transformation
3817 * required.
3818 */
3819static void
3820png_build_16to8_table(png_structrp png_ptr, png_uint_16pp *ptable,
3821   PNG_CONST unsigned int shift, PNG_CONST png_fixed_point gamma_val)
3822{
3823   PNG_CONST unsigned int num = 1U << (8U - shift);
3824   PNG_CONST unsigned int max = (1U << (16U - shift))-1U;
3825   unsigned int i;
3826   png_uint_32 last;
3827
3828   png_uint_16pp table = *ptable =
3829       (png_uint_16pp)png_calloc(png_ptr, num * (sizeof (png_uint_16p)));
3830
3831   /* 'num' is the number of tables and also the number of low bits of low
3832    * bits of the input 16-bit value used to select a table.  Each table is
3833    * itself index by the high 8 bits of the value.
3834    */
3835   for (i = 0; i < num; i++)
3836      table[i] = (png_uint_16p)png_malloc(png_ptr,
3837          256 * (sizeof (png_uint_16)));
3838
3839   /* 'gamma_val' is set to the reciprocal of the value calculated above, so
3840    * pow(out,g) is an *input* value.  'last' is the last input value set.
3841    *
3842    * In the loop 'i' is used to find output values.  Since the output is
3843    * 8-bit there are only 256 possible values.  The tables are set up to
3844    * select the closest possible output value for each input by finding
3845    * the input value at the boundary between each pair of output values
3846    * and filling the table up to that boundary with the lower output
3847    * value.
3848    *
3849    * The boundary values are 0.5,1.5..253.5,254.5.  Since these are 9-bit
3850    * values the code below uses a 16-bit value in i; the values start at
3851    * 128.5 (for 0.5) and step by 257, for a total of 254 values (the last
3852    * entries are filled with 255).  Start i at 128 and fill all 'last'
3853    * table entries <= 'max'
3854    */
3855   last = 0;
3856   for (i = 0; i < 255; ++i) /* 8-bit output value */
3857   {
3858      /* Find the corresponding maximum input value */
3859      png_uint_16 out = (png_uint_16)(i * 257U); /* 16-bit output value */
3860
3861      /* Find the boundary value in 16 bits: */
3862      png_uint_32 bound = png_gamma_16bit_correct(out+128U, gamma_val);
3863
3864      /* Adjust (round) to (16-shift) bits: */
3865      bound = (bound * max + 32768U)/65535U + 1U;
3866
3867      while (last < bound)
3868      {
3869         table[last & (0xffU >> shift)][last >> (8U - shift)] = out;
3870         last++;
3871      }
3872   }
3873
3874   /* And fill in the final entries. */
3875   while (last < (num << 8))
3876   {
3877      table[last & (0xff >> shift)][last >> (8U - shift)] = 65535U;
3878      last++;
3879   }
3880}
3881#endif /* 16BIT */
3882
3883/* Build a single 8-bit table: same as the 16-bit case but much simpler (and
3884 * typically much faster).  Note that libpng currently does no sBIT processing
3885 * (apparently contrary to the spec) so a 256 entry table is always generated.
3886 */
3887static void
3888png_build_8bit_table(png_structrp png_ptr, png_bytepp ptable,
3889   PNG_CONST png_fixed_point gamma_val)
3890{
3891   unsigned int i;
3892   png_bytep table = *ptable = (png_bytep)png_malloc(png_ptr, 256);
3893
3894   if (png_gamma_significant(gamma_val)) for (i=0; i<256; i++)
3895      table[i] = png_gamma_8bit_correct(i, gamma_val);
3896
3897   else for (i=0; i<256; ++i)
3898      table[i] = (png_byte)i;
3899}
3900
3901/* Used from png_read_destroy and below to release the memory used by the gamma
3902 * tables.
3903 */
3904void /* PRIVATE */
3905png_destroy_gamma_table(png_structrp png_ptr)
3906{
3907   png_free(png_ptr, png_ptr->gamma_table);
3908   png_ptr->gamma_table = NULL;
3909
3910#ifdef PNG_16BIT_SUPPORTED
3911   if (png_ptr->gamma_16_table != NULL)
3912   {
3913      int i;
3914      int istop = (1 << (8 - png_ptr->gamma_shift));
3915      for (i = 0; i < istop; i++)
3916      {
3917         png_free(png_ptr, png_ptr->gamma_16_table[i]);
3918      }
3919   png_free(png_ptr, png_ptr->gamma_16_table);
3920   png_ptr->gamma_16_table = NULL;
3921   }
3922#endif /* 16BIT */
3923
3924#if defined(PNG_READ_BACKGROUND_SUPPORTED) || \
3925   defined(PNG_READ_ALPHA_MODE_SUPPORTED) || \
3926   defined(PNG_READ_RGB_TO_GRAY_SUPPORTED)
3927   png_free(png_ptr, png_ptr->gamma_from_1);
3928   png_ptr->gamma_from_1 = NULL;
3929   png_free(png_ptr, png_ptr->gamma_to_1);
3930   png_ptr->gamma_to_1 = NULL;
3931
3932#ifdef PNG_16BIT_SUPPORTED
3933   if (png_ptr->gamma_16_from_1 != NULL)
3934   {
3935      int i;
3936      int istop = (1 << (8 - png_ptr->gamma_shift));
3937      for (i = 0; i < istop; i++)
3938      {
3939         png_free(png_ptr, png_ptr->gamma_16_from_1[i]);
3940      }
3941   png_free(png_ptr, png_ptr->gamma_16_from_1);
3942   png_ptr->gamma_16_from_1 = NULL;
3943   }
3944   if (png_ptr->gamma_16_to_1 != NULL)
3945   {
3946      int i;
3947      int istop = (1 << (8 - png_ptr->gamma_shift));
3948      for (i = 0; i < istop; i++)
3949      {
3950         png_free(png_ptr, png_ptr->gamma_16_to_1[i]);
3951      }
3952   png_free(png_ptr, png_ptr->gamma_16_to_1);
3953   png_ptr->gamma_16_to_1 = NULL;
3954   }
3955#endif /* 16BIT */
3956#endif /* READ_BACKGROUND || READ_ALPHA_MODE || RGB_TO_GRAY */
3957}
3958
3959/* We build the 8- or 16-bit gamma tables here.  Note that for 16-bit
3960 * tables, we don't make a full table if we are reducing to 8-bit in
3961 * the future.  Note also how the gamma_16 tables are segmented so that
3962 * we don't need to allocate > 64K chunks for a full 16-bit table.
3963 */
3964void /* PRIVATE */
3965png_build_gamma_table(png_structrp png_ptr, int bit_depth)
3966{
3967  png_debug(1, "in png_build_gamma_table");
3968
3969  /* Remove any existing table; this copes with multiple calls to
3970   * png_read_update_info.  The warning is because building the gamma tables
3971   * multiple times is a performance hit - it's harmless but the ability to call
3972   * png_read_update_info() multiple times is new in 1.5.6 so it seems sensible
3973   * to warn if the app introduces such a hit.
3974   */
3975  if (png_ptr->gamma_table != NULL || png_ptr->gamma_16_table != NULL)
3976  {
3977    png_warning(png_ptr, "gamma table being rebuilt");
3978    png_destroy_gamma_table(png_ptr);
3979  }
3980
3981  if (bit_depth <= 8)
3982  {
3983     png_build_8bit_table(png_ptr, &png_ptr->gamma_table,
3984         png_ptr->screen_gamma > 0 ?  png_reciprocal2(png_ptr->colorspace.gamma,
3985         png_ptr->screen_gamma) : PNG_FP_1);
3986
3987#if defined(PNG_READ_BACKGROUND_SUPPORTED) || \
3988   defined(PNG_READ_ALPHA_MODE_SUPPORTED) || \
3989   defined(PNG_READ_RGB_TO_GRAY_SUPPORTED)
3990     if (png_ptr->transformations & (PNG_COMPOSE | PNG_RGB_TO_GRAY))
3991     {
3992        png_build_8bit_table(png_ptr, &png_ptr->gamma_to_1,
3993            png_reciprocal(png_ptr->colorspace.gamma));
3994
3995        png_build_8bit_table(png_ptr, &png_ptr->gamma_from_1,
3996            png_ptr->screen_gamma > 0 ?  png_reciprocal(png_ptr->screen_gamma) :
3997            png_ptr->colorspace.gamma/* Probably doing rgb_to_gray */);
3998     }
3999#endif /* READ_BACKGROUND || READ_ALPHA_MODE || RGB_TO_GRAY */
4000  }
4001#ifdef PNG_16BIT_SUPPORTED
4002  else
4003  {
4004     png_byte shift, sig_bit;
4005
4006     if (png_ptr->color_type & PNG_COLOR_MASK_COLOR)
4007     {
4008        sig_bit = png_ptr->sig_bit.red;
4009
4010        if (png_ptr->sig_bit.green > sig_bit)
4011           sig_bit = png_ptr->sig_bit.green;
4012
4013        if (png_ptr->sig_bit.blue > sig_bit)
4014           sig_bit = png_ptr->sig_bit.blue;
4015     }
4016     else
4017        sig_bit = png_ptr->sig_bit.gray;
4018
4019     /* 16-bit gamma code uses this equation:
4020      *
4021      *   ov = table[(iv & 0xff) >> gamma_shift][iv >> 8]
4022      *
4023      * Where 'iv' is the input color value and 'ov' is the output value -
4024      * pow(iv, gamma).
4025      *
4026      * Thus the gamma table consists of up to 256 256 entry tables.  The table
4027      * is selected by the (8-gamma_shift) most significant of the low 8 bits of
4028      * the color value then indexed by the upper 8 bits:
4029      *
4030      *   table[low bits][high 8 bits]
4031      *
4032      * So the table 'n' corresponds to all those 'iv' of:
4033      *
4034      *   <all high 8-bit values><n << gamma_shift>..<(n+1 << gamma_shift)-1>
4035      *
4036      */
4037     if (sig_bit > 0 && sig_bit < 16U)
4038        shift = (png_byte)(16U - sig_bit); /* shift == insignificant bits */
4039
4040     else
4041        shift = 0; /* keep all 16 bits */
4042
4043     if (png_ptr->transformations & (PNG_16_TO_8 | PNG_SCALE_16_TO_8))
4044     {
4045        /* PNG_MAX_GAMMA_8 is the number of bits to keep - effectively
4046         * the significant bits in the *input* when the output will
4047         * eventually be 8 bits.  By default it is 11.
4048         */
4049        if (shift < (16U - PNG_MAX_GAMMA_8))
4050           shift = (16U - PNG_MAX_GAMMA_8);
4051     }
4052
4053     if (shift > 8U)
4054        shift = 8U; /* Guarantees at least one table! */
4055
4056     png_ptr->gamma_shift = shift;
4057
4058     /* NOTE: prior to 1.5.4 this test used to include PNG_BACKGROUND (now
4059      * PNG_COMPOSE).  This effectively smashed the background calculation for
4060      * 16-bit output because the 8-bit table assumes the result will be reduced
4061      * to 8 bits.
4062      */
4063     if (png_ptr->transformations & (PNG_16_TO_8 | PNG_SCALE_16_TO_8))
4064         png_build_16to8_table(png_ptr, &png_ptr->gamma_16_table, shift,
4065         png_ptr->screen_gamma > 0 ? png_product2(png_ptr->colorspace.gamma,
4066         png_ptr->screen_gamma) : PNG_FP_1);
4067
4068     else
4069         png_build_16bit_table(png_ptr, &png_ptr->gamma_16_table, shift,
4070         png_ptr->screen_gamma > 0 ? png_reciprocal2(png_ptr->colorspace.gamma,
4071         png_ptr->screen_gamma) : PNG_FP_1);
4072
4073#if defined(PNG_READ_BACKGROUND_SUPPORTED) || \
4074   defined(PNG_READ_ALPHA_MODE_SUPPORTED) || \
4075   defined(PNG_READ_RGB_TO_GRAY_SUPPORTED)
4076     if (png_ptr->transformations & (PNG_COMPOSE | PNG_RGB_TO_GRAY))
4077     {
4078        png_build_16bit_table(png_ptr, &png_ptr->gamma_16_to_1, shift,
4079            png_reciprocal(png_ptr->colorspace.gamma));
4080
4081        /* Notice that the '16 from 1' table should be full precision, however
4082         * the lookup on this table still uses gamma_shift, so it can't be.
4083         * TODO: fix this.
4084         */
4085        png_build_16bit_table(png_ptr, &png_ptr->gamma_16_from_1, shift,
4086            png_ptr->screen_gamma > 0 ? png_reciprocal(png_ptr->screen_gamma) :
4087            png_ptr->colorspace.gamma/* Probably doing rgb_to_gray */);
4088     }
4089#endif /* READ_BACKGROUND || READ_ALPHA_MODE || RGB_TO_GRAY */
4090  }
4091#endif /* 16BIT */
4092}
4093#endif /* READ_GAMMA */
4094
4095/* HARDWARE OPTION SUPPORT */
4096#ifdef PNG_SET_OPTION_SUPPORTED
4097int PNGAPI
4098png_set_option(png_structrp png_ptr, int option, int onoff)
4099{
4100   if (png_ptr != NULL && option >= 0 && option < PNG_OPTION_NEXT &&
4101      (option & 1) == 0)
4102   {
4103      int mask = 3 << option;
4104      int setting = (2 + (onoff != 0)) << option;
4105      int current = png_ptr->options;
4106
4107      png_ptr->options = (png_byte)((current & ~mask) | setting);
4108
4109      return (current & mask) >> option;
4110   }
4111
4112   return PNG_OPTION_INVALID;
4113}
4114#endif
4115
4116/* sRGB support */
4117#if defined(PNG_SIMPLIFIED_READ_SUPPORTED) ||\
4118   defined(PNG_SIMPLIFIED_WRITE_SUPPORTED)
4119/* sRGB conversion tables; these are machine generated with the code in
4120 * contrib/tools/makesRGB.c.  The actual sRGB transfer curve defined in the
4121 * specification (see the article at http://en.wikipedia.org/wiki/SRGB)
4122 * is used, not the gamma=1/2.2 approximation use elsewhere in libpng.
4123 * The sRGB to linear table is exact (to the nearest 16 bit linear fraction).
4124 * The inverse (linear to sRGB) table has accuracies as follows:
4125 *
4126 * For all possible (255*65535+1) input values:
4127 *
4128 *    error: -0.515566 - 0.625971, 79441 (0.475369%) of readings inexact
4129 *
4130 * For the input values corresponding to the 65536 16-bit values:
4131 *
4132 *    error: -0.513727 - 0.607759, 308 (0.469978%) of readings inexact
4133 *
4134 * In all cases the inexact readings are off by one.
4135 */
4136
4137#ifdef PNG_SIMPLIFIED_READ_SUPPORTED
4138/* The convert-to-sRGB table is only currently required for read. */
4139const png_uint_16 png_sRGB_table[256] =
4140{
4141   0,20,40,60,80,99,119,139,
4142   159,179,199,219,241,264,288,313,
4143   340,367,396,427,458,491,526,562,
4144   599,637,677,718,761,805,851,898,
4145   947,997,1048,1101,1156,1212,1270,1330,
4146   1391,1453,1517,1583,1651,1720,1790,1863,
4147   1937,2013,2090,2170,2250,2333,2418,2504,
4148   2592,2681,2773,2866,2961,3058,3157,3258,
4149   3360,3464,3570,3678,3788,3900,4014,4129,
4150   4247,4366,4488,4611,4736,4864,4993,5124,
4151   5257,5392,5530,5669,5810,5953,6099,6246,
4152   6395,6547,6700,6856,7014,7174,7335,7500,
4153   7666,7834,8004,8177,8352,8528,8708,8889,
4154   9072,9258,9445,9635,9828,10022,10219,10417,
4155   10619,10822,11028,11235,11446,11658,11873,12090,
4156   12309,12530,12754,12980,13209,13440,13673,13909,
4157   14146,14387,14629,14874,15122,15371,15623,15878,
4158   16135,16394,16656,16920,17187,17456,17727,18001,
4159   18277,18556,18837,19121,19407,19696,19987,20281,
4160   20577,20876,21177,21481,21787,22096,22407,22721,
4161   23038,23357,23678,24002,24329,24658,24990,25325,
4162   25662,26001,26344,26688,27036,27386,27739,28094,
4163   28452,28813,29176,29542,29911,30282,30656,31033,
4164   31412,31794,32179,32567,32957,33350,33745,34143,
4165   34544,34948,35355,35764,36176,36591,37008,37429,
4166   37852,38278,38706,39138,39572,40009,40449,40891,
4167   41337,41785,42236,42690,43147,43606,44069,44534,
4168   45002,45473,45947,46423,46903,47385,47871,48359,
4169   48850,49344,49841,50341,50844,51349,51858,52369,
4170   52884,53401,53921,54445,54971,55500,56032,56567,
4171   57105,57646,58190,58737,59287,59840,60396,60955,
4172   61517,62082,62650,63221,63795,64372,64952,65535
4173};
4174
4175#endif /* simplified read only */
4176
4177/* The base/delta tables are required for both read and write (but currently
4178 * only the simplified versions.)
4179 */
4180const png_uint_16 png_sRGB_base[512] =
4181{
4182   128,1782,3383,4644,5675,6564,7357,8074,
4183   8732,9346,9921,10463,10977,11466,11935,12384,
4184   12816,13233,13634,14024,14402,14769,15125,15473,
4185   15812,16142,16466,16781,17090,17393,17690,17981,
4186   18266,18546,18822,19093,19359,19621,19879,20133,
4187   20383,20630,20873,21113,21349,21583,21813,22041,
4188   22265,22487,22707,22923,23138,23350,23559,23767,
4189   23972,24175,24376,24575,24772,24967,25160,25352,
4190   25542,25730,25916,26101,26284,26465,26645,26823,
4191   27000,27176,27350,27523,27695,27865,28034,28201,
4192   28368,28533,28697,28860,29021,29182,29341,29500,
4193   29657,29813,29969,30123,30276,30429,30580,30730,
4194   30880,31028,31176,31323,31469,31614,31758,31902,
4195   32045,32186,32327,32468,32607,32746,32884,33021,
4196   33158,33294,33429,33564,33697,33831,33963,34095,
4197   34226,34357,34486,34616,34744,34873,35000,35127,
4198   35253,35379,35504,35629,35753,35876,35999,36122,
4199   36244,36365,36486,36606,36726,36845,36964,37083,
4200   37201,37318,37435,37551,37668,37783,37898,38013,
4201   38127,38241,38354,38467,38580,38692,38803,38915,
4202   39026,39136,39246,39356,39465,39574,39682,39790,
4203   39898,40005,40112,40219,40325,40431,40537,40642,
4204   40747,40851,40955,41059,41163,41266,41369,41471,
4205   41573,41675,41777,41878,41979,42079,42179,42279,
4206   42379,42478,42577,42676,42775,42873,42971,43068,
4207   43165,43262,43359,43456,43552,43648,43743,43839,
4208   43934,44028,44123,44217,44311,44405,44499,44592,
4209   44685,44778,44870,44962,45054,45146,45238,45329,
4210   45420,45511,45601,45692,45782,45872,45961,46051,
4211   46140,46229,46318,46406,46494,46583,46670,46758,
4212   46846,46933,47020,47107,47193,47280,47366,47452,
4213   47538,47623,47709,47794,47879,47964,48048,48133,
4214   48217,48301,48385,48468,48552,48635,48718,48801,
4215   48884,48966,49048,49131,49213,49294,49376,49458,
4216   49539,49620,49701,49782,49862,49943,50023,50103,
4217   50183,50263,50342,50422,50501,50580,50659,50738,
4218   50816,50895,50973,51051,51129,51207,51285,51362,
4219   51439,51517,51594,51671,51747,51824,51900,51977,
4220   52053,52129,52205,52280,52356,52432,52507,52582,
4221   52657,52732,52807,52881,52956,53030,53104,53178,
4222   53252,53326,53400,53473,53546,53620,53693,53766,
4223   53839,53911,53984,54056,54129,54201,54273,54345,
4224   54417,54489,54560,54632,54703,54774,54845,54916,
4225   54987,55058,55129,55199,55269,55340,55410,55480,
4226   55550,55620,55689,55759,55828,55898,55967,56036,
4227   56105,56174,56243,56311,56380,56448,56517,56585,
4228   56653,56721,56789,56857,56924,56992,57059,57127,
4229   57194,57261,57328,57395,57462,57529,57595,57662,
4230   57728,57795,57861,57927,57993,58059,58125,58191,
4231   58256,58322,58387,58453,58518,58583,58648,58713,
4232   58778,58843,58908,58972,59037,59101,59165,59230,
4233   59294,59358,59422,59486,59549,59613,59677,59740,
4234   59804,59867,59930,59993,60056,60119,60182,60245,
4235   60308,60370,60433,60495,60558,60620,60682,60744,
4236   60806,60868,60930,60992,61054,61115,61177,61238,
4237   61300,61361,61422,61483,61544,61605,61666,61727,
4238   61788,61848,61909,61969,62030,62090,62150,62211,
4239   62271,62331,62391,62450,62510,62570,62630,62689,
4240   62749,62808,62867,62927,62986,63045,63104,63163,
4241   63222,63281,63340,63398,63457,63515,63574,63632,
4242   63691,63749,63807,63865,63923,63981,64039,64097,
4243   64155,64212,64270,64328,64385,64443,64500,64557,
4244   64614,64672,64729,64786,64843,64900,64956,65013,
4245   65070,65126,65183,65239,65296,65352,65409,65465
4246};
4247
4248const png_byte png_sRGB_delta[512] =
4249{
4250   207,201,158,129,113,100,90,82,77,72,68,64,61,59,56,54,
4251   52,50,49,47,46,45,43,42,41,40,39,39,38,37,36,36,
4252   35,34,34,33,33,32,32,31,31,30,30,30,29,29,28,28,
4253   28,27,27,27,27,26,26,26,25,25,25,25,24,24,24,24,
4254   23,23,23,23,23,22,22,22,22,22,22,21,21,21,21,21,
4255   21,20,20,20,20,20,20,20,20,19,19,19,19,19,19,19,
4256   19,18,18,18,18,18,18,18,18,18,18,17,17,17,17,17,
4257   17,17,17,17,17,17,16,16,16,16,16,16,16,16,16,16,
4258   16,16,16,16,15,15,15,15,15,15,15,15,15,15,15,15,
4259   15,15,15,15,14,14,14,14,14,14,14,14,14,14,14,14,
4260   14,14,14,14,14,14,14,13,13,13,13,13,13,13,13,13,
4261   13,13,13,13,13,13,13,13,13,13,13,13,13,13,12,12,
4262   12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,
4263   12,12,12,12,12,12,12,12,12,12,12,12,11,11,11,11,
4264   11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,
4265   11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,
4266   11,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,
4267   10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,
4268   10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,
4269   10,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,
4270   9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,
4271   9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,
4272   9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,
4273   9,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,
4274   8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,
4275   8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,
4276   8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,
4277   8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,
4278   8,8,8,8,8,8,8,8,8,7,7,7,7,7,7,7,
4279   7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,
4280   7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,
4281   7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7
4282};
4283#endif /* SIMPLIFIED READ/WRITE sRGB support */
4284
4285/* SIMPLIFIED READ/WRITE SUPPORT */
4286#if defined(PNG_SIMPLIFIED_READ_SUPPORTED) ||\
4287   defined(PNG_SIMPLIFIED_WRITE_SUPPORTED)
4288static int
4289png_image_free_function(png_voidp argument)
4290{
4291   png_imagep image = png_voidcast(png_imagep, argument);
4292   png_controlp cp = image->opaque;
4293   png_control c;
4294
4295   /* Double check that we have a png_ptr - it should be impossible to get here
4296    * without one.
4297    */
4298   if (cp->png_ptr == NULL)
4299      return 0;
4300
4301   /* First free any data held in the control structure. */
4302#  ifdef PNG_STDIO_SUPPORTED
4303      if (cp->owned_file)
4304      {
4305         FILE *fp = png_voidcast(FILE*, cp->png_ptr->io_ptr);
4306         cp->owned_file = 0;
4307
4308         /* Ignore errors here. */
4309         if (fp != NULL)
4310         {
4311            cp->png_ptr->io_ptr = NULL;
4312            (void)fclose(fp);
4313         }
4314      }
4315#  endif
4316
4317   /* Copy the control structure so that the original, allocated, version can be
4318    * safely freed.  Notice that a png_error here stops the remainder of the
4319    * cleanup, but this is probably fine because that would indicate bad memory
4320    * problems anyway.
4321    */
4322   c = *cp;
4323   image->opaque = &c;
4324   png_free(c.png_ptr, cp);
4325
4326   /* Then the structures, calling the correct API. */
4327   if (c.for_write)
4328   {
4329#     ifdef PNG_SIMPLIFIED_WRITE_SUPPORTED
4330         png_destroy_write_struct(&c.png_ptr, &c.info_ptr);
4331#     else
4332         png_error(c.png_ptr, "simplified write not supported");
4333#     endif
4334   }
4335   else
4336   {
4337#     ifdef PNG_SIMPLIFIED_READ_SUPPORTED
4338         png_destroy_read_struct(&c.png_ptr, &c.info_ptr, NULL);
4339#     else
4340         png_error(c.png_ptr, "simplified read not supported");
4341#     endif
4342   }
4343
4344   /* Success. */
4345   return 1;
4346}
4347
4348void PNGAPI
4349png_image_free(png_imagep image)
4350{
4351   /* Safely call the real function, but only if doing so is safe at this point
4352    * (if not inside an error handling context).  Otherwise assume
4353    * png_safe_execute will call this API after the return.
4354    */
4355   if (image != NULL && image->opaque != NULL &&
4356      image->opaque->error_buf == NULL)
4357   {
4358      /* Ignore errors here: */
4359      (void)png_safe_execute(image, png_image_free_function, image);
4360      image->opaque = NULL;
4361   }
4362}
4363
4364int /* PRIVATE */
4365png_image_error(png_imagep image, png_const_charp error_message)
4366{
4367   /* Utility to log an error. */
4368   png_safecat(image->message, (sizeof image->message), 0, error_message);
4369   image->warning_or_error |= PNG_IMAGE_ERROR;
4370   png_image_free(image);
4371   return 0;
4372}
4373
4374#endif /* SIMPLIFIED READ/WRITE */
4375#endif /* defined(PNG_READ_SUPPORTED) || defined(PNG_WRITE_SUPPORTED) */
4376