1/*
2 *  Copyright (c) 2010 The WebM project authors. All Rights Reserved.
3 *
4 *  Use of this source code is governed by a BSD-style license
5 *  that can be found in the LICENSE file in the root of the source
6 *  tree. An additional intellectual property rights grant can be found
7 *  in the file PATENTS.  All contributing project authors may
8 *  be found in the AUTHORS file in the root of the source tree.
9 */
10
11#include <math.h>
12#include <limits.h>
13#include <stdio.h>
14
15#include "./vpx_scale_rtcd.h"
16#include "block.h"
17#include "onyx_int.h"
18#include "vp8/common/variance.h"
19#include "encodeintra.h"
20#include "vp8/common/setupintrarecon.h"
21#include "vp8/common/systemdependent.h"
22#include "mcomp.h"
23#include "firstpass.h"
24#include "vpx_scale/vpx_scale.h"
25#include "encodemb.h"
26#include "vp8/common/extend.h"
27#include "vpx_mem/vpx_mem.h"
28#include "vp8/common/swapyv12buffer.h"
29#include "rdopt.h"
30#include "vp8/common/quant_common.h"
31#include "encodemv.h"
32#include "encodeframe.h"
33
34/* #define OUTPUT_FPF 1 */
35
36extern void vp8cx_frame_init_quantizer(VP8_COMP *cpi);
37extern void vp8_set_mbmode_and_mvs(MACROBLOCK *x, MB_PREDICTION_MODE mb, int_mv *mv);
38extern void vp8_alloc_compressor_data(VP8_COMP *cpi);
39
40#define GFQ_ADJUSTMENT vp8_gf_boost_qadjustment[Q]
41extern int vp8_kf_boost_qadjustment[QINDEX_RANGE];
42
43extern const int vp8_gf_boost_qadjustment[QINDEX_RANGE];
44
45#define IIFACTOR   1.5
46#define IIKFACTOR1 1.40
47#define IIKFACTOR2 1.5
48#define RMAX       14.0
49#define GF_RMAX    48.0
50
51#define KF_MB_INTRA_MIN 300
52#define GF_MB_INTRA_MIN 200
53
54#define DOUBLE_DIVIDE_CHECK(X) ((X)<0?(X)-.000001:(X)+.000001)
55
56#define POW1 (double)cpi->oxcf.two_pass_vbrbias/100.0
57#define POW2 (double)cpi->oxcf.two_pass_vbrbias/100.0
58
59#define NEW_BOOST 1
60
61static int vscale_lookup[7] = {0, 1, 1, 2, 2, 3, 3};
62static int hscale_lookup[7] = {0, 0, 1, 1, 2, 2, 3};
63
64
65static const int cq_level[QINDEX_RANGE] =
66{
67    0,0,1,1,2,3,3,4,4,5,6,6,7,8,8,9,
68    9,10,11,11,12,13,13,14,15,15,16,17,17,18,19,20,
69    20,21,22,22,23,24,24,25,26,27,27,28,29,30,30,31,
70    32,33,33,34,35,36,36,37,38,39,39,40,41,42,42,43,
71    44,45,46,46,47,48,49,50,50,51,52,53,54,55,55,56,
72    57,58,59,60,60,61,62,63,64,65,66,67,67,68,69,70,
73    71,72,73,74,75,75,76,77,78,79,80,81,82,83,84,85,
74    86,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100
75};
76
77static void find_next_key_frame(VP8_COMP *cpi, FIRSTPASS_STATS *this_frame);
78
79/* Resets the first pass file to the given position using a relative seek
80 * from the current position
81 */
82static void reset_fpf_position(VP8_COMP *cpi, FIRSTPASS_STATS *Position)
83{
84    cpi->twopass.stats_in = Position;
85}
86
87static int lookup_next_frame_stats(VP8_COMP *cpi, FIRSTPASS_STATS *next_frame)
88{
89    if (cpi->twopass.stats_in >= cpi->twopass.stats_in_end)
90        return EOF;
91
92    *next_frame = *cpi->twopass.stats_in;
93    return 1;
94}
95
96/* Read frame stats at an offset from the current position */
97static int read_frame_stats( VP8_COMP *cpi,
98                             FIRSTPASS_STATS *frame_stats,
99                             int offset )
100{
101    FIRSTPASS_STATS * fps_ptr = cpi->twopass.stats_in;
102
103    /* Check legality of offset */
104    if ( offset >= 0 )
105    {
106        if ( &fps_ptr[offset] >= cpi->twopass.stats_in_end )
107             return EOF;
108    }
109    else if ( offset < 0 )
110    {
111        if ( &fps_ptr[offset] < cpi->twopass.stats_in_start )
112             return EOF;
113    }
114
115    *frame_stats = fps_ptr[offset];
116    return 1;
117}
118
119static int input_stats(VP8_COMP *cpi, FIRSTPASS_STATS *fps)
120{
121    if (cpi->twopass.stats_in >= cpi->twopass.stats_in_end)
122        return EOF;
123
124    *fps = *cpi->twopass.stats_in;
125    cpi->twopass.stats_in =
126         (void*)((char *)cpi->twopass.stats_in + sizeof(FIRSTPASS_STATS));
127    return 1;
128}
129
130static void output_stats(const VP8_COMP            *cpi,
131                         struct vpx_codec_pkt_list *pktlist,
132                         FIRSTPASS_STATS            *stats)
133{
134    struct vpx_codec_cx_pkt pkt;
135    pkt.kind = VPX_CODEC_STATS_PKT;
136    pkt.data.twopass_stats.buf = stats;
137    pkt.data.twopass_stats.sz = sizeof(FIRSTPASS_STATS);
138    vpx_codec_pkt_list_add(pktlist, &pkt);
139
140/* TEMP debug code */
141#if OUTPUT_FPF
142
143    {
144        FILE *fpfile;
145        fpfile = fopen("firstpass.stt", "a");
146
147        fprintf(fpfile, "%12.0f %12.0f %12.0f %12.4f %12.4f %12.4f %12.4f"
148                " %12.4f %12.4f %12.4f %12.4f %12.4f %12.4f %12.4f %12.4f"
149                " %12.0f %12.0f %12.4f\n",
150                stats->frame,
151                stats->intra_error,
152                stats->coded_error,
153                stats->ssim_weighted_pred_err,
154                stats->pcnt_inter,
155                stats->pcnt_motion,
156                stats->pcnt_second_ref,
157                stats->pcnt_neutral,
158                stats->MVr,
159                stats->mvr_abs,
160                stats->MVc,
161                stats->mvc_abs,
162                stats->MVrv,
163                stats->MVcv,
164                stats->mv_in_out_count,
165                stats->new_mv_count,
166                stats->count,
167                stats->duration);
168        fclose(fpfile);
169    }
170#endif
171}
172
173static void zero_stats(FIRSTPASS_STATS *section)
174{
175    section->frame      = 0.0;
176    section->intra_error = 0.0;
177    section->coded_error = 0.0;
178    section->ssim_weighted_pred_err = 0.0;
179    section->pcnt_inter  = 0.0;
180    section->pcnt_motion  = 0.0;
181    section->pcnt_second_ref = 0.0;
182    section->pcnt_neutral = 0.0;
183    section->MVr        = 0.0;
184    section->mvr_abs     = 0.0;
185    section->MVc        = 0.0;
186    section->mvc_abs     = 0.0;
187    section->MVrv       = 0.0;
188    section->MVcv       = 0.0;
189    section->mv_in_out_count  = 0.0;
190    section->new_mv_count = 0.0;
191    section->count      = 0.0;
192    section->duration   = 1.0;
193}
194
195static void accumulate_stats(FIRSTPASS_STATS *section, FIRSTPASS_STATS *frame)
196{
197    section->frame += frame->frame;
198    section->intra_error += frame->intra_error;
199    section->coded_error += frame->coded_error;
200    section->ssim_weighted_pred_err += frame->ssim_weighted_pred_err;
201    section->pcnt_inter  += frame->pcnt_inter;
202    section->pcnt_motion += frame->pcnt_motion;
203    section->pcnt_second_ref += frame->pcnt_second_ref;
204    section->pcnt_neutral += frame->pcnt_neutral;
205    section->MVr        += frame->MVr;
206    section->mvr_abs     += frame->mvr_abs;
207    section->MVc        += frame->MVc;
208    section->mvc_abs     += frame->mvc_abs;
209    section->MVrv       += frame->MVrv;
210    section->MVcv       += frame->MVcv;
211    section->mv_in_out_count  += frame->mv_in_out_count;
212    section->new_mv_count += frame->new_mv_count;
213    section->count      += frame->count;
214    section->duration   += frame->duration;
215}
216
217static void subtract_stats(FIRSTPASS_STATS *section, FIRSTPASS_STATS *frame)
218{
219    section->frame -= frame->frame;
220    section->intra_error -= frame->intra_error;
221    section->coded_error -= frame->coded_error;
222    section->ssim_weighted_pred_err -= frame->ssim_weighted_pred_err;
223    section->pcnt_inter  -= frame->pcnt_inter;
224    section->pcnt_motion -= frame->pcnt_motion;
225    section->pcnt_second_ref -= frame->pcnt_second_ref;
226    section->pcnt_neutral -= frame->pcnt_neutral;
227    section->MVr        -= frame->MVr;
228    section->mvr_abs     -= frame->mvr_abs;
229    section->MVc        -= frame->MVc;
230    section->mvc_abs     -= frame->mvc_abs;
231    section->MVrv       -= frame->MVrv;
232    section->MVcv       -= frame->MVcv;
233    section->mv_in_out_count  -= frame->mv_in_out_count;
234    section->new_mv_count -= frame->new_mv_count;
235    section->count      -= frame->count;
236    section->duration   -= frame->duration;
237}
238
239static void avg_stats(FIRSTPASS_STATS *section)
240{
241    if (section->count < 1.0)
242        return;
243
244    section->intra_error /= section->count;
245    section->coded_error /= section->count;
246    section->ssim_weighted_pred_err /= section->count;
247    section->pcnt_inter  /= section->count;
248    section->pcnt_second_ref /= section->count;
249    section->pcnt_neutral /= section->count;
250    section->pcnt_motion /= section->count;
251    section->MVr        /= section->count;
252    section->mvr_abs     /= section->count;
253    section->MVc        /= section->count;
254    section->mvc_abs     /= section->count;
255    section->MVrv       /= section->count;
256    section->MVcv       /= section->count;
257    section->mv_in_out_count   /= section->count;
258    section->duration   /= section->count;
259}
260
261/* Calculate a modified Error used in distributing bits between easier
262 * and harder frames
263 */
264static double calculate_modified_err(VP8_COMP *cpi, FIRSTPASS_STATS *this_frame)
265{
266    double av_err = ( cpi->twopass.total_stats.ssim_weighted_pred_err /
267                      cpi->twopass.total_stats.count );
268    double this_err = this_frame->ssim_weighted_pred_err;
269    double modified_err;
270
271    if (this_err > av_err)
272        modified_err = av_err * pow((this_err / DOUBLE_DIVIDE_CHECK(av_err)), POW1);
273    else
274        modified_err = av_err * pow((this_err / DOUBLE_DIVIDE_CHECK(av_err)), POW2);
275
276    return modified_err;
277}
278
279static const double weight_table[256] = {
2800.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000,
2810.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000,
2820.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000,
2830.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000,
2840.020000, 0.031250, 0.062500, 0.093750, 0.125000, 0.156250, 0.187500, 0.218750,
2850.250000, 0.281250, 0.312500, 0.343750, 0.375000, 0.406250, 0.437500, 0.468750,
2860.500000, 0.531250, 0.562500, 0.593750, 0.625000, 0.656250, 0.687500, 0.718750,
2870.750000, 0.781250, 0.812500, 0.843750, 0.875000, 0.906250, 0.937500, 0.968750,
2881.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000,
2891.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000,
2901.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000,
2911.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000,
2921.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000,
2931.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000,
2941.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000,
2951.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000,
2961.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000,
2971.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000,
2981.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000,
2991.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000,
3001.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000,
3011.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000,
3021.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000,
3031.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000,
3041.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000,
3051.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000,
3061.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000,
3071.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000,
3081.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000,
3091.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000,
3101.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000,
3111.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000
312};
313
314static double simple_weight(YV12_BUFFER_CONFIG *source)
315{
316    int i, j;
317
318    unsigned char *src = source->y_buffer;
319    double sum_weights = 0.0;
320
321    /* Loop throught the Y plane raw examining levels and creating a weight
322     * for the image
323     */
324    i = source->y_height;
325    do
326    {
327        j = source->y_width;
328        do
329        {
330            sum_weights += weight_table[ *src];
331            src++;
332        }while(--j);
333        src -= source->y_width;
334        src += source->y_stride;
335    }while(--i);
336
337    sum_weights /= (source->y_height * source->y_width);
338
339    return sum_weights;
340}
341
342
343/* This function returns the current per frame maximum bitrate target */
344static int frame_max_bits(VP8_COMP *cpi)
345{
346    /* Max allocation for a single frame based on the max section guidelines
347     * passed in and how many bits are left
348     */
349    int max_bits;
350
351    /* For CBR we need to also consider buffer fullness.
352     * If we are running below the optimal level then we need to gradually
353     * tighten up on max_bits.
354     */
355    if (cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER)
356    {
357        double buffer_fullness_ratio = (double)cpi->buffer_level / DOUBLE_DIVIDE_CHECK((double)cpi->oxcf.optimal_buffer_level);
358
359        /* For CBR base this on the target average bits per frame plus the
360         * maximum sedction rate passed in by the user
361         */
362        max_bits = (int)(cpi->av_per_frame_bandwidth * ((double)cpi->oxcf.two_pass_vbrmax_section / 100.0));
363
364        /* If our buffer is below the optimum level */
365        if (buffer_fullness_ratio < 1.0)
366        {
367            /* The lower of max_bits / 4 or cpi->av_per_frame_bandwidth / 4. */
368            int min_max_bits = ((cpi->av_per_frame_bandwidth >> 2) < (max_bits >> 2)) ? cpi->av_per_frame_bandwidth >> 2 : max_bits >> 2;
369
370            max_bits = (int)(max_bits * buffer_fullness_ratio);
371
372            /* Lowest value we will set ... which should allow the buffer to
373             * refill.
374             */
375            if (max_bits < min_max_bits)
376                max_bits = min_max_bits;
377        }
378    }
379    /* VBR */
380    else
381    {
382        /* For VBR base this on the bits and frames left plus the
383         * two_pass_vbrmax_section rate passed in by the user
384         */
385        max_bits = (int)(((double)cpi->twopass.bits_left / (cpi->twopass.total_stats.count - (double)cpi->common.current_video_frame)) * ((double)cpi->oxcf.two_pass_vbrmax_section / 100.0));
386    }
387
388    /* Trap case where we are out of bits */
389    if (max_bits < 0)
390        max_bits = 0;
391
392    return max_bits;
393}
394
395void vp8_init_first_pass(VP8_COMP *cpi)
396{
397    zero_stats(&cpi->twopass.total_stats);
398}
399
400void vp8_end_first_pass(VP8_COMP *cpi)
401{
402    output_stats(cpi, cpi->output_pkt_list, &cpi->twopass.total_stats);
403}
404
405static void zz_motion_search( VP8_COMP *cpi, MACROBLOCK * x,
406                              YV12_BUFFER_CONFIG * raw_buffer,
407                              int * raw_motion_err,
408                              YV12_BUFFER_CONFIG * recon_buffer,
409                              int * best_motion_err, int recon_yoffset)
410{
411    MACROBLOCKD * const xd = & x->e_mbd;
412    BLOCK *b = &x->block[0];
413    BLOCKD *d = &x->e_mbd.block[0];
414
415    unsigned char *src_ptr = (*(b->base_src) + b->src);
416    int src_stride = b->src_stride;
417    unsigned char *raw_ptr;
418    int raw_stride = raw_buffer->y_stride;
419    unsigned char *ref_ptr;
420    int ref_stride = x->e_mbd.pre.y_stride;
421
422    /* Set up pointers for this macro block raw buffer */
423    raw_ptr = (unsigned char *)(raw_buffer->y_buffer + recon_yoffset
424                                + d->offset);
425    vp8_mse16x16 ( src_ptr, src_stride, raw_ptr, raw_stride,
426                   (unsigned int *)(raw_motion_err));
427
428    /* Set up pointers for this macro block recon buffer */
429    xd->pre.y_buffer = recon_buffer->y_buffer + recon_yoffset;
430    ref_ptr = (unsigned char *)(xd->pre.y_buffer + d->offset );
431    vp8_mse16x16 ( src_ptr, src_stride, ref_ptr, ref_stride,
432                   (unsigned int *)(best_motion_err));
433}
434
435static void first_pass_motion_search(VP8_COMP *cpi, MACROBLOCK *x,
436                                     int_mv *ref_mv, MV *best_mv,
437                                     YV12_BUFFER_CONFIG *recon_buffer,
438                                     int *best_motion_err, int recon_yoffset )
439{
440    MACROBLOCKD *const xd = & x->e_mbd;
441    BLOCK *b = &x->block[0];
442    BLOCKD *d = &x->e_mbd.block[0];
443    int num00;
444
445    int_mv tmp_mv;
446    int_mv ref_mv_full;
447
448    int tmp_err;
449    int step_param = 3; /* Dont search over full range for first pass */
450    int further_steps = (MAX_MVSEARCH_STEPS - 1) - step_param;
451    int n;
452    vp8_variance_fn_ptr_t v_fn_ptr = cpi->fn_ptr[BLOCK_16X16];
453    int new_mv_mode_penalty = 256;
454
455    /* override the default variance function to use MSE */
456    v_fn_ptr.vf    = vp8_mse16x16;
457
458    /* Set up pointers for this macro block recon buffer */
459    xd->pre.y_buffer = recon_buffer->y_buffer + recon_yoffset;
460
461    /* Initial step/diamond search centred on best mv */
462    tmp_mv.as_int = 0;
463    ref_mv_full.as_mv.col = ref_mv->as_mv.col>>3;
464    ref_mv_full.as_mv.row = ref_mv->as_mv.row>>3;
465    tmp_err = cpi->diamond_search_sad(x, b, d, &ref_mv_full, &tmp_mv, step_param,
466                                      x->sadperbit16, &num00, &v_fn_ptr,
467                                      x->mvcost, ref_mv);
468    if ( tmp_err < INT_MAX-new_mv_mode_penalty )
469        tmp_err += new_mv_mode_penalty;
470
471    if (tmp_err < *best_motion_err)
472    {
473        *best_motion_err = tmp_err;
474        best_mv->row = tmp_mv.as_mv.row;
475        best_mv->col = tmp_mv.as_mv.col;
476    }
477
478    /* Further step/diamond searches as necessary */
479    n = num00;
480    num00 = 0;
481
482    while (n < further_steps)
483    {
484        n++;
485
486        if (num00)
487            num00--;
488        else
489        {
490            tmp_err = cpi->diamond_search_sad(x, b, d, &ref_mv_full, &tmp_mv,
491                                              step_param + n, x->sadperbit16,
492                                              &num00, &v_fn_ptr, x->mvcost,
493                                              ref_mv);
494            if ( tmp_err < INT_MAX-new_mv_mode_penalty )
495                tmp_err += new_mv_mode_penalty;
496
497            if (tmp_err < *best_motion_err)
498            {
499                *best_motion_err = tmp_err;
500                best_mv->row = tmp_mv.as_mv.row;
501                best_mv->col = tmp_mv.as_mv.col;
502            }
503        }
504    }
505}
506
507void vp8_first_pass(VP8_COMP *cpi)
508{
509    int mb_row, mb_col;
510    MACROBLOCK *const x = & cpi->mb;
511    VP8_COMMON *const cm = & cpi->common;
512    MACROBLOCKD *const xd = & x->e_mbd;
513
514    int recon_yoffset, recon_uvoffset;
515    YV12_BUFFER_CONFIG *lst_yv12 = &cm->yv12_fb[cm->lst_fb_idx];
516    YV12_BUFFER_CONFIG *new_yv12 = &cm->yv12_fb[cm->new_fb_idx];
517    YV12_BUFFER_CONFIG *gld_yv12 = &cm->yv12_fb[cm->gld_fb_idx];
518    int recon_y_stride = lst_yv12->y_stride;
519    int recon_uv_stride = lst_yv12->uv_stride;
520    int64_t intra_error = 0;
521    int64_t coded_error = 0;
522
523    int sum_mvr = 0, sum_mvc = 0;
524    int sum_mvr_abs = 0, sum_mvc_abs = 0;
525    int sum_mvrs = 0, sum_mvcs = 0;
526    int mvcount = 0;
527    int intercount = 0;
528    int second_ref_count = 0;
529    int intrapenalty = 256;
530    int neutral_count = 0;
531    int new_mv_count = 0;
532    int sum_in_vectors = 0;
533    uint32_t lastmv_as_int = 0;
534
535    int_mv zero_ref_mv;
536
537    zero_ref_mv.as_int = 0;
538
539    vp8_clear_system_state();
540
541    x->src = * cpi->Source;
542    xd->pre = *lst_yv12;
543    xd->dst = *new_yv12;
544
545    x->partition_info = x->pi;
546
547    xd->mode_info_context = cm->mi;
548
549    if(!cm->use_bilinear_mc_filter)
550    {
551         xd->subpixel_predict        = vp8_sixtap_predict4x4;
552         xd->subpixel_predict8x4     = vp8_sixtap_predict8x4;
553         xd->subpixel_predict8x8     = vp8_sixtap_predict8x8;
554         xd->subpixel_predict16x16   = vp8_sixtap_predict16x16;
555     }
556     else
557     {
558         xd->subpixel_predict        = vp8_bilinear_predict4x4;
559         xd->subpixel_predict8x4     = vp8_bilinear_predict8x4;
560         xd->subpixel_predict8x8     = vp8_bilinear_predict8x8;
561         xd->subpixel_predict16x16   = vp8_bilinear_predict16x16;
562     }
563
564    vp8_build_block_offsets(x);
565
566    /* set up frame new frame for intra coded blocks */
567    vp8_setup_intra_recon(new_yv12);
568    vp8cx_frame_init_quantizer(cpi);
569
570    /* Initialise the MV cost table to the defaults */
571    {
572        int flag[2] = {1, 1};
573        vp8_initialize_rd_consts(cpi, x, vp8_dc_quant(cm->base_qindex, cm->y1dc_delta_q));
574        vpx_memcpy(cm->fc.mvc, vp8_default_mv_context, sizeof(vp8_default_mv_context));
575        vp8_build_component_cost_table(cpi->mb.mvcost, (const MV_CONTEXT *) cm->fc.mvc, flag);
576    }
577
578    /* for each macroblock row in image */
579    for (mb_row = 0; mb_row < cm->mb_rows; mb_row++)
580    {
581        int_mv best_ref_mv;
582
583        best_ref_mv.as_int = 0;
584
585        /* reset above block coeffs */
586        xd->up_available = (mb_row != 0);
587        recon_yoffset = (mb_row * recon_y_stride * 16);
588        recon_uvoffset = (mb_row * recon_uv_stride * 8);
589
590        /* Set up limit values for motion vectors to prevent them extending
591         * outside the UMV borders
592         */
593        x->mv_row_min = -((mb_row * 16) + (VP8BORDERINPIXELS - 16));
594        x->mv_row_max = ((cm->mb_rows - 1 - mb_row) * 16) + (VP8BORDERINPIXELS - 16);
595
596
597        /* for each macroblock col in image */
598        for (mb_col = 0; mb_col < cm->mb_cols; mb_col++)
599        {
600            int this_error;
601            int gf_motion_error = INT_MAX;
602            int use_dc_pred = (mb_col || mb_row) && (!mb_col || !mb_row);
603
604            xd->dst.y_buffer = new_yv12->y_buffer + recon_yoffset;
605            xd->dst.u_buffer = new_yv12->u_buffer + recon_uvoffset;
606            xd->dst.v_buffer = new_yv12->v_buffer + recon_uvoffset;
607            xd->left_available = (mb_col != 0);
608
609            /* Copy current mb to a buffer */
610            vp8_copy_mem16x16(x->src.y_buffer, x->src.y_stride, x->thismb, 16);
611
612            /* do intra 16x16 prediction */
613            this_error = vp8_encode_intra(cpi, x, use_dc_pred);
614
615            /* "intrapenalty" below deals with situations where the intra
616             * and inter error scores are very low (eg a plain black frame)
617             * We do not have special cases in first pass for 0,0 and
618             * nearest etc so all inter modes carry an overhead cost
619             * estimate fot the mv. When the error score is very low this
620             * causes us to pick all or lots of INTRA modes and throw lots
621             * of key frames. This penalty adds a cost matching that of a
622             * 0,0 mv to the intra case.
623             */
624            this_error += intrapenalty;
625
626            /* Cumulative intra error total */
627            intra_error += (int64_t)this_error;
628
629            /* Set up limit values for motion vectors to prevent them
630             * extending outside the UMV borders
631             */
632            x->mv_col_min = -((mb_col * 16) + (VP8BORDERINPIXELS - 16));
633            x->mv_col_max = ((cm->mb_cols - 1 - mb_col) * 16) + (VP8BORDERINPIXELS - 16);
634
635            /* Other than for the first frame do a motion search */
636            if (cm->current_video_frame > 0)
637            {
638                BLOCKD *d = &x->e_mbd.block[0];
639                MV tmp_mv = {0, 0};
640                int tmp_err;
641                int motion_error = INT_MAX;
642                int raw_motion_error = INT_MAX;
643
644                /* Simple 0,0 motion with no mv overhead */
645                zz_motion_search( cpi, x, cpi->last_frame_unscaled_source,
646                                  &raw_motion_error, lst_yv12, &motion_error,
647                                  recon_yoffset );
648                d->bmi.mv.as_mv.row = 0;
649                d->bmi.mv.as_mv.col = 0;
650
651                if (raw_motion_error < cpi->oxcf.encode_breakout)
652                    goto skip_motion_search;
653
654                /* Test last reference frame using the previous best mv as the
655                 * starting point (best reference) for the search
656                 */
657                first_pass_motion_search(cpi, x, &best_ref_mv,
658                                        &d->bmi.mv.as_mv, lst_yv12,
659                                        &motion_error, recon_yoffset);
660
661                /* If the current best reference mv is not centred on 0,0
662                 * then do a 0,0 based search as well
663                 */
664                if (best_ref_mv.as_int)
665                {
666                   tmp_err = INT_MAX;
667                   first_pass_motion_search(cpi, x, &zero_ref_mv, &tmp_mv,
668                                     lst_yv12, &tmp_err, recon_yoffset);
669
670                   if ( tmp_err < motion_error )
671                   {
672                        motion_error = tmp_err;
673                        d->bmi.mv.as_mv.row = tmp_mv.row;
674                        d->bmi.mv.as_mv.col = tmp_mv.col;
675                   }
676                }
677
678                /* Experimental search in a second reference frame ((0,0)
679                 * based only)
680                 */
681                if (cm->current_video_frame > 1)
682                {
683                    first_pass_motion_search(cpi, x, &zero_ref_mv, &tmp_mv, gld_yv12, &gf_motion_error, recon_yoffset);
684
685                    if ((gf_motion_error < motion_error) && (gf_motion_error < this_error))
686                    {
687                        second_ref_count++;
688                    }
689
690                    /* Reset to last frame as reference buffer */
691                    xd->pre.y_buffer = lst_yv12->y_buffer + recon_yoffset;
692                    xd->pre.u_buffer = lst_yv12->u_buffer + recon_uvoffset;
693                    xd->pre.v_buffer = lst_yv12->v_buffer + recon_uvoffset;
694                }
695
696skip_motion_search:
697                /* Intra assumed best */
698                best_ref_mv.as_int = 0;
699
700                if (motion_error <= this_error)
701                {
702                    /* Keep a count of cases where the inter and intra were
703                     * very close and very low. This helps with scene cut
704                     * detection for example in cropped clips with black bars
705                     * at the sides or top and bottom.
706                     */
707                    if( (((this_error-intrapenalty) * 9) <=
708                         (motion_error*10)) &&
709                        (this_error < (2*intrapenalty)) )
710                    {
711                        neutral_count++;
712                    }
713
714                    d->bmi.mv.as_mv.row *= 8;
715                    d->bmi.mv.as_mv.col *= 8;
716                    this_error = motion_error;
717                    vp8_set_mbmode_and_mvs(x, NEWMV, &d->bmi.mv);
718                    vp8_encode_inter16x16y(x);
719                    sum_mvr += d->bmi.mv.as_mv.row;
720                    sum_mvr_abs += abs(d->bmi.mv.as_mv.row);
721                    sum_mvc += d->bmi.mv.as_mv.col;
722                    sum_mvc_abs += abs(d->bmi.mv.as_mv.col);
723                    sum_mvrs += d->bmi.mv.as_mv.row * d->bmi.mv.as_mv.row;
724                    sum_mvcs += d->bmi.mv.as_mv.col * d->bmi.mv.as_mv.col;
725                    intercount++;
726
727                    best_ref_mv.as_int = d->bmi.mv.as_int;
728
729                    /* Was the vector non-zero */
730                    if (d->bmi.mv.as_int)
731                    {
732                        mvcount++;
733
734                        /* Was it different from the last non zero vector */
735                        if ( d->bmi.mv.as_int != lastmv_as_int )
736                            new_mv_count++;
737                        lastmv_as_int = d->bmi.mv.as_int;
738
739                        /* Does the Row vector point inwards or outwards */
740                        if (mb_row < cm->mb_rows / 2)
741                        {
742                            if (d->bmi.mv.as_mv.row > 0)
743                                sum_in_vectors--;
744                            else if (d->bmi.mv.as_mv.row < 0)
745                                sum_in_vectors++;
746                        }
747                        else if (mb_row > cm->mb_rows / 2)
748                        {
749                            if (d->bmi.mv.as_mv.row > 0)
750                                sum_in_vectors++;
751                            else if (d->bmi.mv.as_mv.row < 0)
752                                sum_in_vectors--;
753                        }
754
755                        /* Does the Row vector point inwards or outwards */
756                        if (mb_col < cm->mb_cols / 2)
757                        {
758                            if (d->bmi.mv.as_mv.col > 0)
759                                sum_in_vectors--;
760                            else if (d->bmi.mv.as_mv.col < 0)
761                                sum_in_vectors++;
762                        }
763                        else if (mb_col > cm->mb_cols / 2)
764                        {
765                            if (d->bmi.mv.as_mv.col > 0)
766                                sum_in_vectors++;
767                            else if (d->bmi.mv.as_mv.col < 0)
768                                sum_in_vectors--;
769                        }
770                    }
771                }
772            }
773
774            coded_error += (int64_t)this_error;
775
776            /* adjust to the next column of macroblocks */
777            x->src.y_buffer += 16;
778            x->src.u_buffer += 8;
779            x->src.v_buffer += 8;
780
781            recon_yoffset += 16;
782            recon_uvoffset += 8;
783        }
784
785        /* adjust to the next row of mbs */
786        x->src.y_buffer += 16 * x->src.y_stride - 16 * cm->mb_cols;
787        x->src.u_buffer += 8 * x->src.uv_stride - 8 * cm->mb_cols;
788        x->src.v_buffer += 8 * x->src.uv_stride - 8 * cm->mb_cols;
789
790        /* extend the recon for intra prediction */
791        vp8_extend_mb_row(new_yv12, xd->dst.y_buffer + 16, xd->dst.u_buffer + 8, xd->dst.v_buffer + 8);
792        vp8_clear_system_state();
793    }
794
795    vp8_clear_system_state();
796    {
797        double weight = 0.0;
798
799        FIRSTPASS_STATS fps;
800
801        fps.frame      = cm->current_video_frame ;
802        fps.intra_error = (double)(intra_error >> 8);
803        fps.coded_error = (double)(coded_error >> 8);
804        weight = simple_weight(cpi->Source);
805
806
807        if (weight < 0.1)
808            weight = 0.1;
809
810        fps.ssim_weighted_pred_err = fps.coded_error * weight;
811
812        fps.pcnt_inter  = 0.0;
813        fps.pcnt_motion = 0.0;
814        fps.MVr        = 0.0;
815        fps.mvr_abs     = 0.0;
816        fps.MVc        = 0.0;
817        fps.mvc_abs     = 0.0;
818        fps.MVrv       = 0.0;
819        fps.MVcv       = 0.0;
820        fps.mv_in_out_count  = 0.0;
821        fps.new_mv_count = 0.0;
822        fps.count      = 1.0;
823
824        fps.pcnt_inter   = 1.0 * (double)intercount / cm->MBs;
825        fps.pcnt_second_ref = 1.0 * (double)second_ref_count / cm->MBs;
826        fps.pcnt_neutral = 1.0 * (double)neutral_count / cm->MBs;
827
828        if (mvcount > 0)
829        {
830            fps.MVr = (double)sum_mvr / (double)mvcount;
831            fps.mvr_abs = (double)sum_mvr_abs / (double)mvcount;
832            fps.MVc = (double)sum_mvc / (double)mvcount;
833            fps.mvc_abs = (double)sum_mvc_abs / (double)mvcount;
834            fps.MVrv = ((double)sum_mvrs - (fps.MVr * fps.MVr / (double)mvcount)) / (double)mvcount;
835            fps.MVcv = ((double)sum_mvcs - (fps.MVc * fps.MVc / (double)mvcount)) / (double)mvcount;
836            fps.mv_in_out_count = (double)sum_in_vectors / (double)(mvcount * 2);
837            fps.new_mv_count = new_mv_count;
838
839            fps.pcnt_motion = 1.0 * (double)mvcount / cpi->common.MBs;
840        }
841
842        /* TODO:  handle the case when duration is set to 0, or something less
843         * than the full time between subsequent cpi->source_time_stamps
844         */
845        fps.duration = (double)(cpi->source->ts_end
846                       - cpi->source->ts_start);
847
848        /* don't want to do output stats with a stack variable! */
849        memcpy(&cpi->twopass.this_frame_stats,
850               &fps,
851               sizeof(FIRSTPASS_STATS));
852        output_stats(cpi, cpi->output_pkt_list, &cpi->twopass.this_frame_stats);
853        accumulate_stats(&cpi->twopass.total_stats, &fps);
854    }
855
856    /* Copy the previous Last Frame into the GF buffer if specific
857     * conditions for doing so are met
858     */
859    if ((cm->current_video_frame > 0) &&
860        (cpi->twopass.this_frame_stats.pcnt_inter > 0.20) &&
861        ((cpi->twopass.this_frame_stats.intra_error /
862          DOUBLE_DIVIDE_CHECK(cpi->twopass.this_frame_stats.coded_error)) >
863         2.0))
864    {
865        vp8_yv12_copy_frame(lst_yv12, gld_yv12);
866    }
867
868    /* swap frame pointers so last frame refers to the frame we just
869     * compressed
870     */
871    vp8_swap_yv12_buffer(lst_yv12, new_yv12);
872    vp8_yv12_extend_frame_borders(lst_yv12);
873
874    /* Special case for the first frame. Copy into the GF buffer as a
875     * second reference.
876     */
877    if (cm->current_video_frame == 0)
878    {
879        vp8_yv12_copy_frame(lst_yv12, gld_yv12);
880    }
881
882
883    /* use this to see what the first pass reconstruction looks like */
884    if (0)
885    {
886        char filename[512];
887        FILE *recon_file;
888        sprintf(filename, "enc%04d.yuv", (int) cm->current_video_frame);
889
890        if (cm->current_video_frame == 0)
891            recon_file = fopen(filename, "wb");
892        else
893            recon_file = fopen(filename, "ab");
894
895        (void) fwrite(lst_yv12->buffer_alloc, lst_yv12->frame_size, 1,
896                      recon_file);
897        fclose(recon_file);
898    }
899
900    cm->current_video_frame++;
901
902}
903extern const int vp8_bits_per_mb[2][QINDEX_RANGE];
904
905/* Estimate a cost per mb attributable to overheads such as the coding of
906 * modes and motion vectors.
907 * Currently simplistic in its assumptions for testing.
908 */
909
910static double bitcost( double prob )
911{
912  if (prob > 0.000122)
913    return -log(prob) / log(2.0);
914  else
915    return 13.0;
916}
917static int64_t estimate_modemvcost(VP8_COMP *cpi,
918                                     FIRSTPASS_STATS * fpstats)
919{
920    int mv_cost;
921    int64_t mode_cost;
922
923    double av_pct_inter = fpstats->pcnt_inter / fpstats->count;
924    double av_pct_motion = fpstats->pcnt_motion / fpstats->count;
925    double av_intra = (1.0 - av_pct_inter);
926
927    double zz_cost;
928    double motion_cost;
929    double intra_cost;
930
931    zz_cost = bitcost(av_pct_inter - av_pct_motion);
932    motion_cost = bitcost(av_pct_motion);
933    intra_cost = bitcost(av_intra);
934
935    /* Estimate of extra bits per mv overhead for mbs
936     * << 9 is the normalization to the (bits * 512) used in vp8_bits_per_mb
937     */
938    mv_cost = ((int)(fpstats->new_mv_count / fpstats->count) * 8) << 9;
939
940    /* Crude estimate of overhead cost from modes
941     * << 9 is the normalization to (bits * 512) used in vp8_bits_per_mb
942     */
943    mode_cost = (int64_t)((((av_pct_inter - av_pct_motion) * zz_cost) +
944                             (av_pct_motion * motion_cost) +
945                             (av_intra * intra_cost)) * cpi->common.MBs) * 512;
946
947    return mv_cost + mode_cost;
948}
949
950static double calc_correction_factor( double err_per_mb,
951                                      double err_devisor,
952                                      double pt_low,
953                                      double pt_high,
954                                      int Q )
955{
956    double power_term;
957    double error_term = err_per_mb / err_devisor;
958    double correction_factor;
959
960    /* Adjustment based on Q to power term. */
961    power_term = pt_low + (Q * 0.01);
962    power_term = (power_term > pt_high) ? pt_high : power_term;
963
964    /* Adjustments to error term */
965    /* TBD */
966
967    /* Calculate correction factor */
968    correction_factor = pow(error_term, power_term);
969
970    /* Clip range */
971    correction_factor =
972        (correction_factor < 0.05)
973            ? 0.05 : (correction_factor > 5.0) ? 5.0 : correction_factor;
974
975    return correction_factor;
976}
977
978static int estimate_max_q(VP8_COMP *cpi,
979                          FIRSTPASS_STATS * fpstats,
980                          int section_target_bandwitdh,
981                          int overhead_bits )
982{
983    int Q;
984    int num_mbs = cpi->common.MBs;
985    int target_norm_bits_per_mb;
986
987    double section_err = (fpstats->coded_error / fpstats->count);
988    double err_per_mb = section_err / num_mbs;
989    double err_correction_factor;
990    double speed_correction = 1.0;
991    int overhead_bits_per_mb;
992
993    if (section_target_bandwitdh <= 0)
994        return cpi->twopass.maxq_max_limit;       /* Highest value allowed */
995
996    target_norm_bits_per_mb =
997        (section_target_bandwitdh < (1 << 20))
998            ? (512 * section_target_bandwitdh) / num_mbs
999            : 512 * (section_target_bandwitdh / num_mbs);
1000
1001    /* Calculate a corrective factor based on a rolling ratio of bits spent
1002     * vs target bits
1003     */
1004    if ((cpi->rolling_target_bits > 0) &&
1005        (cpi->active_worst_quality < cpi->worst_quality))
1006    {
1007        double rolling_ratio;
1008
1009        rolling_ratio = (double)cpi->rolling_actual_bits /
1010                        (double)cpi->rolling_target_bits;
1011
1012        if (rolling_ratio < 0.95)
1013            cpi->twopass.est_max_qcorrection_factor -= 0.005;
1014        else if (rolling_ratio > 1.05)
1015            cpi->twopass.est_max_qcorrection_factor += 0.005;
1016
1017        cpi->twopass.est_max_qcorrection_factor =
1018            (cpi->twopass.est_max_qcorrection_factor < 0.1)
1019                ? 0.1
1020                : (cpi->twopass.est_max_qcorrection_factor > 10.0)
1021                    ? 10.0 : cpi->twopass.est_max_qcorrection_factor;
1022    }
1023
1024    /* Corrections for higher compression speed settings
1025     * (reduced compression expected)
1026     */
1027    if ((cpi->compressor_speed == 3) || (cpi->compressor_speed == 1))
1028    {
1029        if (cpi->oxcf.cpu_used <= 5)
1030            speed_correction = 1.04 + (cpi->oxcf.cpu_used * 0.04);
1031        else
1032            speed_correction = 1.25;
1033    }
1034
1035    /* Estimate of overhead bits per mb */
1036    /* Correction to overhead bits for min allowed Q. */
1037    overhead_bits_per_mb = overhead_bits / num_mbs;
1038    overhead_bits_per_mb = (int)(overhead_bits_per_mb *
1039                            pow( 0.98, (double)cpi->twopass.maxq_min_limit ));
1040
1041    /* Try and pick a max Q that will be high enough to encode the
1042     * content at the given rate.
1043     */
1044    for (Q = cpi->twopass.maxq_min_limit; Q < cpi->twopass.maxq_max_limit; Q++)
1045    {
1046        int bits_per_mb_at_this_q;
1047
1048        /* Error per MB based correction factor */
1049        err_correction_factor =
1050            calc_correction_factor(err_per_mb, 150.0, 0.40, 0.90, Q);
1051
1052        bits_per_mb_at_this_q =
1053            vp8_bits_per_mb[INTER_FRAME][Q] + overhead_bits_per_mb;
1054
1055        bits_per_mb_at_this_q = (int)(.5 + err_correction_factor
1056            * speed_correction * cpi->twopass.est_max_qcorrection_factor
1057            * cpi->twopass.section_max_qfactor
1058            * (double)bits_per_mb_at_this_q);
1059
1060        /* Mode and motion overhead */
1061        /* As Q rises in real encode loop rd code will force overhead down
1062         * We make a crude adjustment for this here as *.98 per Q step.
1063         */
1064        overhead_bits_per_mb = (int)((double)overhead_bits_per_mb * 0.98);
1065
1066        if (bits_per_mb_at_this_q <= target_norm_bits_per_mb)
1067            break;
1068    }
1069
1070    /* Restriction on active max q for constrained quality mode. */
1071    if ( (cpi->oxcf.end_usage == USAGE_CONSTRAINED_QUALITY) &&
1072         (Q < cpi->cq_target_quality) )
1073    {
1074        Q = cpi->cq_target_quality;
1075    }
1076
1077    /* Adjust maxq_min_limit and maxq_max_limit limits based on
1078     * average q observed in clip for non kf/gf.arf frames
1079     * Give average a chance to settle though.
1080     */
1081    if ( (cpi->ni_frames >
1082                  ((int)cpi->twopass.total_stats.count >> 8)) &&
1083         (cpi->ni_frames > 150) )
1084    {
1085        cpi->twopass.maxq_max_limit = ((cpi->ni_av_qi + 32) < cpi->worst_quality)
1086                                  ? (cpi->ni_av_qi + 32) : cpi->worst_quality;
1087        cpi->twopass.maxq_min_limit = ((cpi->ni_av_qi - 32) > cpi->best_quality)
1088                                  ? (cpi->ni_av_qi - 32) : cpi->best_quality;
1089    }
1090
1091    return Q;
1092}
1093
1094/* For cq mode estimate a cq level that matches the observed
1095 * complexity and data rate.
1096 */
1097static int estimate_cq( VP8_COMP *cpi,
1098                        FIRSTPASS_STATS * fpstats,
1099                        int section_target_bandwitdh,
1100                        int overhead_bits )
1101{
1102    int Q;
1103    int num_mbs = cpi->common.MBs;
1104    int target_norm_bits_per_mb;
1105
1106    double section_err = (fpstats->coded_error / fpstats->count);
1107    double err_per_mb = section_err / num_mbs;
1108    double err_correction_factor;
1109    double speed_correction = 1.0;
1110    double clip_iiratio;
1111    double clip_iifactor;
1112    int overhead_bits_per_mb;
1113
1114    if (0)
1115    {
1116        FILE *f = fopen("epmp.stt", "a");
1117        fprintf(f, "%10.2f\n", err_per_mb );
1118        fclose(f);
1119    }
1120
1121    target_norm_bits_per_mb = (section_target_bandwitdh < (1 << 20))
1122                              ? (512 * section_target_bandwitdh) / num_mbs
1123                              : 512 * (section_target_bandwitdh / num_mbs);
1124
1125    /* Estimate of overhead bits per mb */
1126    overhead_bits_per_mb = overhead_bits / num_mbs;
1127
1128    /* Corrections for higher compression speed settings
1129     * (reduced compression expected)
1130     */
1131    if ((cpi->compressor_speed == 3) || (cpi->compressor_speed == 1))
1132    {
1133        if (cpi->oxcf.cpu_used <= 5)
1134            speed_correction = 1.04 + (cpi->oxcf.cpu_used * 0.04);
1135        else
1136            speed_correction = 1.25;
1137    }
1138
1139    /* II ratio correction factor for clip as a whole */
1140    clip_iiratio = cpi->twopass.total_stats.intra_error /
1141                   DOUBLE_DIVIDE_CHECK(cpi->twopass.total_stats.coded_error);
1142    clip_iifactor = 1.0 - ((clip_iiratio - 10.0) * 0.025);
1143    if (clip_iifactor < 0.80)
1144        clip_iifactor = 0.80;
1145
1146    /* Try and pick a Q that can encode the content at the given rate. */
1147    for (Q = 0; Q < MAXQ; Q++)
1148    {
1149        int bits_per_mb_at_this_q;
1150
1151        /* Error per MB based correction factor */
1152        err_correction_factor =
1153            calc_correction_factor(err_per_mb, 100.0, 0.40, 0.90, Q);
1154
1155        bits_per_mb_at_this_q =
1156            vp8_bits_per_mb[INTER_FRAME][Q] + overhead_bits_per_mb;
1157
1158        bits_per_mb_at_this_q =
1159            (int)( .5 + err_correction_factor *
1160                        speed_correction *
1161                        clip_iifactor *
1162                        (double)bits_per_mb_at_this_q);
1163
1164        /* Mode and motion overhead */
1165        /* As Q rises in real encode loop rd code will force overhead down
1166         * We make a crude adjustment for this here as *.98 per Q step.
1167         */
1168        overhead_bits_per_mb = (int)((double)overhead_bits_per_mb * 0.98);
1169
1170        if (bits_per_mb_at_this_q <= target_norm_bits_per_mb)
1171            break;
1172    }
1173
1174    /* Clip value to range "best allowed to (worst allowed - 1)" */
1175    Q = cq_level[Q];
1176    if ( Q >= cpi->worst_quality )
1177        Q = cpi->worst_quality - 1;
1178    if ( Q < cpi->best_quality )
1179        Q = cpi->best_quality;
1180
1181    return Q;
1182}
1183
1184static int estimate_q(VP8_COMP *cpi, double section_err, int section_target_bandwitdh)
1185{
1186    int Q;
1187    int num_mbs = cpi->common.MBs;
1188    int target_norm_bits_per_mb;
1189
1190    double err_per_mb = section_err / num_mbs;
1191    double err_correction_factor;
1192    double speed_correction = 1.0;
1193
1194    target_norm_bits_per_mb = (section_target_bandwitdh < (1 << 20)) ? (512 * section_target_bandwitdh) / num_mbs : 512 * (section_target_bandwitdh / num_mbs);
1195
1196    /* Corrections for higher compression speed settings
1197     * (reduced compression expected)
1198     */
1199    if ((cpi->compressor_speed == 3) || (cpi->compressor_speed == 1))
1200    {
1201        if (cpi->oxcf.cpu_used <= 5)
1202            speed_correction = 1.04 + (cpi->oxcf.cpu_used * 0.04);
1203        else
1204            speed_correction = 1.25;
1205    }
1206
1207    /* Try and pick a Q that can encode the content at the given rate. */
1208    for (Q = 0; Q < MAXQ; Q++)
1209    {
1210        int bits_per_mb_at_this_q;
1211
1212        /* Error per MB based correction factor */
1213        err_correction_factor =
1214            calc_correction_factor(err_per_mb, 150.0, 0.40, 0.90, Q);
1215
1216        bits_per_mb_at_this_q =
1217            (int)( .5 + ( err_correction_factor *
1218                          speed_correction *
1219                          cpi->twopass.est_max_qcorrection_factor *
1220                          (double)vp8_bits_per_mb[INTER_FRAME][Q] / 1.0 ) );
1221
1222        if (bits_per_mb_at_this_q <= target_norm_bits_per_mb)
1223            break;
1224    }
1225
1226    return Q;
1227}
1228
1229/* Estimate a worst case Q for a KF group */
1230static int estimate_kf_group_q(VP8_COMP *cpi, double section_err, int section_target_bandwitdh, double group_iiratio)
1231{
1232    int Q;
1233    int num_mbs = cpi->common.MBs;
1234    int target_norm_bits_per_mb = (512 * section_target_bandwitdh) / num_mbs;
1235    int bits_per_mb_at_this_q;
1236
1237    double err_per_mb = section_err / num_mbs;
1238    double err_correction_factor;
1239    double speed_correction = 1.0;
1240    double current_spend_ratio = 1.0;
1241
1242    double pow_highq = (POW1 < 0.6) ? POW1 + 0.3 : 0.90;
1243    double pow_lowq = (POW1 < 0.7) ? POW1 + 0.1 : 0.80;
1244
1245    double iiratio_correction_factor = 1.0;
1246
1247    double combined_correction_factor;
1248
1249    /* Trap special case where the target is <= 0 */
1250    if (target_norm_bits_per_mb <= 0)
1251        return MAXQ * 2;
1252
1253    /* Calculate a corrective factor based on a rolling ratio of bits spent
1254     *  vs target bits
1255     * This is clamped to the range 0.1 to 10.0
1256     */
1257    if (cpi->long_rolling_target_bits <= 0)
1258        current_spend_ratio = 10.0;
1259    else
1260    {
1261        current_spend_ratio = (double)cpi->long_rolling_actual_bits / (double)cpi->long_rolling_target_bits;
1262        current_spend_ratio = (current_spend_ratio > 10.0) ? 10.0 : (current_spend_ratio < 0.1) ? 0.1 : current_spend_ratio;
1263    }
1264
1265    /* Calculate a correction factor based on the quality of prediction in
1266     * the sequence as indicated by intra_inter error score ratio (IIRatio)
1267     * The idea here is to favour subsampling in the hardest sections vs
1268     * the easyest.
1269     */
1270    iiratio_correction_factor = 1.0 - ((group_iiratio - 6.0) * 0.1);
1271
1272    if (iiratio_correction_factor < 0.5)
1273        iiratio_correction_factor = 0.5;
1274
1275    /* Corrections for higher compression speed settings
1276     * (reduced compression expected)
1277     */
1278    if ((cpi->compressor_speed == 3) || (cpi->compressor_speed == 1))
1279    {
1280        if (cpi->oxcf.cpu_used <= 5)
1281            speed_correction = 1.04 + (cpi->oxcf.cpu_used * 0.04);
1282        else
1283            speed_correction = 1.25;
1284    }
1285
1286    /* Combine the various factors calculated above */
1287    combined_correction_factor = speed_correction * iiratio_correction_factor * current_spend_ratio;
1288
1289    /* Try and pick a Q that should be high enough to encode the content at
1290     * the given rate.
1291     */
1292    for (Q = 0; Q < MAXQ; Q++)
1293    {
1294        /* Error per MB based correction factor */
1295        err_correction_factor =
1296            calc_correction_factor(err_per_mb, 150.0, pow_lowq, pow_highq, Q);
1297
1298        bits_per_mb_at_this_q =
1299            (int)(.5 + ( err_correction_factor *
1300                         combined_correction_factor *
1301                         (double)vp8_bits_per_mb[INTER_FRAME][Q]) );
1302
1303        if (bits_per_mb_at_this_q <= target_norm_bits_per_mb)
1304            break;
1305    }
1306
1307    /* If we could not hit the target even at Max Q then estimate what Q
1308     * would have been required
1309     */
1310    while ((bits_per_mb_at_this_q > target_norm_bits_per_mb)  && (Q < (MAXQ * 2)))
1311    {
1312
1313        bits_per_mb_at_this_q = (int)(0.96 * bits_per_mb_at_this_q);
1314        Q++;
1315    }
1316
1317    if (0)
1318    {
1319        FILE *f = fopen("estkf_q.stt", "a");
1320        fprintf(f, "%8d %8d %8d %8.2f %8.3f %8.2f %8.3f %8.3f %8.3f %8d\n", cpi->common.current_video_frame, bits_per_mb_at_this_q,
1321                target_norm_bits_per_mb, err_per_mb, err_correction_factor,
1322                current_spend_ratio, group_iiratio, iiratio_correction_factor,
1323                (double)cpi->buffer_level / (double)cpi->oxcf.optimal_buffer_level, Q);
1324        fclose(f);
1325    }
1326
1327    return Q;
1328}
1329
1330extern void vp8_new_framerate(VP8_COMP *cpi, double framerate);
1331
1332void vp8_init_second_pass(VP8_COMP *cpi)
1333{
1334    FIRSTPASS_STATS this_frame;
1335    FIRSTPASS_STATS *start_pos;
1336
1337    double two_pass_min_rate = (double)(cpi->oxcf.target_bandwidth * cpi->oxcf.two_pass_vbrmin_section / 100);
1338
1339    zero_stats(&cpi->twopass.total_stats);
1340    zero_stats(&cpi->twopass.total_left_stats);
1341
1342    if (!cpi->twopass.stats_in_end)
1343        return;
1344
1345    cpi->twopass.total_stats = *cpi->twopass.stats_in_end;
1346    cpi->twopass.total_left_stats = cpi->twopass.total_stats;
1347
1348    /* each frame can have a different duration, as the frame rate in the
1349     * source isn't guaranteed to be constant.   The frame rate prior to
1350     * the first frame encoded in the second pass is a guess.  However the
1351     * sum duration is not. Its calculated based on the actual durations of
1352     * all frames from the first pass.
1353     */
1354    vp8_new_framerate(cpi, 10000000.0 * cpi->twopass.total_stats.count / cpi->twopass.total_stats.duration);
1355
1356    cpi->output_framerate = cpi->framerate;
1357    cpi->twopass.bits_left = (int64_t)(cpi->twopass.total_stats.duration * cpi->oxcf.target_bandwidth / 10000000.0) ;
1358    cpi->twopass.bits_left -= (int64_t)(cpi->twopass.total_stats.duration * two_pass_min_rate / 10000000.0);
1359
1360    /* Calculate a minimum intra value to be used in determining the IIratio
1361     * scores used in the second pass. We have this minimum to make sure
1362     * that clips that are static but "low complexity" in the intra domain
1363     * are still boosted appropriately for KF/GF/ARF
1364     */
1365    cpi->twopass.kf_intra_err_min = KF_MB_INTRA_MIN * cpi->common.MBs;
1366    cpi->twopass.gf_intra_err_min = GF_MB_INTRA_MIN * cpi->common.MBs;
1367
1368    /* Scan the first pass file and calculate an average Intra / Inter error
1369     * score ratio for the sequence
1370     */
1371    {
1372        double sum_iiratio = 0.0;
1373        double IIRatio;
1374
1375        start_pos = cpi->twopass.stats_in; /* Note starting "file" position */
1376
1377        while (input_stats(cpi, &this_frame) != EOF)
1378        {
1379            IIRatio = this_frame.intra_error / DOUBLE_DIVIDE_CHECK(this_frame.coded_error);
1380            IIRatio = (IIRatio < 1.0) ? 1.0 : (IIRatio > 20.0) ? 20.0 : IIRatio;
1381            sum_iiratio += IIRatio;
1382        }
1383
1384        cpi->twopass.avg_iiratio = sum_iiratio / DOUBLE_DIVIDE_CHECK((double)cpi->twopass.total_stats.count);
1385
1386        /* Reset file position */
1387        reset_fpf_position(cpi, start_pos);
1388    }
1389
1390    /* Scan the first pass file and calculate a modified total error based
1391     * upon the bias/power function used to allocate bits
1392     */
1393    {
1394        start_pos = cpi->twopass.stats_in;  /* Note starting "file" position */
1395
1396        cpi->twopass.modified_error_total = 0.0;
1397        cpi->twopass.modified_error_used = 0.0;
1398
1399        while (input_stats(cpi, &this_frame) != EOF)
1400        {
1401            cpi->twopass.modified_error_total += calculate_modified_err(cpi, &this_frame);
1402        }
1403        cpi->twopass.modified_error_left = cpi->twopass.modified_error_total;
1404
1405        reset_fpf_position(cpi, start_pos);  /* Reset file position */
1406
1407    }
1408}
1409
1410void vp8_end_second_pass(VP8_COMP *cpi)
1411{
1412}
1413
1414/* This function gives and estimate of how badly we believe the prediction
1415 * quality is decaying from frame to frame.
1416 */
1417static double get_prediction_decay_rate(VP8_COMP *cpi, FIRSTPASS_STATS *next_frame)
1418{
1419    double prediction_decay_rate;
1420    double motion_decay;
1421    double motion_pct = next_frame->pcnt_motion;
1422
1423    /* Initial basis is the % mbs inter coded */
1424    prediction_decay_rate = next_frame->pcnt_inter;
1425
1426    /* High % motion -> somewhat higher decay rate */
1427    motion_decay = (1.0 - (motion_pct / 20.0));
1428    if (motion_decay < prediction_decay_rate)
1429        prediction_decay_rate = motion_decay;
1430
1431    /* Adjustment to decay rate based on speed of motion */
1432    {
1433        double this_mv_rabs;
1434        double this_mv_cabs;
1435        double distance_factor;
1436
1437        this_mv_rabs = fabs(next_frame->mvr_abs * motion_pct);
1438        this_mv_cabs = fabs(next_frame->mvc_abs * motion_pct);
1439
1440        distance_factor = sqrt((this_mv_rabs * this_mv_rabs) +
1441                               (this_mv_cabs * this_mv_cabs)) / 250.0;
1442        distance_factor = ((distance_factor > 1.0)
1443                                ? 0.0 : (1.0 - distance_factor));
1444        if (distance_factor < prediction_decay_rate)
1445            prediction_decay_rate = distance_factor;
1446    }
1447
1448    return prediction_decay_rate;
1449}
1450
1451/* Function to test for a condition where a complex transition is followed
1452 * by a static section. For example in slide shows where there is a fade
1453 * between slides. This is to help with more optimal kf and gf positioning.
1454 */
1455static int detect_transition_to_still(
1456    VP8_COMP *cpi,
1457    int frame_interval,
1458    int still_interval,
1459    double loop_decay_rate,
1460    double decay_accumulator )
1461{
1462    int trans_to_still = 0;
1463
1464    /* Break clause to detect very still sections after motion
1465     * For example a static image after a fade or other transition
1466     * instead of a clean scene cut.
1467     */
1468    if ( (frame_interval > MIN_GF_INTERVAL) &&
1469         (loop_decay_rate >= 0.999) &&
1470         (decay_accumulator < 0.9) )
1471    {
1472        int j;
1473        FIRSTPASS_STATS * position = cpi->twopass.stats_in;
1474        FIRSTPASS_STATS tmp_next_frame;
1475        double decay_rate;
1476
1477        /* Look ahead a few frames to see if static condition persists... */
1478        for ( j = 0; j < still_interval; j++ )
1479        {
1480            if (EOF == input_stats(cpi, &tmp_next_frame))
1481                break;
1482
1483            decay_rate = get_prediction_decay_rate(cpi, &tmp_next_frame);
1484            if ( decay_rate < 0.999 )
1485                break;
1486        }
1487        /* Reset file position */
1488        reset_fpf_position(cpi, position);
1489
1490        /* Only if it does do we signal a transition to still */
1491        if ( j == still_interval )
1492            trans_to_still = 1;
1493    }
1494
1495    return trans_to_still;
1496}
1497
1498/* This function detects a flash through the high relative pcnt_second_ref
1499 * score in the frame following a flash frame. The offset passed in should
1500 * reflect this
1501 */
1502static int detect_flash( VP8_COMP *cpi, int offset )
1503{
1504    FIRSTPASS_STATS next_frame;
1505
1506    int flash_detected = 0;
1507
1508    /* Read the frame data. */
1509    /* The return is 0 (no flash detected) if not a valid frame */
1510    if ( read_frame_stats(cpi, &next_frame, offset) != EOF )
1511    {
1512        /* What we are looking for here is a situation where there is a
1513         * brief break in prediction (such as a flash) but subsequent frames
1514         * are reasonably well predicted by an earlier (pre flash) frame.
1515         * The recovery after a flash is indicated by a high pcnt_second_ref
1516         * comapred to pcnt_inter.
1517         */
1518        if ( (next_frame.pcnt_second_ref > next_frame.pcnt_inter) &&
1519             (next_frame.pcnt_second_ref >= 0.5 ) )
1520        {
1521            flash_detected = 1;
1522
1523            /*if (1)
1524            {
1525                FILE *f = fopen("flash.stt", "a");
1526                fprintf(f, "%8.0f %6.2f %6.2f\n",
1527                    next_frame.frame,
1528                    next_frame.pcnt_inter,
1529                    next_frame.pcnt_second_ref);
1530                fclose(f);
1531            }*/
1532        }
1533    }
1534
1535    return flash_detected;
1536}
1537
1538/* Update the motion related elements to the GF arf boost calculation */
1539static void accumulate_frame_motion_stats(
1540    VP8_COMP *cpi,
1541    FIRSTPASS_STATS * this_frame,
1542    double * this_frame_mv_in_out,
1543    double * mv_in_out_accumulator,
1544    double * abs_mv_in_out_accumulator,
1545    double * mv_ratio_accumulator )
1546{
1547    double this_frame_mvr_ratio;
1548    double this_frame_mvc_ratio;
1549    double motion_pct;
1550
1551    /* Accumulate motion stats. */
1552    motion_pct = this_frame->pcnt_motion;
1553
1554    /* Accumulate Motion In/Out of frame stats */
1555    *this_frame_mv_in_out = this_frame->mv_in_out_count * motion_pct;
1556    *mv_in_out_accumulator += this_frame->mv_in_out_count * motion_pct;
1557    *abs_mv_in_out_accumulator +=
1558        fabs(this_frame->mv_in_out_count * motion_pct);
1559
1560    /* Accumulate a measure of how uniform (or conversely how random)
1561     * the motion field is. (A ratio of absmv / mv)
1562     */
1563    if (motion_pct > 0.05)
1564    {
1565        this_frame_mvr_ratio = fabs(this_frame->mvr_abs) /
1566                               DOUBLE_DIVIDE_CHECK(fabs(this_frame->MVr));
1567
1568        this_frame_mvc_ratio = fabs(this_frame->mvc_abs) /
1569                               DOUBLE_DIVIDE_CHECK(fabs(this_frame->MVc));
1570
1571         *mv_ratio_accumulator +=
1572            (this_frame_mvr_ratio < this_frame->mvr_abs)
1573                ? (this_frame_mvr_ratio * motion_pct)
1574                : this_frame->mvr_abs * motion_pct;
1575
1576        *mv_ratio_accumulator +=
1577            (this_frame_mvc_ratio < this_frame->mvc_abs)
1578                ? (this_frame_mvc_ratio * motion_pct)
1579                : this_frame->mvc_abs * motion_pct;
1580
1581    }
1582}
1583
1584/* Calculate a baseline boost number for the current frame. */
1585static double calc_frame_boost(
1586    VP8_COMP *cpi,
1587    FIRSTPASS_STATS * this_frame,
1588    double this_frame_mv_in_out )
1589{
1590    double frame_boost;
1591
1592    /* Underlying boost factor is based on inter intra error ratio */
1593    if (this_frame->intra_error > cpi->twopass.gf_intra_err_min)
1594        frame_boost = (IIFACTOR * this_frame->intra_error /
1595                      DOUBLE_DIVIDE_CHECK(this_frame->coded_error));
1596    else
1597        frame_boost = (IIFACTOR * cpi->twopass.gf_intra_err_min /
1598                      DOUBLE_DIVIDE_CHECK(this_frame->coded_error));
1599
1600    /* Increase boost for frames where new data coming into frame
1601     * (eg zoom out). Slightly reduce boost if there is a net balance
1602     * of motion out of the frame (zoom in).
1603     * The range for this_frame_mv_in_out is -1.0 to +1.0
1604     */
1605    if (this_frame_mv_in_out > 0.0)
1606        frame_boost += frame_boost * (this_frame_mv_in_out * 2.0);
1607    /* In extreme case boost is halved */
1608    else
1609        frame_boost += frame_boost * (this_frame_mv_in_out / 2.0);
1610
1611    /* Clip to maximum */
1612    if (frame_boost > GF_RMAX)
1613        frame_boost = GF_RMAX;
1614
1615    return frame_boost;
1616}
1617
1618#if NEW_BOOST
1619static int calc_arf_boost(
1620    VP8_COMP *cpi,
1621    int offset,
1622    int f_frames,
1623    int b_frames,
1624    int *f_boost,
1625    int *b_boost )
1626{
1627    FIRSTPASS_STATS this_frame;
1628
1629    int i;
1630    double boost_score = 0.0;
1631    double mv_ratio_accumulator = 0.0;
1632    double decay_accumulator = 1.0;
1633    double this_frame_mv_in_out = 0.0;
1634    double mv_in_out_accumulator = 0.0;
1635    double abs_mv_in_out_accumulator = 0.0;
1636    double r;
1637    int flash_detected = 0;
1638
1639    /* Search forward from the proposed arf/next gf position */
1640    for ( i = 0; i < f_frames; i++ )
1641    {
1642        if ( read_frame_stats(cpi, &this_frame, (i+offset)) == EOF )
1643            break;
1644
1645        /* Update the motion related elements to the boost calculation */
1646        accumulate_frame_motion_stats( cpi, &this_frame,
1647            &this_frame_mv_in_out, &mv_in_out_accumulator,
1648            &abs_mv_in_out_accumulator, &mv_ratio_accumulator );
1649
1650        /* Calculate the baseline boost number for this frame */
1651        r = calc_frame_boost( cpi, &this_frame, this_frame_mv_in_out );
1652
1653        /* We want to discount the the flash frame itself and the recovery
1654         * frame that follows as both will have poor scores.
1655         */
1656        flash_detected = detect_flash(cpi, (i+offset)) ||
1657                         detect_flash(cpi, (i+offset+1));
1658
1659        /* Cumulative effect of prediction quality decay */
1660        if ( !flash_detected )
1661        {
1662            decay_accumulator =
1663                decay_accumulator *
1664                get_prediction_decay_rate(cpi, &this_frame);
1665            decay_accumulator =
1666                decay_accumulator < 0.1 ? 0.1 : decay_accumulator;
1667        }
1668        boost_score += (decay_accumulator * r);
1669
1670        /* Break out conditions. */
1671        if  ( (!flash_detected) &&
1672              ((mv_ratio_accumulator > 100.0) ||
1673               (abs_mv_in_out_accumulator > 3.0) ||
1674               (mv_in_out_accumulator < -2.0) ) )
1675        {
1676            break;
1677        }
1678    }
1679
1680    *f_boost = (int)(boost_score * 100.0) >> 4;
1681
1682    /* Reset for backward looking loop */
1683    boost_score = 0.0;
1684    mv_ratio_accumulator = 0.0;
1685    decay_accumulator = 1.0;
1686    this_frame_mv_in_out = 0.0;
1687    mv_in_out_accumulator = 0.0;
1688    abs_mv_in_out_accumulator = 0.0;
1689
1690    /* Search forward from the proposed arf/next gf position */
1691    for ( i = -1; i >= -b_frames; i-- )
1692    {
1693        if ( read_frame_stats(cpi, &this_frame, (i+offset)) == EOF )
1694            break;
1695
1696        /* Update the motion related elements to the boost calculation */
1697        accumulate_frame_motion_stats( cpi, &this_frame,
1698            &this_frame_mv_in_out, &mv_in_out_accumulator,
1699            &abs_mv_in_out_accumulator, &mv_ratio_accumulator );
1700
1701        /* Calculate the baseline boost number for this frame */
1702        r = calc_frame_boost( cpi, &this_frame, this_frame_mv_in_out );
1703
1704        /* We want to discount the the flash frame itself and the recovery
1705         * frame that follows as both will have poor scores.
1706         */
1707        flash_detected = detect_flash(cpi, (i+offset)) ||
1708                         detect_flash(cpi, (i+offset+1));
1709
1710        /* Cumulative effect of prediction quality decay */
1711        if ( !flash_detected )
1712        {
1713            decay_accumulator =
1714                decay_accumulator *
1715                get_prediction_decay_rate(cpi, &this_frame);
1716            decay_accumulator =
1717                decay_accumulator < 0.1 ? 0.1 : decay_accumulator;
1718        }
1719
1720        boost_score += (decay_accumulator * r);
1721
1722        /* Break out conditions. */
1723        if  ( (!flash_detected) &&
1724              ((mv_ratio_accumulator > 100.0) ||
1725               (abs_mv_in_out_accumulator > 3.0) ||
1726               (mv_in_out_accumulator < -2.0) ) )
1727        {
1728            break;
1729        }
1730    }
1731    *b_boost = (int)(boost_score * 100.0) >> 4;
1732
1733    return (*f_boost + *b_boost);
1734}
1735#endif
1736
1737/* Analyse and define a gf/arf group . */
1738static void define_gf_group(VP8_COMP *cpi, FIRSTPASS_STATS *this_frame)
1739{
1740    FIRSTPASS_STATS next_frame;
1741    FIRSTPASS_STATS *start_pos;
1742    int i;
1743    double r;
1744    double boost_score = 0.0;
1745    double old_boost_score = 0.0;
1746    double gf_group_err = 0.0;
1747    double gf_first_frame_err = 0.0;
1748    double mod_frame_err = 0.0;
1749
1750    double mv_ratio_accumulator = 0.0;
1751    double decay_accumulator = 1.0;
1752
1753    double loop_decay_rate = 1.00;          /* Starting decay rate */
1754
1755    double this_frame_mv_in_out = 0.0;
1756    double mv_in_out_accumulator = 0.0;
1757    double abs_mv_in_out_accumulator = 0.0;
1758    double mod_err_per_mb_accumulator = 0.0;
1759
1760    int max_bits = frame_max_bits(cpi);     /* Max for a single frame */
1761
1762    unsigned int allow_alt_ref =
1763                    cpi->oxcf.play_alternate && cpi->oxcf.lag_in_frames;
1764
1765    int alt_boost = 0;
1766    int f_boost = 0;
1767    int b_boost = 0;
1768    int flash_detected;
1769
1770    cpi->twopass.gf_group_bits = 0;
1771    cpi->twopass.gf_decay_rate = 0;
1772
1773    vp8_clear_system_state();
1774
1775    start_pos = cpi->twopass.stats_in;
1776
1777    vpx_memset(&next_frame, 0, sizeof(next_frame)); /* assure clean */
1778
1779    /* Load stats for the current frame. */
1780    mod_frame_err = calculate_modified_err(cpi, this_frame);
1781
1782    /* Note the error of the frame at the start of the group (this will be
1783     * the GF frame error if we code a normal gf
1784     */
1785    gf_first_frame_err = mod_frame_err;
1786
1787    /* Special treatment if the current frame is a key frame (which is also
1788     * a gf). If it is then its error score (and hence bit allocation) need
1789     * to be subtracted out from the calculation for the GF group
1790     */
1791    if (cpi->common.frame_type == KEY_FRAME)
1792        gf_group_err -= gf_first_frame_err;
1793
1794    /* Scan forward to try and work out how many frames the next gf group
1795     * should contain and what level of boost is appropriate for the GF
1796     * or ARF that will be coded with the group
1797     */
1798    i = 0;
1799
1800    while (((i < cpi->twopass.static_scene_max_gf_interval) ||
1801            ((cpi->twopass.frames_to_key - i) < MIN_GF_INTERVAL)) &&
1802           (i < cpi->twopass.frames_to_key))
1803    {
1804        i++;
1805
1806        /* Accumulate error score of frames in this gf group */
1807        mod_frame_err = calculate_modified_err(cpi, this_frame);
1808
1809        gf_group_err += mod_frame_err;
1810
1811        mod_err_per_mb_accumulator +=
1812            mod_frame_err / DOUBLE_DIVIDE_CHECK((double)cpi->common.MBs);
1813
1814        if (EOF == input_stats(cpi, &next_frame))
1815            break;
1816
1817        /* Test for the case where there is a brief flash but the prediction
1818         * quality back to an earlier frame is then restored.
1819         */
1820        flash_detected = detect_flash(cpi, 0);
1821
1822        /* Update the motion related elements to the boost calculation */
1823        accumulate_frame_motion_stats( cpi, &next_frame,
1824            &this_frame_mv_in_out, &mv_in_out_accumulator,
1825            &abs_mv_in_out_accumulator, &mv_ratio_accumulator );
1826
1827        /* Calculate a baseline boost number for this frame */
1828        r = calc_frame_boost( cpi, &next_frame, this_frame_mv_in_out );
1829
1830        /* Cumulative effect of prediction quality decay */
1831        if ( !flash_detected )
1832        {
1833            loop_decay_rate = get_prediction_decay_rate(cpi, &next_frame);
1834            decay_accumulator = decay_accumulator * loop_decay_rate;
1835            decay_accumulator =
1836                decay_accumulator < 0.1 ? 0.1 : decay_accumulator;
1837        }
1838        boost_score += (decay_accumulator * r);
1839
1840        /* Break clause to detect very still sections after motion
1841         * For example a staic image after a fade or other transition.
1842         */
1843        if ( detect_transition_to_still( cpi, i, 5,
1844                                         loop_decay_rate,
1845                                         decay_accumulator ) )
1846        {
1847            allow_alt_ref = 0;
1848            boost_score = old_boost_score;
1849            break;
1850        }
1851
1852        /* Break out conditions. */
1853        if  (
1854            /* Break at cpi->max_gf_interval unless almost totally static */
1855            (i >= cpi->max_gf_interval && (decay_accumulator < 0.995)) ||
1856            (
1857                /* Dont break out with a very short interval */
1858                (i > MIN_GF_INTERVAL) &&
1859                /* Dont break out very close to a key frame */
1860                ((cpi->twopass.frames_to_key - i) >= MIN_GF_INTERVAL) &&
1861                ((boost_score > 20.0) || (next_frame.pcnt_inter < 0.75)) &&
1862                (!flash_detected) &&
1863                ((mv_ratio_accumulator > 100.0) ||
1864                 (abs_mv_in_out_accumulator > 3.0) ||
1865                 (mv_in_out_accumulator < -2.0) ||
1866                 ((boost_score - old_boost_score) < 2.0))
1867            ) )
1868        {
1869            boost_score = old_boost_score;
1870            break;
1871        }
1872
1873        vpx_memcpy(this_frame, &next_frame, sizeof(*this_frame));
1874
1875        old_boost_score = boost_score;
1876    }
1877
1878    cpi->twopass.gf_decay_rate =
1879        (i > 0) ? (int)(100.0 * (1.0 - decay_accumulator)) / i : 0;
1880
1881    /* When using CBR apply additional buffer related upper limits */
1882    if (cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER)
1883    {
1884        double max_boost;
1885
1886        /* For cbr apply buffer related limits */
1887        if (cpi->drop_frames_allowed)
1888        {
1889            int64_t df_buffer_level = cpi->oxcf.drop_frames_water_mark *
1890                                  (cpi->oxcf.optimal_buffer_level / 100);
1891
1892            if (cpi->buffer_level > df_buffer_level)
1893                max_boost = ((double)((cpi->buffer_level - df_buffer_level) * 2 / 3) * 16.0) / DOUBLE_DIVIDE_CHECK((double)cpi->av_per_frame_bandwidth);
1894            else
1895                max_boost = 0.0;
1896        }
1897        else if (cpi->buffer_level > 0)
1898        {
1899            max_boost = ((double)(cpi->buffer_level * 2 / 3) * 16.0) / DOUBLE_DIVIDE_CHECK((double)cpi->av_per_frame_bandwidth);
1900        }
1901        else
1902        {
1903            max_boost = 0.0;
1904        }
1905
1906        if (boost_score > max_boost)
1907            boost_score = max_boost;
1908    }
1909
1910    /* Dont allow conventional gf too near the next kf */
1911    if ((cpi->twopass.frames_to_key - i) < MIN_GF_INTERVAL)
1912    {
1913        while (i < cpi->twopass.frames_to_key)
1914        {
1915            i++;
1916
1917            if (EOF == input_stats(cpi, this_frame))
1918                break;
1919
1920            if (i < cpi->twopass.frames_to_key)
1921            {
1922                mod_frame_err = calculate_modified_err(cpi, this_frame);
1923                gf_group_err += mod_frame_err;
1924            }
1925        }
1926    }
1927
1928    cpi->gfu_boost = (int)(boost_score * 100.0) >> 4;
1929
1930#if NEW_BOOST
1931    /* Alterrnative boost calculation for alt ref */
1932    alt_boost = calc_arf_boost( cpi, 0, (i-1), (i-1), &f_boost, &b_boost );
1933#endif
1934
1935    /* Should we use the alternate refernce frame */
1936    if (allow_alt_ref &&
1937        (i >= MIN_GF_INTERVAL) &&
1938        /* dont use ARF very near next kf */
1939        (i <= (cpi->twopass.frames_to_key - MIN_GF_INTERVAL)) &&
1940#if NEW_BOOST
1941        ((next_frame.pcnt_inter > 0.75) ||
1942         (next_frame.pcnt_second_ref > 0.5)) &&
1943        ((mv_in_out_accumulator / (double)i > -0.2) ||
1944         (mv_in_out_accumulator > -2.0)) &&
1945        (b_boost > 100) &&
1946        (f_boost > 100) )
1947#else
1948        (next_frame.pcnt_inter > 0.75) &&
1949        ((mv_in_out_accumulator / (double)i > -0.2) ||
1950         (mv_in_out_accumulator > -2.0)) &&
1951        (cpi->gfu_boost > 100) &&
1952        (cpi->twopass.gf_decay_rate <=
1953            (ARF_DECAY_THRESH + (cpi->gfu_boost / 200))) )
1954#endif
1955    {
1956        int Boost;
1957        int allocation_chunks;
1958        int Q = (cpi->oxcf.fixed_q < 0)
1959                ? cpi->last_q[INTER_FRAME] : cpi->oxcf.fixed_q;
1960        int tmp_q;
1961        int arf_frame_bits = 0;
1962        int group_bits;
1963
1964#if NEW_BOOST
1965        cpi->gfu_boost = alt_boost;
1966#endif
1967
1968        /* Estimate the bits to be allocated to the group as a whole */
1969        if ((cpi->twopass.kf_group_bits > 0) &&
1970            (cpi->twopass.kf_group_error_left > 0))
1971        {
1972            group_bits = (int)((double)cpi->twopass.kf_group_bits *
1973                (gf_group_err / (double)cpi->twopass.kf_group_error_left));
1974        }
1975        else
1976            group_bits = 0;
1977
1978        /* Boost for arf frame */
1979#if NEW_BOOST
1980        Boost = (alt_boost * GFQ_ADJUSTMENT) / 100;
1981#else
1982        Boost = (cpi->gfu_boost * 3 * GFQ_ADJUSTMENT) / (2 * 100);
1983#endif
1984        Boost += (i * 50);
1985
1986        /* Set max and minimum boost and hence minimum allocation */
1987        if (Boost > ((cpi->baseline_gf_interval + 1) * 200))
1988            Boost = ((cpi->baseline_gf_interval + 1) * 200);
1989        else if (Boost < 125)
1990            Boost = 125;
1991
1992        allocation_chunks = (i * 100) + Boost;
1993
1994        /* Normalize Altboost and allocations chunck down to prevent overflow */
1995        while (Boost > 1000)
1996        {
1997            Boost /= 2;
1998            allocation_chunks /= 2;
1999        }
2000
2001        /* Calculate the number of bits to be spent on the arf based on the
2002         * boost number
2003         */
2004        arf_frame_bits = (int)((double)Boost * (group_bits /
2005                               (double)allocation_chunks));
2006
2007        /* Estimate if there are enough bits available to make worthwhile use
2008         * of an arf.
2009         */
2010        tmp_q = estimate_q(cpi, mod_frame_err, (int)arf_frame_bits);
2011
2012        /* Only use an arf if it is likely we will be able to code
2013         * it at a lower Q than the surrounding frames.
2014         */
2015        if (tmp_q < cpi->worst_quality)
2016        {
2017            int half_gf_int;
2018            int frames_after_arf;
2019            int frames_bwd = cpi->oxcf.arnr_max_frames - 1;
2020            int frames_fwd = cpi->oxcf.arnr_max_frames - 1;
2021
2022            cpi->source_alt_ref_pending = 1;
2023
2024            /*
2025             * For alt ref frames the error score for the end frame of the
2026             * group (the alt ref frame) should not contribute to the group
2027             * total and hence the number of bit allocated to the group.
2028             * Rather it forms part of the next group (it is the GF at the
2029             * start of the next group)
2030             * gf_group_err -= mod_frame_err;
2031             *
2032             * For alt ref frames alt ref frame is technically part of the
2033             * GF frame for the next group but we always base the error
2034             * calculation and bit allocation on the current group of frames.
2035             *
2036             * Set the interval till the next gf or arf.
2037             * For ARFs this is the number of frames to be coded before the
2038             * future frame that is coded as an ARF.
2039             * The future frame itself is part of the next group
2040             */
2041            cpi->baseline_gf_interval = i;
2042
2043            /*
2044             * Define the arnr filter width for this group of frames:
2045             * We only filter frames that lie within a distance of half
2046             * the GF interval from the ARF frame. We also have to trap
2047             * cases where the filter extends beyond the end of clip.
2048             * Note: this_frame->frame has been updated in the loop
2049             * so it now points at the ARF frame.
2050             */
2051            half_gf_int = cpi->baseline_gf_interval >> 1;
2052            frames_after_arf = (int)(cpi->twopass.total_stats.count -
2053                               this_frame->frame - 1);
2054
2055            switch (cpi->oxcf.arnr_type)
2056            {
2057            case 1: /* Backward filter */
2058                frames_fwd = 0;
2059                if (frames_bwd > half_gf_int)
2060                    frames_bwd = half_gf_int;
2061                break;
2062
2063            case 2: /* Forward filter */
2064                if (frames_fwd > half_gf_int)
2065                    frames_fwd = half_gf_int;
2066                if (frames_fwd > frames_after_arf)
2067                    frames_fwd = frames_after_arf;
2068                frames_bwd = 0;
2069                break;
2070
2071            case 3: /* Centered filter */
2072            default:
2073                frames_fwd >>= 1;
2074                if (frames_fwd > frames_after_arf)
2075                    frames_fwd = frames_after_arf;
2076                if (frames_fwd > half_gf_int)
2077                    frames_fwd = half_gf_int;
2078
2079                frames_bwd = frames_fwd;
2080
2081                /* For even length filter there is one more frame backward
2082                 * than forward: e.g. len=6 ==> bbbAff, len=7 ==> bbbAfff.
2083                 */
2084                if (frames_bwd < half_gf_int)
2085                    frames_bwd += (cpi->oxcf.arnr_max_frames+1) & 0x1;
2086                break;
2087            }
2088
2089            cpi->active_arnr_frames = frames_bwd + 1 + frames_fwd;
2090        }
2091        else
2092        {
2093            cpi->source_alt_ref_pending = 0;
2094            cpi->baseline_gf_interval = i;
2095        }
2096    }
2097    else
2098    {
2099        cpi->source_alt_ref_pending = 0;
2100        cpi->baseline_gf_interval = i;
2101    }
2102
2103    /*
2104     * Now decide how many bits should be allocated to the GF group as  a
2105     * proportion of those remaining in the kf group.
2106     * The final key frame group in the clip is treated as a special case
2107     * where cpi->twopass.kf_group_bits is tied to cpi->twopass.bits_left.
2108     * This is also important for short clips where there may only be one
2109     * key frame.
2110     */
2111    if (cpi->twopass.frames_to_key >= (int)(cpi->twopass.total_stats.count -
2112                                            cpi->common.current_video_frame))
2113    {
2114        cpi->twopass.kf_group_bits =
2115            (cpi->twopass.bits_left > 0) ? cpi->twopass.bits_left : 0;
2116    }
2117
2118    /* Calculate the bits to be allocated to the group as a whole */
2119    if ((cpi->twopass.kf_group_bits > 0) &&
2120        (cpi->twopass.kf_group_error_left > 0))
2121    {
2122        cpi->twopass.gf_group_bits =
2123            (int64_t)(cpi->twopass.kf_group_bits *
2124                      (gf_group_err / cpi->twopass.kf_group_error_left));
2125    }
2126    else
2127        cpi->twopass.gf_group_bits = 0;
2128
2129    cpi->twopass.gf_group_bits =
2130        (cpi->twopass.gf_group_bits < 0)
2131            ? 0
2132            : (cpi->twopass.gf_group_bits > cpi->twopass.kf_group_bits)
2133                ? cpi->twopass.kf_group_bits : cpi->twopass.gf_group_bits;
2134
2135    /* Clip cpi->twopass.gf_group_bits based on user supplied data rate
2136     * variability limit (cpi->oxcf.two_pass_vbrmax_section)
2137     */
2138    if (cpi->twopass.gf_group_bits >
2139        (int64_t)max_bits * cpi->baseline_gf_interval)
2140        cpi->twopass.gf_group_bits =
2141            (int64_t)max_bits * cpi->baseline_gf_interval;
2142
2143    /* Reset the file position */
2144    reset_fpf_position(cpi, start_pos);
2145
2146    /* Update the record of error used so far (only done once per gf group) */
2147    cpi->twopass.modified_error_used += gf_group_err;
2148
2149    /* Assign  bits to the arf or gf. */
2150    for (i = 0; i <= (cpi->source_alt_ref_pending && cpi->common.frame_type != KEY_FRAME); i++) {
2151        int Boost;
2152        int allocation_chunks;
2153        int Q = (cpi->oxcf.fixed_q < 0) ? cpi->last_q[INTER_FRAME] : cpi->oxcf.fixed_q;
2154        int gf_bits;
2155
2156        /* For ARF frames */
2157        if (cpi->source_alt_ref_pending && i == 0)
2158        {
2159#if NEW_BOOST
2160            Boost = (alt_boost * GFQ_ADJUSTMENT) / 100;
2161#else
2162            Boost = (cpi->gfu_boost * 3 * GFQ_ADJUSTMENT) / (2 * 100);
2163#endif
2164            Boost += (cpi->baseline_gf_interval * 50);
2165
2166            /* Set max and minimum boost and hence minimum allocation */
2167            if (Boost > ((cpi->baseline_gf_interval + 1) * 200))
2168                Boost = ((cpi->baseline_gf_interval + 1) * 200);
2169            else if (Boost < 125)
2170                Boost = 125;
2171
2172            allocation_chunks =
2173                ((cpi->baseline_gf_interval + 1) * 100) + Boost;
2174        }
2175        /* Else for standard golden frames */
2176        else
2177        {
2178            /* boost based on inter / intra ratio of subsequent frames */
2179            Boost = (cpi->gfu_boost * GFQ_ADJUSTMENT) / 100;
2180
2181            /* Set max and minimum boost and hence minimum allocation */
2182            if (Boost > (cpi->baseline_gf_interval * 150))
2183                Boost = (cpi->baseline_gf_interval * 150);
2184            else if (Boost < 125)
2185                Boost = 125;
2186
2187            allocation_chunks =
2188                (cpi->baseline_gf_interval * 100) + (Boost - 100);
2189        }
2190
2191        /* Normalize Altboost and allocations chunck down to prevent overflow */
2192        while (Boost > 1000)
2193        {
2194            Boost /= 2;
2195            allocation_chunks /= 2;
2196        }
2197
2198        /* Calculate the number of bits to be spent on the gf or arf based on
2199         * the boost number
2200         */
2201        gf_bits = (int)((double)Boost *
2202                        (cpi->twopass.gf_group_bits /
2203                         (double)allocation_chunks));
2204
2205        /* If the frame that is to be boosted is simpler than the average for
2206         * the gf/arf group then use an alternative calculation
2207         * based on the error score of the frame itself
2208         */
2209        if (mod_frame_err < gf_group_err / (double)cpi->baseline_gf_interval)
2210        {
2211            double  alt_gf_grp_bits;
2212            int     alt_gf_bits;
2213
2214            alt_gf_grp_bits =
2215                (double)cpi->twopass.kf_group_bits  *
2216                (mod_frame_err * (double)cpi->baseline_gf_interval) /
2217                DOUBLE_DIVIDE_CHECK((double)cpi->twopass.kf_group_error_left);
2218
2219            alt_gf_bits = (int)((double)Boost * (alt_gf_grp_bits /
2220                                                 (double)allocation_chunks));
2221
2222            if (gf_bits > alt_gf_bits)
2223            {
2224                gf_bits = alt_gf_bits;
2225            }
2226        }
2227        /* Else if it is harder than other frames in the group make sure it at
2228         * least receives an allocation in keeping with its relative error
2229         * score, otherwise it may be worse off than an "un-boosted" frame
2230         */
2231        else
2232        {
2233            int alt_gf_bits =
2234                (int)((double)cpi->twopass.kf_group_bits *
2235                      mod_frame_err /
2236                      DOUBLE_DIVIDE_CHECK((double)cpi->twopass.kf_group_error_left));
2237
2238            if (alt_gf_bits > gf_bits)
2239            {
2240                gf_bits = alt_gf_bits;
2241            }
2242        }
2243
2244        /* Apply an additional limit for CBR */
2245        if (cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER)
2246        {
2247            if (cpi->twopass.gf_bits > (int)(cpi->buffer_level >> 1))
2248                cpi->twopass.gf_bits = (int)(cpi->buffer_level >> 1);
2249        }
2250
2251        /* Dont allow a negative value for gf_bits */
2252        if (gf_bits < 0)
2253            gf_bits = 0;
2254
2255        /* Add in minimum for a frame */
2256        gf_bits += cpi->min_frame_bandwidth;
2257
2258        if (i == 0)
2259        {
2260            cpi->twopass.gf_bits = gf_bits;
2261        }
2262        if (i == 1 || (!cpi->source_alt_ref_pending && (cpi->common.frame_type != KEY_FRAME)))
2263        {
2264            /* Per frame bit target for this frame */
2265            cpi->per_frame_bandwidth = gf_bits;
2266        }
2267    }
2268
2269    {
2270        /* Adjust KF group bits and error remainin */
2271        cpi->twopass.kf_group_error_left -= (int64_t)gf_group_err;
2272        cpi->twopass.kf_group_bits -= cpi->twopass.gf_group_bits;
2273
2274        if (cpi->twopass.kf_group_bits < 0)
2275            cpi->twopass.kf_group_bits = 0;
2276
2277        /* Note the error score left in the remaining frames of the group.
2278         * For normal GFs we want to remove the error score for the first
2279         * frame of the group (except in Key frame case where this has
2280         * already happened)
2281         */
2282        if (!cpi->source_alt_ref_pending && cpi->common.frame_type != KEY_FRAME)
2283            cpi->twopass.gf_group_error_left = (int)(gf_group_err -
2284                                                     gf_first_frame_err);
2285        else
2286            cpi->twopass.gf_group_error_left = (int) gf_group_err;
2287
2288        cpi->twopass.gf_group_bits -= cpi->twopass.gf_bits - cpi->min_frame_bandwidth;
2289
2290        if (cpi->twopass.gf_group_bits < 0)
2291            cpi->twopass.gf_group_bits = 0;
2292
2293        /* This condition could fail if there are two kfs very close together
2294         * despite (MIN_GF_INTERVAL) and would cause a devide by 0 in the
2295         * calculation of cpi->twopass.alt_extra_bits.
2296         */
2297        if ( cpi->baseline_gf_interval >= 3 )
2298        {
2299#if NEW_BOOST
2300            int boost = (cpi->source_alt_ref_pending)
2301                        ? b_boost : cpi->gfu_boost;
2302#else
2303            int boost = cpi->gfu_boost;
2304#endif
2305            if ( boost >= 150 )
2306            {
2307                int pct_extra;
2308
2309                pct_extra = (boost - 100) / 50;
2310                pct_extra = (pct_extra > 20) ? 20 : pct_extra;
2311
2312                cpi->twopass.alt_extra_bits =
2313                    (int)(cpi->twopass.gf_group_bits * pct_extra) / 100;
2314                cpi->twopass.gf_group_bits -= cpi->twopass.alt_extra_bits;
2315                cpi->twopass.alt_extra_bits /=
2316                    ((cpi->baseline_gf_interval-1)>>1);
2317            }
2318            else
2319                cpi->twopass.alt_extra_bits = 0;
2320        }
2321        else
2322            cpi->twopass.alt_extra_bits = 0;
2323    }
2324
2325    /* Adjustments based on a measure of complexity of the section */
2326    if (cpi->common.frame_type != KEY_FRAME)
2327    {
2328        FIRSTPASS_STATS sectionstats;
2329        double Ratio;
2330
2331        zero_stats(&sectionstats);
2332        reset_fpf_position(cpi, start_pos);
2333
2334        for (i = 0 ; i < cpi->baseline_gf_interval ; i++)
2335        {
2336            input_stats(cpi, &next_frame);
2337            accumulate_stats(&sectionstats, &next_frame);
2338        }
2339
2340        avg_stats(&sectionstats);
2341
2342        cpi->twopass.section_intra_rating = (unsigned int)
2343            (sectionstats.intra_error /
2344            DOUBLE_DIVIDE_CHECK(sectionstats.coded_error));
2345
2346        Ratio = sectionstats.intra_error / DOUBLE_DIVIDE_CHECK(sectionstats.coded_error);
2347        cpi->twopass.section_max_qfactor = 1.0 - ((Ratio - 10.0) * 0.025);
2348
2349        if (cpi->twopass.section_max_qfactor < 0.80)
2350            cpi->twopass.section_max_qfactor = 0.80;
2351
2352        reset_fpf_position(cpi, start_pos);
2353    }
2354}
2355
2356/* Allocate bits to a normal frame that is neither a gf an arf or a key frame. */
2357static void assign_std_frame_bits(VP8_COMP *cpi, FIRSTPASS_STATS *this_frame)
2358{
2359    int    target_frame_size;
2360
2361    double modified_err;
2362    double err_fraction;
2363
2364    int max_bits = frame_max_bits(cpi);  /* Max for a single frame */
2365
2366    /* Calculate modified prediction error used in bit allocation */
2367    modified_err = calculate_modified_err(cpi, this_frame);
2368
2369    /* What portion of the remaining GF group error is used by this frame */
2370    if (cpi->twopass.gf_group_error_left > 0)
2371        err_fraction = modified_err / cpi->twopass.gf_group_error_left;
2372    else
2373        err_fraction = 0.0;
2374
2375    /* How many of those bits available for allocation should we give it? */
2376    target_frame_size = (int)((double)cpi->twopass.gf_group_bits * err_fraction);
2377
2378    /* Clip to target size to 0 - max_bits (or cpi->twopass.gf_group_bits)
2379     * at the top end.
2380     */
2381    if (target_frame_size < 0)
2382        target_frame_size = 0;
2383    else
2384    {
2385        if (target_frame_size > max_bits)
2386            target_frame_size = max_bits;
2387
2388        if (target_frame_size > cpi->twopass.gf_group_bits)
2389            target_frame_size = (int)cpi->twopass.gf_group_bits;
2390    }
2391
2392    /* Adjust error and bits remaining */
2393    cpi->twopass.gf_group_error_left -= (int)modified_err;
2394    cpi->twopass.gf_group_bits -= target_frame_size;
2395
2396    if (cpi->twopass.gf_group_bits < 0)
2397        cpi->twopass.gf_group_bits = 0;
2398
2399    /* Add in the minimum number of bits that is set aside for every frame. */
2400    target_frame_size += cpi->min_frame_bandwidth;
2401
2402    /* Every other frame gets a few extra bits */
2403    if ( (cpi->frames_since_golden & 0x01) &&
2404         (cpi->frames_till_gf_update_due > 0) )
2405    {
2406        target_frame_size += cpi->twopass.alt_extra_bits;
2407    }
2408
2409    /* Per frame bit target for this frame */
2410    cpi->per_frame_bandwidth = target_frame_size;
2411}
2412
2413void vp8_second_pass(VP8_COMP *cpi)
2414{
2415    int tmp_q;
2416    int frames_left = (int)(cpi->twopass.total_stats.count - cpi->common.current_video_frame);
2417
2418    FIRSTPASS_STATS this_frame = {0};
2419    FIRSTPASS_STATS this_frame_copy;
2420
2421    double this_frame_intra_error;
2422    double this_frame_coded_error;
2423
2424    int overhead_bits;
2425
2426    if (!cpi->twopass.stats_in)
2427    {
2428        return ;
2429    }
2430
2431    vp8_clear_system_state();
2432
2433    if (EOF == input_stats(cpi, &this_frame))
2434        return;
2435
2436    this_frame_intra_error = this_frame.intra_error;
2437    this_frame_coded_error = this_frame.coded_error;
2438
2439    /* keyframe and section processing ! */
2440    if (cpi->twopass.frames_to_key == 0)
2441    {
2442        /* Define next KF group and assign bits to it */
2443        vpx_memcpy(&this_frame_copy, &this_frame, sizeof(this_frame));
2444        find_next_key_frame(cpi, &this_frame_copy);
2445
2446        /* Special case: Error error_resilient_mode mode does not make much
2447         * sense for two pass but with its current meaning this code is
2448         * designed to stop outlandish behaviour if someone does set it when
2449         * using two pass. It effectively disables GF groups. This is
2450         * temporary code until we decide what should really happen in this
2451         * case.
2452         */
2453        if (cpi->oxcf.error_resilient_mode)
2454        {
2455            cpi->twopass.gf_group_bits = cpi->twopass.kf_group_bits;
2456            cpi->twopass.gf_group_error_left =
2457                                  (int)cpi->twopass.kf_group_error_left;
2458            cpi->baseline_gf_interval = cpi->twopass.frames_to_key;
2459            cpi->frames_till_gf_update_due = cpi->baseline_gf_interval;
2460            cpi->source_alt_ref_pending = 0;
2461        }
2462
2463    }
2464
2465    /* Is this a GF / ARF (Note that a KF is always also a GF) */
2466    if (cpi->frames_till_gf_update_due == 0)
2467    {
2468        /* Define next gf group and assign bits to it */
2469        vpx_memcpy(&this_frame_copy, &this_frame, sizeof(this_frame));
2470        define_gf_group(cpi, &this_frame_copy);
2471
2472        /* If we are going to code an altref frame at the end of the group
2473         * and the current frame is not a key frame.... If the previous
2474         * group used an arf this frame has already benefited from that arf
2475         * boost and it should not be given extra bits If the previous
2476         * group was NOT coded using arf we may want to apply some boost to
2477         * this GF as well
2478         */
2479        if (cpi->source_alt_ref_pending && (cpi->common.frame_type != KEY_FRAME))
2480        {
2481            /* Assign a standard frames worth of bits from those allocated
2482             * to the GF group
2483             */
2484            int bak = cpi->per_frame_bandwidth;
2485            vpx_memcpy(&this_frame_copy, &this_frame, sizeof(this_frame));
2486            assign_std_frame_bits(cpi, &this_frame_copy);
2487            cpi->per_frame_bandwidth = bak;
2488        }
2489    }
2490
2491    /* Otherwise this is an ordinary frame */
2492    else
2493    {
2494        /* Special case: Error error_resilient_mode mode does not make much
2495         * sense for two pass but with its current meaning but this code is
2496         * designed to stop outlandish behaviour if someone does set it
2497         * when using two pass. It effectively disables GF groups. This is
2498         * temporary code till we decide what should really happen in this
2499         * case.
2500         */
2501        if (cpi->oxcf.error_resilient_mode)
2502        {
2503            cpi->frames_till_gf_update_due = cpi->twopass.frames_to_key;
2504
2505            if (cpi->common.frame_type != KEY_FRAME)
2506            {
2507                /* Assign bits from those allocated to the GF group */
2508                vpx_memcpy(&this_frame_copy, &this_frame, sizeof(this_frame));
2509                assign_std_frame_bits(cpi, &this_frame_copy);
2510            }
2511        }
2512        else
2513        {
2514            /* Assign bits from those allocated to the GF group */
2515            vpx_memcpy(&this_frame_copy, &this_frame, sizeof(this_frame));
2516            assign_std_frame_bits(cpi, &this_frame_copy);
2517        }
2518    }
2519
2520    /* Keep a globally available copy of this and the next frame's iiratio. */
2521    cpi->twopass.this_iiratio = (unsigned int)(this_frame_intra_error /
2522                        DOUBLE_DIVIDE_CHECK(this_frame_coded_error));
2523    {
2524        FIRSTPASS_STATS next_frame;
2525        if ( lookup_next_frame_stats(cpi, &next_frame) != EOF )
2526        {
2527            cpi->twopass.next_iiratio = (unsigned int)(next_frame.intra_error /
2528                                DOUBLE_DIVIDE_CHECK(next_frame.coded_error));
2529        }
2530    }
2531
2532    /* Set nominal per second bandwidth for this frame */
2533    cpi->target_bandwidth = (int)
2534    (cpi->per_frame_bandwidth * cpi->output_framerate);
2535    if (cpi->target_bandwidth < 0)
2536        cpi->target_bandwidth = 0;
2537
2538
2539    /* Account for mv, mode and other overheads. */
2540    overhead_bits = (int)estimate_modemvcost(
2541                        cpi, &cpi->twopass.total_left_stats );
2542
2543    /* Special case code for first frame. */
2544    if (cpi->common.current_video_frame == 0)
2545    {
2546        cpi->twopass.est_max_qcorrection_factor = 1.0;
2547
2548        /* Set a cq_level in constrained quality mode. */
2549        if ( cpi->oxcf.end_usage == USAGE_CONSTRAINED_QUALITY )
2550        {
2551            int est_cq;
2552
2553            est_cq =
2554                estimate_cq( cpi,
2555                             &cpi->twopass.total_left_stats,
2556                             (int)(cpi->twopass.bits_left / frames_left),
2557                             overhead_bits );
2558
2559            cpi->cq_target_quality = cpi->oxcf.cq_level;
2560            if ( est_cq > cpi->cq_target_quality )
2561                cpi->cq_target_quality = est_cq;
2562        }
2563
2564        /* guess at maxq needed in 2nd pass */
2565        cpi->twopass.maxq_max_limit = cpi->worst_quality;
2566        cpi->twopass.maxq_min_limit = cpi->best_quality;
2567
2568        tmp_q = estimate_max_q(
2569                    cpi,
2570                    &cpi->twopass.total_left_stats,
2571                    (int)(cpi->twopass.bits_left / frames_left),
2572                    overhead_bits );
2573
2574        /* Limit the maxq value returned subsequently.
2575         * This increases the risk of overspend or underspend if the initial
2576         * estimate for the clip is bad, but helps prevent excessive
2577         * variation in Q, especially near the end of a clip
2578         * where for example a small overspend may cause Q to crash
2579         */
2580        cpi->twopass.maxq_max_limit = ((tmp_q + 32) < cpi->worst_quality)
2581                                  ? (tmp_q + 32) : cpi->worst_quality;
2582        cpi->twopass.maxq_min_limit = ((tmp_q - 32) > cpi->best_quality)
2583                                  ? (tmp_q - 32) : cpi->best_quality;
2584
2585        cpi->active_worst_quality         = tmp_q;
2586        cpi->ni_av_qi                     = tmp_q;
2587    }
2588
2589    /* The last few frames of a clip almost always have to few or too many
2590     * bits and for the sake of over exact rate control we dont want to make
2591     * radical adjustments to the allowed quantizer range just to use up a
2592     * few surplus bits or get beneath the target rate.
2593     */
2594    else if ( (cpi->common.current_video_frame <
2595                 (((unsigned int)cpi->twopass.total_stats.count * 255)>>8)) &&
2596              ((cpi->common.current_video_frame + cpi->baseline_gf_interval) <
2597                 (unsigned int)cpi->twopass.total_stats.count) )
2598    {
2599        if (frames_left < 1)
2600            frames_left = 1;
2601
2602        tmp_q = estimate_max_q(
2603                    cpi,
2604                    &cpi->twopass.total_left_stats,
2605                    (int)(cpi->twopass.bits_left / frames_left),
2606                    overhead_bits );
2607
2608        /* Move active_worst_quality but in a damped way */
2609        if (tmp_q > cpi->active_worst_quality)
2610            cpi->active_worst_quality ++;
2611        else if (tmp_q < cpi->active_worst_quality)
2612            cpi->active_worst_quality --;
2613
2614        cpi->active_worst_quality =
2615            ((cpi->active_worst_quality * 3) + tmp_q + 2) / 4;
2616    }
2617
2618    cpi->twopass.frames_to_key --;
2619
2620    /* Update the total stats remaining sturcture */
2621    subtract_stats(&cpi->twopass.total_left_stats, &this_frame );
2622}
2623
2624
2625static int test_candidate_kf(VP8_COMP *cpi,  FIRSTPASS_STATS *last_frame, FIRSTPASS_STATS *this_frame, FIRSTPASS_STATS *next_frame)
2626{
2627    int is_viable_kf = 0;
2628
2629    /* Does the frame satisfy the primary criteria of a key frame
2630     *      If so, then examine how well it predicts subsequent frames
2631     */
2632    if ((this_frame->pcnt_second_ref < 0.10) &&
2633        (next_frame->pcnt_second_ref < 0.10) &&
2634        ((this_frame->pcnt_inter < 0.05) ||
2635         (
2636             ((this_frame->pcnt_inter - this_frame->pcnt_neutral) < .25) &&
2637             ((this_frame->intra_error / DOUBLE_DIVIDE_CHECK(this_frame->coded_error)) < 2.5) &&
2638             ((fabs(last_frame->coded_error - this_frame->coded_error) / DOUBLE_DIVIDE_CHECK(this_frame->coded_error) > .40) ||
2639              (fabs(last_frame->intra_error - this_frame->intra_error) / DOUBLE_DIVIDE_CHECK(this_frame->intra_error) > .40) ||
2640              ((next_frame->intra_error / DOUBLE_DIVIDE_CHECK(next_frame->coded_error)) > 3.5)
2641             )
2642         )
2643        )
2644       )
2645    {
2646        int i;
2647        FIRSTPASS_STATS *start_pos;
2648
2649        FIRSTPASS_STATS local_next_frame;
2650
2651        double boost_score = 0.0;
2652        double old_boost_score = 0.0;
2653        double decay_accumulator = 1.0;
2654        double next_iiratio;
2655
2656        vpx_memcpy(&local_next_frame, next_frame, sizeof(*next_frame));
2657
2658        /* Note the starting file position so we can reset to it */
2659        start_pos = cpi->twopass.stats_in;
2660
2661        /* Examine how well the key frame predicts subsequent frames */
2662        for (i = 0 ; i < 16; i++)
2663        {
2664            next_iiratio = (IIKFACTOR1 * local_next_frame.intra_error / DOUBLE_DIVIDE_CHECK(local_next_frame.coded_error)) ;
2665
2666            if (next_iiratio > RMAX)
2667                next_iiratio = RMAX;
2668
2669            /* Cumulative effect of decay in prediction quality */
2670            if (local_next_frame.pcnt_inter > 0.85)
2671                decay_accumulator = decay_accumulator * local_next_frame.pcnt_inter;
2672            else
2673                decay_accumulator = decay_accumulator * ((0.85 + local_next_frame.pcnt_inter) / 2.0);
2674
2675            /* Keep a running total */
2676            boost_score += (decay_accumulator * next_iiratio);
2677
2678            /* Test various breakout clauses */
2679            if ((local_next_frame.pcnt_inter < 0.05) ||
2680                (next_iiratio < 1.5) ||
2681                (((local_next_frame.pcnt_inter -
2682                   local_next_frame.pcnt_neutral) < 0.20) &&
2683                 (next_iiratio < 3.0)) ||
2684                ((boost_score - old_boost_score) < 0.5) ||
2685                (local_next_frame.intra_error < 200)
2686               )
2687            {
2688                break;
2689            }
2690
2691            old_boost_score = boost_score;
2692
2693            /* Get the next frame details */
2694            if (EOF == input_stats(cpi, &local_next_frame))
2695                break;
2696        }
2697
2698        /* If there is tolerable prediction for at least the next 3 frames
2699         * then break out else discard this pottential key frame and move on
2700         */
2701        if (boost_score > 5.0 && (i > 3))
2702            is_viable_kf = 1;
2703        else
2704        {
2705            /* Reset the file position */
2706            reset_fpf_position(cpi, start_pos);
2707
2708            is_viable_kf = 0;
2709        }
2710    }
2711
2712    return is_viable_kf;
2713}
2714static void find_next_key_frame(VP8_COMP *cpi, FIRSTPASS_STATS *this_frame)
2715{
2716    int i,j;
2717    FIRSTPASS_STATS last_frame;
2718    FIRSTPASS_STATS first_frame;
2719    FIRSTPASS_STATS next_frame;
2720    FIRSTPASS_STATS *start_position;
2721
2722    double decay_accumulator = 1.0;
2723    double boost_score = 0;
2724    double old_boost_score = 0.0;
2725    double loop_decay_rate;
2726
2727    double kf_mod_err = 0.0;
2728    double kf_group_err = 0.0;
2729    double kf_group_intra_err = 0.0;
2730    double kf_group_coded_err = 0.0;
2731    double recent_loop_decay[8] = {1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0};
2732
2733    vpx_memset(&next_frame, 0, sizeof(next_frame));
2734
2735    vp8_clear_system_state();
2736    start_position = cpi->twopass.stats_in;
2737
2738    cpi->common.frame_type = KEY_FRAME;
2739
2740    /* is this a forced key frame by interval */
2741    cpi->this_key_frame_forced = cpi->next_key_frame_forced;
2742
2743    /* Clear the alt ref active flag as this can never be active on a key
2744     * frame
2745     */
2746    cpi->source_alt_ref_active = 0;
2747
2748    /* Kf is always a gf so clear frames till next gf counter */
2749    cpi->frames_till_gf_update_due = 0;
2750
2751    cpi->twopass.frames_to_key = 1;
2752
2753    /* Take a copy of the initial frame details */
2754    vpx_memcpy(&first_frame, this_frame, sizeof(*this_frame));
2755
2756    cpi->twopass.kf_group_bits = 0;
2757    cpi->twopass.kf_group_error_left = 0;
2758
2759    kf_mod_err = calculate_modified_err(cpi, this_frame);
2760
2761    /* find the next keyframe */
2762    i = 0;
2763    while (cpi->twopass.stats_in < cpi->twopass.stats_in_end)
2764    {
2765        /* Accumulate kf group error */
2766        kf_group_err += calculate_modified_err(cpi, this_frame);
2767
2768        /* These figures keep intra and coded error counts for all frames
2769         * including key frames in the group. The effect of the key frame
2770         * itself can be subtracted out using the first_frame data
2771         * collected above
2772         */
2773        kf_group_intra_err += this_frame->intra_error;
2774        kf_group_coded_err += this_frame->coded_error;
2775
2776        /* Load the next frame's stats. */
2777        vpx_memcpy(&last_frame, this_frame, sizeof(*this_frame));
2778        input_stats(cpi, this_frame);
2779
2780        /* Provided that we are not at the end of the file... */
2781        if (cpi->oxcf.auto_key
2782            && lookup_next_frame_stats(cpi, &next_frame) != EOF)
2783        {
2784            /* Normal scene cut check */
2785            if ( ( i >= MIN_GF_INTERVAL ) &&
2786                 test_candidate_kf(cpi, &last_frame, this_frame, &next_frame) )
2787            {
2788                break;
2789            }
2790
2791            /* How fast is prediction quality decaying */
2792            loop_decay_rate = get_prediction_decay_rate(cpi, &next_frame);
2793
2794            /* We want to know something about the recent past... rather than
2795             * as used elsewhere where we are concened with decay in prediction
2796             * quality since the last GF or KF.
2797             */
2798            recent_loop_decay[i%8] = loop_decay_rate;
2799            decay_accumulator = 1.0;
2800            for (j = 0; j < 8; j++)
2801            {
2802                decay_accumulator = decay_accumulator * recent_loop_decay[j];
2803            }
2804
2805            /* Special check for transition or high motion followed by a
2806             * static scene.
2807             */
2808            if ( detect_transition_to_still( cpi, i,
2809                                             (cpi->key_frame_frequency-i),
2810                                             loop_decay_rate,
2811                                             decay_accumulator ) )
2812            {
2813                break;
2814            }
2815
2816
2817            /* Step on to the next frame */
2818            cpi->twopass.frames_to_key ++;
2819
2820            /* If we don't have a real key frame within the next two
2821             * forcekeyframeevery intervals then break out of the loop.
2822             */
2823            if (cpi->twopass.frames_to_key >= 2 *(int)cpi->key_frame_frequency)
2824                break;
2825        } else
2826            cpi->twopass.frames_to_key ++;
2827
2828        i++;
2829    }
2830
2831    /* If there is a max kf interval set by the user we must obey it.
2832     * We already breakout of the loop above at 2x max.
2833     * This code centers the extra kf if the actual natural
2834     * interval is between 1x and 2x
2835     */
2836    if (cpi->oxcf.auto_key
2837        && cpi->twopass.frames_to_key > (int)cpi->key_frame_frequency )
2838    {
2839        FIRSTPASS_STATS *current_pos = cpi->twopass.stats_in;
2840        FIRSTPASS_STATS tmp_frame;
2841
2842        cpi->twopass.frames_to_key /= 2;
2843
2844        /* Copy first frame details */
2845        vpx_memcpy(&tmp_frame, &first_frame, sizeof(first_frame));
2846
2847        /* Reset to the start of the group */
2848        reset_fpf_position(cpi, start_position);
2849
2850        kf_group_err = 0;
2851        kf_group_intra_err = 0;
2852        kf_group_coded_err = 0;
2853
2854        /* Rescan to get the correct error data for the forced kf group */
2855        for( i = 0; i < cpi->twopass.frames_to_key; i++ )
2856        {
2857            /* Accumulate kf group errors */
2858            kf_group_err += calculate_modified_err(cpi, &tmp_frame);
2859            kf_group_intra_err += tmp_frame.intra_error;
2860            kf_group_coded_err += tmp_frame.coded_error;
2861
2862            /* Load a the next frame's stats */
2863            input_stats(cpi, &tmp_frame);
2864        }
2865
2866        /* Reset to the start of the group */
2867        reset_fpf_position(cpi, current_pos);
2868
2869        cpi->next_key_frame_forced = 1;
2870    }
2871    else
2872        cpi->next_key_frame_forced = 0;
2873
2874    /* Special case for the last frame of the file */
2875    if (cpi->twopass.stats_in >= cpi->twopass.stats_in_end)
2876    {
2877        /* Accumulate kf group error */
2878        kf_group_err += calculate_modified_err(cpi, this_frame);
2879
2880        /* These figures keep intra and coded error counts for all frames
2881         * including key frames in the group. The effect of the key frame
2882         * itself can be subtracted out using the first_frame data
2883         * collected above
2884         */
2885        kf_group_intra_err += this_frame->intra_error;
2886        kf_group_coded_err += this_frame->coded_error;
2887    }
2888
2889    /* Calculate the number of bits that should be assigned to the kf group. */
2890    if ((cpi->twopass.bits_left > 0) && (cpi->twopass.modified_error_left > 0.0))
2891    {
2892        /* Max for a single normal frame (not key frame) */
2893        int max_bits = frame_max_bits(cpi);
2894
2895        /* Maximum bits for the kf group */
2896        int64_t max_grp_bits;
2897
2898        /* Default allocation based on bits left and relative
2899         * complexity of the section
2900         */
2901        cpi->twopass.kf_group_bits = (int64_t)( cpi->twopass.bits_left *
2902                                          ( kf_group_err /
2903                                            cpi->twopass.modified_error_left ));
2904
2905        /* Clip based on maximum per frame rate defined by the user. */
2906        max_grp_bits = (int64_t)max_bits * (int64_t)cpi->twopass.frames_to_key;
2907        if (cpi->twopass.kf_group_bits > max_grp_bits)
2908            cpi->twopass.kf_group_bits = max_grp_bits;
2909
2910        /* Additional special case for CBR if buffer is getting full. */
2911        if (cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER)
2912        {
2913            int64_t opt_buffer_lvl = cpi->oxcf.optimal_buffer_level;
2914            int64_t buffer_lvl = cpi->buffer_level;
2915
2916            /* If the buffer is near or above the optimal and this kf group is
2917             * not being allocated much then increase the allocation a bit.
2918             */
2919            if (buffer_lvl >= opt_buffer_lvl)
2920            {
2921                int64_t high_water_mark = (opt_buffer_lvl +
2922                                       cpi->oxcf.maximum_buffer_size) >> 1;
2923
2924                int64_t av_group_bits;
2925
2926                /* Av bits per frame * number of frames */
2927                av_group_bits = (int64_t)cpi->av_per_frame_bandwidth *
2928                                (int64_t)cpi->twopass.frames_to_key;
2929
2930                /* We are at or above the maximum. */
2931                if (cpi->buffer_level >= high_water_mark)
2932                {
2933                    int64_t min_group_bits;
2934
2935                    min_group_bits = av_group_bits +
2936                                     (int64_t)(buffer_lvl -
2937                                                 high_water_mark);
2938
2939                    if (cpi->twopass.kf_group_bits < min_group_bits)
2940                        cpi->twopass.kf_group_bits = min_group_bits;
2941                }
2942                /* We are above optimal but below the maximum */
2943                else if (cpi->twopass.kf_group_bits < av_group_bits)
2944                {
2945                    int64_t bits_below_av = av_group_bits -
2946                                              cpi->twopass.kf_group_bits;
2947
2948                    cpi->twopass.kf_group_bits +=
2949                       (int64_t)((double)bits_below_av *
2950                                   (double)(buffer_lvl - opt_buffer_lvl) /
2951                                   (double)(high_water_mark - opt_buffer_lvl));
2952                }
2953            }
2954        }
2955    }
2956    else
2957        cpi->twopass.kf_group_bits = 0;
2958
2959    /* Reset the first pass file position */
2960    reset_fpf_position(cpi, start_position);
2961
2962    /* determine how big to make this keyframe based on how well the
2963     * subsequent frames use inter blocks
2964     */
2965    decay_accumulator = 1.0;
2966    boost_score = 0.0;
2967    loop_decay_rate = 1.00;       /* Starting decay rate */
2968
2969    for (i = 0 ; i < cpi->twopass.frames_to_key ; i++)
2970    {
2971        double r;
2972
2973        if (EOF == input_stats(cpi, &next_frame))
2974            break;
2975
2976        if (next_frame.intra_error > cpi->twopass.kf_intra_err_min)
2977            r = (IIKFACTOR2 * next_frame.intra_error /
2978                     DOUBLE_DIVIDE_CHECK(next_frame.coded_error));
2979        else
2980            r = (IIKFACTOR2 * cpi->twopass.kf_intra_err_min /
2981                     DOUBLE_DIVIDE_CHECK(next_frame.coded_error));
2982
2983        if (r > RMAX)
2984            r = RMAX;
2985
2986        /* How fast is prediction quality decaying */
2987        loop_decay_rate = get_prediction_decay_rate(cpi, &next_frame);
2988
2989        decay_accumulator = decay_accumulator * loop_decay_rate;
2990        decay_accumulator = decay_accumulator < 0.1 ? 0.1 : decay_accumulator;
2991
2992        boost_score += (decay_accumulator * r);
2993
2994        if ((i > MIN_GF_INTERVAL) &&
2995            ((boost_score - old_boost_score) < 1.0))
2996        {
2997            break;
2998        }
2999
3000        old_boost_score = boost_score;
3001    }
3002
3003    if (1)
3004    {
3005        FIRSTPASS_STATS sectionstats;
3006        double Ratio;
3007
3008        zero_stats(&sectionstats);
3009        reset_fpf_position(cpi, start_position);
3010
3011        for (i = 0 ; i < cpi->twopass.frames_to_key ; i++)
3012        {
3013            input_stats(cpi, &next_frame);
3014            accumulate_stats(&sectionstats, &next_frame);
3015        }
3016
3017        avg_stats(&sectionstats);
3018
3019        cpi->twopass.section_intra_rating = (unsigned int)
3020            (sectionstats.intra_error
3021            / DOUBLE_DIVIDE_CHECK(sectionstats.coded_error));
3022
3023        Ratio = sectionstats.intra_error / DOUBLE_DIVIDE_CHECK(sectionstats.coded_error);
3024        cpi->twopass.section_max_qfactor = 1.0 - ((Ratio - 10.0) * 0.025);
3025
3026        if (cpi->twopass.section_max_qfactor < 0.80)
3027            cpi->twopass.section_max_qfactor = 0.80;
3028    }
3029
3030    /* When using CBR apply additional buffer fullness related upper limits */
3031    if (cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER)
3032    {
3033        double max_boost;
3034
3035        if (cpi->drop_frames_allowed)
3036        {
3037            int df_buffer_level = (int)(cpi->oxcf.drop_frames_water_mark
3038                                  * (cpi->oxcf.optimal_buffer_level / 100));
3039
3040            if (cpi->buffer_level > df_buffer_level)
3041                max_boost = ((double)((cpi->buffer_level - df_buffer_level) * 2 / 3) * 16.0) / DOUBLE_DIVIDE_CHECK((double)cpi->av_per_frame_bandwidth);
3042            else
3043                max_boost = 0.0;
3044        }
3045        else if (cpi->buffer_level > 0)
3046        {
3047            max_boost = ((double)(cpi->buffer_level * 2 / 3) * 16.0) / DOUBLE_DIVIDE_CHECK((double)cpi->av_per_frame_bandwidth);
3048        }
3049        else
3050        {
3051            max_boost = 0.0;
3052        }
3053
3054        if (boost_score > max_boost)
3055            boost_score = max_boost;
3056    }
3057
3058    /* Reset the first pass file position */
3059    reset_fpf_position(cpi, start_position);
3060
3061    /* Work out how many bits to allocate for the key frame itself */
3062    if (1)
3063    {
3064        int kf_boost = (int)boost_score;
3065        int allocation_chunks;
3066        int Counter = cpi->twopass.frames_to_key;
3067        int alt_kf_bits;
3068        YV12_BUFFER_CONFIG *lst_yv12 = &cpi->common.yv12_fb[cpi->common.lst_fb_idx];
3069        /* Min boost based on kf interval */
3070#if 0
3071
3072        while ((kf_boost < 48) && (Counter > 0))
3073        {
3074            Counter -= 2;
3075            kf_boost ++;
3076        }
3077
3078#endif
3079
3080        if (kf_boost < 48)
3081        {
3082            kf_boost += ((Counter + 1) >> 1);
3083
3084            if (kf_boost > 48) kf_boost = 48;
3085        }
3086
3087        /* bigger frame sizes need larger kf boosts, smaller frames smaller
3088         * boosts...
3089         */
3090        if ((lst_yv12->y_width * lst_yv12->y_height) > (320 * 240))
3091            kf_boost += 2 * (lst_yv12->y_width * lst_yv12->y_height) / (320 * 240);
3092        else if ((lst_yv12->y_width * lst_yv12->y_height) < (320 * 240))
3093            kf_boost -= 4 * (320 * 240) / (lst_yv12->y_width * lst_yv12->y_height);
3094
3095        /* Min KF boost */
3096        kf_boost = (int)((double)kf_boost * 100.0) >> 4; /* Scale 16 to 100 */
3097        if (kf_boost < 250)
3098            kf_boost = 250;
3099
3100        /*
3101         * We do three calculations for kf size.
3102         * The first is based on the error score for the whole kf group.
3103         * The second (optionaly) on the key frames own error if this is
3104         * smaller than the average for the group.
3105         * The final one insures that the frame receives at least the
3106         * allocation it would have received based on its own error score vs
3107         * the error score remaining
3108         * Special case if the sequence appears almost totaly static
3109         * as measured by the decay accumulator. In this case we want to
3110         * spend almost all of the bits on the key frame.
3111         * cpi->twopass.frames_to_key-1 because key frame itself is taken
3112         * care of by kf_boost.
3113         */
3114        if ( decay_accumulator >= 0.99 )
3115        {
3116            allocation_chunks =
3117                ((cpi->twopass.frames_to_key - 1) * 10) + kf_boost;
3118        }
3119        else
3120        {
3121            allocation_chunks =
3122                ((cpi->twopass.frames_to_key - 1) * 100) + kf_boost;
3123        }
3124
3125        /* Normalize Altboost and allocations chunck down to prevent overflow */
3126        while (kf_boost > 1000)
3127        {
3128            kf_boost /= 2;
3129            allocation_chunks /= 2;
3130        }
3131
3132        cpi->twopass.kf_group_bits = (cpi->twopass.kf_group_bits < 0) ? 0 : cpi->twopass.kf_group_bits;
3133
3134        /* Calculate the number of bits to be spent on the key frame */
3135        cpi->twopass.kf_bits  = (int)((double)kf_boost * ((double)cpi->twopass.kf_group_bits / (double)allocation_chunks));
3136
3137        /* Apply an additional limit for CBR */
3138        if (cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER)
3139        {
3140            if (cpi->twopass.kf_bits > (int)((3 * cpi->buffer_level) >> 2))
3141                cpi->twopass.kf_bits = (int)((3 * cpi->buffer_level) >> 2);
3142        }
3143
3144        /* If the key frame is actually easier than the average for the
3145         * kf group (which does sometimes happen... eg a blank intro frame)
3146         * Then use an alternate calculation based on the kf error score
3147         * which should give a smaller key frame.
3148         */
3149        if (kf_mod_err < kf_group_err / cpi->twopass.frames_to_key)
3150        {
3151            double  alt_kf_grp_bits =
3152                        ((double)cpi->twopass.bits_left *
3153                         (kf_mod_err * (double)cpi->twopass.frames_to_key) /
3154                         DOUBLE_DIVIDE_CHECK(cpi->twopass.modified_error_left));
3155
3156            alt_kf_bits = (int)((double)kf_boost *
3157                                (alt_kf_grp_bits / (double)allocation_chunks));
3158
3159            if (cpi->twopass.kf_bits > alt_kf_bits)
3160            {
3161                cpi->twopass.kf_bits = alt_kf_bits;
3162            }
3163        }
3164        /* Else if it is much harder than other frames in the group make sure
3165         * it at least receives an allocation in keeping with its relative
3166         * error score
3167         */
3168        else
3169        {
3170            alt_kf_bits =
3171                (int)((double)cpi->twopass.bits_left *
3172                      (kf_mod_err /
3173                       DOUBLE_DIVIDE_CHECK(cpi->twopass.modified_error_left)));
3174
3175            if (alt_kf_bits > cpi->twopass.kf_bits)
3176            {
3177                cpi->twopass.kf_bits = alt_kf_bits;
3178            }
3179        }
3180
3181        cpi->twopass.kf_group_bits -= cpi->twopass.kf_bits;
3182        /* Add in the minimum frame allowance */
3183        cpi->twopass.kf_bits += cpi->min_frame_bandwidth;
3184
3185        /* Peer frame bit target for this frame */
3186        cpi->per_frame_bandwidth = cpi->twopass.kf_bits;
3187
3188        /* Convert to a per second bitrate */
3189        cpi->target_bandwidth = (int)(cpi->twopass.kf_bits *
3190                                      cpi->output_framerate);
3191    }
3192
3193    /* Note the total error score of the kf group minus the key frame itself */
3194    cpi->twopass.kf_group_error_left = (int)(kf_group_err - kf_mod_err);
3195
3196    /* Adjust the count of total modified error left. The count of bits left
3197     * is adjusted elsewhere based on real coded frame sizes
3198     */
3199    cpi->twopass.modified_error_left -= kf_group_err;
3200
3201    if (cpi->oxcf.allow_spatial_resampling)
3202    {
3203        int resample_trigger = 0;
3204        int last_kf_resampled = 0;
3205        int kf_q;
3206        int scale_val = 0;
3207        int hr, hs, vr, vs;
3208        int new_width = cpi->oxcf.Width;
3209        int new_height = cpi->oxcf.Height;
3210
3211        int projected_buffer_level = (int)cpi->buffer_level;
3212        int tmp_q;
3213
3214        double projected_bits_perframe;
3215        double group_iiratio = (kf_group_intra_err - first_frame.intra_error) / (kf_group_coded_err - first_frame.coded_error);
3216        double err_per_frame = kf_group_err / cpi->twopass.frames_to_key;
3217        double bits_per_frame;
3218        double av_bits_per_frame;
3219        double effective_size_ratio;
3220
3221        if ((cpi->common.Width != cpi->oxcf.Width) || (cpi->common.Height != cpi->oxcf.Height))
3222            last_kf_resampled = 1;
3223
3224        /* Set back to unscaled by defaults */
3225        cpi->common.horiz_scale = NORMAL;
3226        cpi->common.vert_scale = NORMAL;
3227
3228        /* Calculate Average bits per frame. */
3229        av_bits_per_frame = cpi->oxcf.target_bandwidth / DOUBLE_DIVIDE_CHECK((double)cpi->framerate);
3230
3231        /* CBR... Use the clip average as the target for deciding resample */
3232        if (cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER)
3233        {
3234            bits_per_frame = av_bits_per_frame;
3235        }
3236
3237        /* In VBR we want to avoid downsampling in easy section unless we
3238         * are under extreme pressure So use the larger of target bitrate
3239         * for this section or average bitrate for sequence
3240         */
3241        else
3242        {
3243            /* This accounts for how hard the section is... */
3244            bits_per_frame = (double)
3245                (cpi->twopass.kf_group_bits / cpi->twopass.frames_to_key);
3246
3247            /* Dont turn to resampling in easy sections just because they
3248             * have been assigned a small number of bits
3249             */
3250            if (bits_per_frame < av_bits_per_frame)
3251                bits_per_frame = av_bits_per_frame;
3252        }
3253
3254        /* bits_per_frame should comply with our minimum */
3255        if (bits_per_frame < (cpi->oxcf.target_bandwidth * cpi->oxcf.two_pass_vbrmin_section / 100))
3256            bits_per_frame = (cpi->oxcf.target_bandwidth * cpi->oxcf.two_pass_vbrmin_section / 100);
3257
3258        /* Work out if spatial resampling is necessary */
3259        kf_q = estimate_kf_group_q(cpi, err_per_frame,
3260                                  (int)bits_per_frame, group_iiratio);
3261
3262        /* If we project a required Q higher than the maximum allowed Q then
3263         * make a guess at the actual size of frames in this section
3264         */
3265        projected_bits_perframe = bits_per_frame;
3266        tmp_q = kf_q;
3267
3268        while (tmp_q > cpi->worst_quality)
3269        {
3270            projected_bits_perframe *= 1.04;
3271            tmp_q--;
3272        }
3273
3274        /* Guess at buffer level at the end of the section */
3275        projected_buffer_level = (int)
3276                    (cpi->buffer_level - (int)
3277                    ((projected_bits_perframe - av_bits_per_frame) *
3278                    cpi->twopass.frames_to_key));
3279
3280        if (0)
3281        {
3282            FILE *f = fopen("Subsamle.stt", "a");
3283            fprintf(f, " %8d %8d %8d %8d %12.0f %8d %8d %8d\n",  cpi->common.current_video_frame, kf_q, cpi->common.horiz_scale, cpi->common.vert_scale,  kf_group_err / cpi->twopass.frames_to_key, (int)(cpi->twopass.kf_group_bits / cpi->twopass.frames_to_key), new_height, new_width);
3284            fclose(f);
3285        }
3286
3287        /* The trigger for spatial resampling depends on the various
3288         * parameters such as whether we are streaming (CBR) or VBR.
3289         */
3290        if (cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER)
3291        {
3292            /* Trigger resample if we are projected to fall below down
3293             * sample level or resampled last time and are projected to
3294             * remain below the up sample level
3295             */
3296            if ((projected_buffer_level < (cpi->oxcf.resample_down_water_mark * cpi->oxcf.optimal_buffer_level / 100)) ||
3297                (last_kf_resampled && (projected_buffer_level < (cpi->oxcf.resample_up_water_mark * cpi->oxcf.optimal_buffer_level / 100))))
3298                resample_trigger = 1;
3299            else
3300                resample_trigger = 0;
3301        }
3302        else
3303        {
3304            int64_t clip_bits = (int64_t)(cpi->twopass.total_stats.count * cpi->oxcf.target_bandwidth / DOUBLE_DIVIDE_CHECK((double)cpi->framerate));
3305            int64_t over_spend = cpi->oxcf.starting_buffer_level - cpi->buffer_level;
3306
3307            /* If triggered last time the threshold for triggering again is
3308             * reduced:
3309             *
3310             * Projected Q higher than allowed and Overspend > 5% of total
3311             * bits
3312             */
3313            if ((last_kf_resampled && (kf_q > cpi->worst_quality)) ||
3314                ((kf_q > cpi->worst_quality) &&
3315                 (over_spend > clip_bits / 20)))
3316                resample_trigger = 1;
3317            else
3318                resample_trigger = 0;
3319
3320        }
3321
3322        if (resample_trigger)
3323        {
3324            while ((kf_q >= cpi->worst_quality) && (scale_val < 6))
3325            {
3326                scale_val ++;
3327
3328                cpi->common.vert_scale   = vscale_lookup[scale_val];
3329                cpi->common.horiz_scale  = hscale_lookup[scale_val];
3330
3331                Scale2Ratio(cpi->common.horiz_scale, &hr, &hs);
3332                Scale2Ratio(cpi->common.vert_scale, &vr, &vs);
3333
3334                new_width = ((hs - 1) + (cpi->oxcf.Width * hr)) / hs;
3335                new_height = ((vs - 1) + (cpi->oxcf.Height * vr)) / vs;
3336
3337                /* Reducing the area to 1/4 does not reduce the complexity
3338                 * (err_per_frame) to 1/4... effective_sizeratio attempts
3339                 * to provide a crude correction for this
3340                 */
3341                effective_size_ratio = (double)(new_width * new_height) / (double)(cpi->oxcf.Width * cpi->oxcf.Height);
3342                effective_size_ratio = (1.0 + (3.0 * effective_size_ratio)) / 4.0;
3343
3344                /* Now try again and see what Q we get with the smaller
3345                 * image size
3346                 */
3347                kf_q = estimate_kf_group_q(cpi,
3348                                          err_per_frame * effective_size_ratio,
3349                                          (int)bits_per_frame, group_iiratio);
3350
3351                if (0)
3352                {
3353                    FILE *f = fopen("Subsamle.stt", "a");
3354                    fprintf(f, "******** %8d %8d %8d %12.0f %8d %8d %8d\n",  kf_q, cpi->common.horiz_scale, cpi->common.vert_scale,  kf_group_err / cpi->twopass.frames_to_key, (int)(cpi->twopass.kf_group_bits / cpi->twopass.frames_to_key), new_height, new_width);
3355                    fclose(f);
3356                }
3357            }
3358        }
3359
3360        if ((cpi->common.Width != new_width) || (cpi->common.Height != new_height))
3361        {
3362            cpi->common.Width = new_width;
3363            cpi->common.Height = new_height;
3364            vp8_alloc_compressor_data(cpi);
3365        }
3366    }
3367}
3368