1/*
2 *  Copyright (c) 2010 The WebM project authors. All Rights Reserved.
3 *
4 *  Use of this source code is governed by a BSD-style license
5 *  that can be found in the LICENSE file in the root of the source
6 *  tree. An additional intellectual property rights grant can be found
7 *  in the file PATENTS.  All contributing project authors may
8 *  be found in the AUTHORS file in the root of the source tree.
9 */
10
11#include "./vpx_config.h"
12#include "vp9/common/vp9_common.h"
13#include "vp9/common/vp9_loopfilter.h"
14#include "vp9/common/vp9_onyxc_int.h"
15
16static INLINE int8_t signed_char_clamp(int t) {
17  return (int8_t)clamp(t, -128, 127);
18}
19
20// should we apply any filter at all: 11111111 yes, 00000000 no
21static INLINE int8_t filter_mask(uint8_t limit, uint8_t blimit,
22                                 uint8_t p3, uint8_t p2,
23                                 uint8_t p1, uint8_t p0,
24                                 uint8_t q0, uint8_t q1,
25                                 uint8_t q2, uint8_t q3) {
26  int8_t mask = 0;
27  mask |= (abs(p3 - p2) > limit) * -1;
28  mask |= (abs(p2 - p1) > limit) * -1;
29  mask |= (abs(p1 - p0) > limit) * -1;
30  mask |= (abs(q1 - q0) > limit) * -1;
31  mask |= (abs(q2 - q1) > limit) * -1;
32  mask |= (abs(q3 - q2) > limit) * -1;
33  mask |= (abs(p0 - q0) * 2 + abs(p1 - q1) / 2  > blimit) * -1;
34  return ~mask;
35}
36
37static INLINE int8_t flat_mask4(uint8_t thresh,
38                                uint8_t p3, uint8_t p2,
39                                uint8_t p1, uint8_t p0,
40                                uint8_t q0, uint8_t q1,
41                                uint8_t q2, uint8_t q3) {
42  int8_t mask = 0;
43  mask |= (abs(p1 - p0) > thresh) * -1;
44  mask |= (abs(q1 - q0) > thresh) * -1;
45  mask |= (abs(p2 - p0) > thresh) * -1;
46  mask |= (abs(q2 - q0) > thresh) * -1;
47  mask |= (abs(p3 - p0) > thresh) * -1;
48  mask |= (abs(q3 - q0) > thresh) * -1;
49  return ~mask;
50}
51
52static INLINE int8_t flat_mask5(uint8_t thresh,
53                                uint8_t p4, uint8_t p3,
54                                uint8_t p2, uint8_t p1,
55                                uint8_t p0, uint8_t q0,
56                                uint8_t q1, uint8_t q2,
57                                uint8_t q3, uint8_t q4) {
58  int8_t mask = ~flat_mask4(thresh, p3, p2, p1, p0, q0, q1, q2, q3);
59  mask |= (abs(p4 - p0) > thresh) * -1;
60  mask |= (abs(q4 - q0) > thresh) * -1;
61  return ~mask;
62}
63
64// is there high edge variance internal edge: 11111111 yes, 00000000 no
65static INLINE int8_t hev_mask(uint8_t thresh, uint8_t p1, uint8_t p0,
66                              uint8_t q0, uint8_t q1) {
67  int8_t hev = 0;
68  hev  |= (abs(p1 - p0) > thresh) * -1;
69  hev  |= (abs(q1 - q0) > thresh) * -1;
70  return hev;
71}
72
73static INLINE void filter4(int8_t mask, uint8_t thresh, uint8_t *op1,
74                           uint8_t *op0, uint8_t *oq0, uint8_t *oq1) {
75  int8_t filter1, filter2;
76
77  const int8_t ps1 = (int8_t) *op1 ^ 0x80;
78  const int8_t ps0 = (int8_t) *op0 ^ 0x80;
79  const int8_t qs0 = (int8_t) *oq0 ^ 0x80;
80  const int8_t qs1 = (int8_t) *oq1 ^ 0x80;
81  const uint8_t hev = hev_mask(thresh, *op1, *op0, *oq0, *oq1);
82
83  // add outer taps if we have high edge variance
84  int8_t filter = signed_char_clamp(ps1 - qs1) & hev;
85
86  // inner taps
87  filter = signed_char_clamp(filter + 3 * (qs0 - ps0)) & mask;
88
89  // save bottom 3 bits so that we round one side +4 and the other +3
90  // if it equals 4 we'll set to adjust by -1 to account for the fact
91  // we'd round 3 the other way
92  filter1 = signed_char_clamp(filter + 4) >> 3;
93  filter2 = signed_char_clamp(filter + 3) >> 3;
94
95  *oq0 = signed_char_clamp(qs0 - filter1) ^ 0x80;
96  *op0 = signed_char_clamp(ps0 + filter2) ^ 0x80;
97
98  // outer tap adjustments
99  filter = ROUND_POWER_OF_TWO(filter1, 1) & ~hev;
100
101  *oq1 = signed_char_clamp(qs1 - filter) ^ 0x80;
102  *op1 = signed_char_clamp(ps1 + filter) ^ 0x80;
103}
104
105void vp9_lpf_horizontal_4_c(uint8_t *s, int p /* pitch */,
106                            const uint8_t *blimit, const uint8_t *limit,
107                            const uint8_t *thresh, int count) {
108  int i;
109
110  // loop filter designed to work using chars so that we can make maximum use
111  // of 8 bit simd instructions.
112  for (i = 0; i < 8 * count; ++i) {
113    const uint8_t p3 = s[-4 * p], p2 = s[-3 * p], p1 = s[-2 * p], p0 = s[-p];
114    const uint8_t q0 = s[0 * p],  q1 = s[1 * p],  q2 = s[2 * p],  q3 = s[3 * p];
115    const int8_t mask = filter_mask(*limit, *blimit,
116                                    p3, p2, p1, p0, q0, q1, q2, q3);
117    filter4(mask, *thresh, s - 2 * p, s - 1 * p, s, s + 1 * p);
118    ++s;
119  }
120}
121
122void vp9_lpf_horizontal_4_dual_c(uint8_t *s, int p, const uint8_t *blimit0,
123                                 const uint8_t *limit0, const uint8_t *thresh0,
124                                 const uint8_t *blimit1, const uint8_t *limit1,
125                                 const uint8_t *thresh1) {
126  vp9_lpf_horizontal_4_c(s, p, blimit0, limit0, thresh0, 1);
127  vp9_lpf_horizontal_4_c(s + 8, p, blimit1, limit1, thresh1, 1);
128}
129
130void vp9_lpf_vertical_4_c(uint8_t *s, int pitch, const uint8_t *blimit,
131                          const uint8_t *limit, const uint8_t *thresh,
132                          int count) {
133  int i;
134
135  // loop filter designed to work using chars so that we can make maximum use
136  // of 8 bit simd instructions.
137  for (i = 0; i < 8 * count; ++i) {
138    const uint8_t p3 = s[-4], p2 = s[-3], p1 = s[-2], p0 = s[-1];
139    const uint8_t q0 = s[0],  q1 = s[1],  q2 = s[2],  q3 = s[3];
140    const int8_t mask = filter_mask(*limit, *blimit,
141                                    p3, p2, p1, p0, q0, q1, q2, q3);
142    filter4(mask, *thresh, s - 2, s - 1, s, s + 1);
143    s += pitch;
144  }
145}
146
147void vp9_lpf_vertical_4_dual_c(uint8_t *s, int pitch, const uint8_t *blimit0,
148                               const uint8_t *limit0, const uint8_t *thresh0,
149                               const uint8_t *blimit1, const uint8_t *limit1,
150                               const uint8_t *thresh1) {
151  vp9_lpf_vertical_4_c(s, pitch, blimit0, limit0, thresh0, 1);
152  vp9_lpf_vertical_4_c(s + 8 * pitch, pitch, blimit1, limit1,
153                                  thresh1, 1);
154}
155
156static INLINE void filter8(int8_t mask, uint8_t thresh, uint8_t flat,
157                           uint8_t *op3, uint8_t *op2,
158                           uint8_t *op1, uint8_t *op0,
159                           uint8_t *oq0, uint8_t *oq1,
160                           uint8_t *oq2, uint8_t *oq3) {
161  if (flat && mask) {
162    const uint8_t p3 = *op3, p2 = *op2, p1 = *op1, p0 = *op0;
163    const uint8_t q0 = *oq0, q1 = *oq1, q2 = *oq2, q3 = *oq3;
164
165    // 7-tap filter [1, 1, 1, 2, 1, 1, 1]
166    *op2 = ROUND_POWER_OF_TWO(p3 + p3 + p3 + 2 * p2 + p1 + p0 + q0, 3);
167    *op1 = ROUND_POWER_OF_TWO(p3 + p3 + p2 + 2 * p1 + p0 + q0 + q1, 3);
168    *op0 = ROUND_POWER_OF_TWO(p3 + p2 + p1 + 2 * p0 + q0 + q1 + q2, 3);
169    *oq0 = ROUND_POWER_OF_TWO(p2 + p1 + p0 + 2 * q0 + q1 + q2 + q3, 3);
170    *oq1 = ROUND_POWER_OF_TWO(p1 + p0 + q0 + 2 * q1 + q2 + q3 + q3, 3);
171    *oq2 = ROUND_POWER_OF_TWO(p0 + q0 + q1 + 2 * q2 + q3 + q3 + q3, 3);
172  } else {
173    filter4(mask, thresh, op1,  op0, oq0, oq1);
174  }
175}
176
177void vp9_lpf_horizontal_8_c(uint8_t *s, int p, const uint8_t *blimit,
178                            const uint8_t *limit, const uint8_t *thresh,
179                            int count) {
180  int i;
181
182  // loop filter designed to work using chars so that we can make maximum use
183  // of 8 bit simd instructions.
184  for (i = 0; i < 8 * count; ++i) {
185    const uint8_t p3 = s[-4 * p], p2 = s[-3 * p], p1 = s[-2 * p], p0 = s[-p];
186    const uint8_t q0 = s[0 * p], q1 = s[1 * p], q2 = s[2 * p], q3 = s[3 * p];
187
188    const int8_t mask = filter_mask(*limit, *blimit,
189                                    p3, p2, p1, p0, q0, q1, q2, q3);
190    const int8_t flat = flat_mask4(1, p3, p2, p1, p0, q0, q1, q2, q3);
191    filter8(mask, *thresh, flat, s - 4 * p, s - 3 * p, s - 2 * p, s - 1 * p,
192                                 s,         s + 1 * p, s + 2 * p, s + 3 * p);
193    ++s;
194  }
195}
196
197void vp9_lpf_horizontal_8_dual_c(uint8_t *s, int p, const uint8_t *blimit0,
198                                 const uint8_t *limit0, const uint8_t *thresh0,
199                                 const uint8_t *blimit1, const uint8_t *limit1,
200                                 const uint8_t *thresh1) {
201  vp9_lpf_horizontal_8_c(s, p, blimit0, limit0, thresh0, 1);
202  vp9_lpf_horizontal_8_c(s + 8, p, blimit1, limit1, thresh1, 1);
203}
204
205void vp9_lpf_vertical_8_c(uint8_t *s, int pitch, const uint8_t *blimit,
206                          const uint8_t *limit, const uint8_t *thresh,
207                          int count) {
208  int i;
209
210  for (i = 0; i < 8 * count; ++i) {
211    const uint8_t p3 = s[-4], p2 = s[-3], p1 = s[-2], p0 = s[-1];
212    const uint8_t q0 = s[0], q1 = s[1], q2 = s[2], q3 = s[3];
213    const int8_t mask = filter_mask(*limit, *blimit,
214                                    p3, p2, p1, p0, q0, q1, q2, q3);
215    const int8_t flat = flat_mask4(1, p3, p2, p1, p0, q0, q1, q2, q3);
216    filter8(mask, *thresh, flat, s - 4, s - 3, s - 2, s - 1,
217                                 s,     s + 1, s + 2, s + 3);
218    s += pitch;
219  }
220}
221
222void vp9_lpf_vertical_8_dual_c(uint8_t *s, int pitch, const uint8_t *blimit0,
223                               const uint8_t *limit0, const uint8_t *thresh0,
224                               const uint8_t *blimit1, const uint8_t *limit1,
225                               const uint8_t *thresh1) {
226  vp9_lpf_vertical_8_c(s, pitch, blimit0, limit0, thresh0, 1);
227  vp9_lpf_vertical_8_c(s + 8 * pitch, pitch, blimit1, limit1,
228                                    thresh1, 1);
229}
230
231static INLINE void filter16(int8_t mask, uint8_t thresh,
232                            uint8_t flat, uint8_t flat2,
233                            uint8_t *op7, uint8_t *op6,
234                            uint8_t *op5, uint8_t *op4,
235                            uint8_t *op3, uint8_t *op2,
236                            uint8_t *op1, uint8_t *op0,
237                            uint8_t *oq0, uint8_t *oq1,
238                            uint8_t *oq2, uint8_t *oq3,
239                            uint8_t *oq4, uint8_t *oq5,
240                            uint8_t *oq6, uint8_t *oq7) {
241  if (flat2 && flat && mask) {
242    const uint8_t p7 = *op7, p6 = *op6, p5 = *op5, p4 = *op4,
243                  p3 = *op3, p2 = *op2, p1 = *op1, p0 = *op0;
244
245    const uint8_t q0 = *oq0, q1 = *oq1, q2 = *oq2, q3 = *oq3,
246                  q4 = *oq4, q5 = *oq5, q6 = *oq6, q7 = *oq7;
247
248    // 15-tap filter [1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1]
249    *op6 = ROUND_POWER_OF_TWO(p7 * 7 + p6 * 2 + p5 + p4 + p3 + p2 + p1 + p0 +
250                              q0, 4);
251    *op5 = ROUND_POWER_OF_TWO(p7 * 6 + p6 + p5 * 2 + p4 + p3 + p2 + p1 + p0 +
252                              q0 + q1, 4);
253    *op4 = ROUND_POWER_OF_TWO(p7 * 5 + p6 + p5 + p4 * 2 + p3 + p2 + p1 + p0 +
254                              q0 + q1 + q2, 4);
255    *op3 = ROUND_POWER_OF_TWO(p7 * 4 + p6 + p5 + p4 + p3 * 2 + p2 + p1 + p0 +
256                              q0 + q1 + q2 + q3, 4);
257    *op2 = ROUND_POWER_OF_TWO(p7 * 3 + p6 + p5 + p4 + p3 + p2 * 2 + p1 + p0 +
258                              q0 + q1 + q2 + q3 + q4, 4);
259    *op1 = ROUND_POWER_OF_TWO(p7 * 2 + p6 + p5 + p4 + p3 + p2 + p1 * 2 + p0 +
260                              q0 + q1 + q2 + q3 + q4 + q5, 4);
261    *op0 = ROUND_POWER_OF_TWO(p7 + p6 + p5 + p4 + p3 + p2 + p1 + p0 * 2 +
262                              q0 + q1 + q2 + q3 + q4 + q5 + q6, 4);
263    *oq0 = ROUND_POWER_OF_TWO(p6 + p5 + p4 + p3 + p2 + p1 + p0 +
264                              q0 * 2 + q1 + q2 + q3 + q4 + q5 + q6 + q7, 4);
265    *oq1 = ROUND_POWER_OF_TWO(p5 + p4 + p3 + p2 + p1 + p0 +
266                              q0 + q1 * 2 + q2 + q3 + q4 + q5 + q6 + q7 * 2, 4);
267    *oq2 = ROUND_POWER_OF_TWO(p4 + p3 + p2 + p1 + p0 +
268                              q0 + q1 + q2 * 2 + q3 + q4 + q5 + q6 + q7 * 3, 4);
269    *oq3 = ROUND_POWER_OF_TWO(p3 + p2 + p1 + p0 +
270                              q0 + q1 + q2 + q3 * 2 + q4 + q5 + q6 + q7 * 4, 4);
271    *oq4 = ROUND_POWER_OF_TWO(p2 + p1 + p0 +
272                              q0 + q1 + q2 + q3 + q4 * 2 + q5 + q6 + q7 * 5, 4);
273    *oq5 = ROUND_POWER_OF_TWO(p1 + p0 +
274                              q0 + q1 + q2 + q3 + q4 + q5 * 2 + q6 + q7 * 6, 4);
275    *oq6 = ROUND_POWER_OF_TWO(p0 +
276                              q0 + q1 + q2 + q3 + q4 + q5 + q6 * 2 + q7 * 7, 4);
277  } else {
278    filter8(mask, thresh, flat, op3, op2, op1, op0, oq0, oq1, oq2, oq3);
279  }
280}
281
282void vp9_lpf_horizontal_16_c(uint8_t *s, int p, const uint8_t *blimit,
283                             const uint8_t *limit, const uint8_t *thresh,
284                             int count) {
285  int i;
286
287  // loop filter designed to work using chars so that we can make maximum use
288  // of 8 bit simd instructions.
289  for (i = 0; i < 8 * count; ++i) {
290    const uint8_t p3 = s[-4 * p], p2 = s[-3 * p], p1 = s[-2 * p], p0 = s[-p];
291    const uint8_t q0 = s[0 * p], q1 = s[1 * p], q2 = s[2 * p], q3 = s[3 * p];
292    const int8_t mask = filter_mask(*limit, *blimit,
293                                    p3, p2, p1, p0, q0, q1, q2, q3);
294    const int8_t flat = flat_mask4(1, p3, p2, p1, p0, q0, q1, q2, q3);
295    const int8_t flat2 = flat_mask5(1,
296                             s[-8 * p], s[-7 * p], s[-6 * p], s[-5 * p], p0,
297                             q0, s[4 * p], s[5 * p], s[6 * p], s[7 * p]);
298
299    filter16(mask, *thresh, flat, flat2,
300             s - 8 * p, s - 7 * p, s - 6 * p, s - 5 * p,
301             s - 4 * p, s - 3 * p, s - 2 * p, s - 1 * p,
302             s,         s + 1 * p, s + 2 * p, s + 3 * p,
303             s + 4 * p, s + 5 * p, s + 6 * p, s + 7 * p);
304    ++s;
305  }
306}
307
308static void mb_lpf_vertical_edge_w(uint8_t *s, int p,
309                                   const uint8_t *blimit,
310                                   const uint8_t *limit,
311                                   const uint8_t *thresh,
312                                   int count) {
313  int i;
314
315  for (i = 0; i < count; ++i) {
316    const uint8_t p3 = s[-4], p2 = s[-3], p1 = s[-2], p0 = s[-1];
317    const uint8_t q0 = s[0], q1 = s[1],  q2 = s[2], q3 = s[3];
318    const int8_t mask = filter_mask(*limit, *blimit,
319                                    p3, p2, p1, p0, q0, q1, q2, q3);
320    const int8_t flat = flat_mask4(1, p3, p2, p1, p0, q0, q1, q2, q3);
321    const int8_t flat2 = flat_mask5(1, s[-8], s[-7], s[-6], s[-5], p0,
322                                    q0, s[4], s[5], s[6], s[7]);
323
324    filter16(mask, *thresh, flat, flat2,
325             s - 8, s - 7, s - 6, s - 5, s - 4, s - 3, s - 2, s - 1,
326             s,     s + 1, s + 2, s + 3, s + 4, s + 5, s + 6, s + 7);
327    s += p;
328  }
329}
330
331void vp9_lpf_vertical_16_c(uint8_t *s, int p, const uint8_t *blimit,
332                           const uint8_t *limit, const uint8_t *thresh) {
333  mb_lpf_vertical_edge_w(s, p, blimit, limit, thresh, 8);
334}
335
336void vp9_lpf_vertical_16_dual_c(uint8_t *s, int p, const uint8_t *blimit,
337                                const uint8_t *limit, const uint8_t *thresh) {
338  mb_lpf_vertical_edge_w(s, p, blimit, limit, thresh, 16);
339}
340