vp9_bitstream.c revision b08e2e23eec181e9951df33cd704ac294c5407b6
1/*
2 *  Copyright (c) 2010 The WebM project authors. All Rights Reserved.
3 *
4 *  Use of this source code is governed by a BSD-style license
5 *  that can be found in the LICENSE file in the root of the source
6 *  tree. An additional intellectual property rights grant can be found
7 *  in the file PATENTS.  All contributing project authors may
8 *  be found in the AUTHORS file in the root of the source tree.
9 */
10
11#include <assert.h>
12#include <stdio.h>
13#include <limits.h>
14
15#include "vpx/vpx_encoder.h"
16#include "vpx_mem/vpx_mem.h"
17#include "vpx_ports/mem_ops.h"
18
19#include "vp9/common/vp9_entropy.h"
20#include "vp9/common/vp9_entropymode.h"
21#include "vp9/common/vp9_entropymv.h"
22#include "vp9/common/vp9_mvref_common.h"
23#include "vp9/common/vp9_pragmas.h"
24#include "vp9/common/vp9_pred_common.h"
25#include "vp9/common/vp9_seg_common.h"
26#include "vp9/common/vp9_systemdependent.h"
27#include "vp9/common/vp9_tile_common.h"
28
29#include "vp9/encoder/vp9_cost.h"
30#include "vp9/encoder/vp9_bitstream.h"
31#include "vp9/encoder/vp9_encodemv.h"
32#include "vp9/encoder/vp9_mcomp.h"
33#include "vp9/encoder/vp9_segmentation.h"
34#include "vp9/encoder/vp9_subexp.h"
35#include "vp9/encoder/vp9_tokenize.h"
36#include "vp9/encoder/vp9_write_bit_buffer.h"
37
38static struct vp9_token intra_mode_encodings[INTRA_MODES];
39static struct vp9_token switchable_interp_encodings[SWITCHABLE_FILTERS];
40static struct vp9_token partition_encodings[PARTITION_TYPES];
41static struct vp9_token inter_mode_encodings[INTER_MODES];
42
43void vp9_entropy_mode_init() {
44  vp9_tokens_from_tree(intra_mode_encodings, vp9_intra_mode_tree);
45  vp9_tokens_from_tree(switchable_interp_encodings, vp9_switchable_interp_tree);
46  vp9_tokens_from_tree(partition_encodings, vp9_partition_tree);
47  vp9_tokens_from_tree(inter_mode_encodings, vp9_inter_mode_tree);
48}
49
50static void write_intra_mode(vp9_writer *w, MB_PREDICTION_MODE mode,
51                             const vp9_prob *probs) {
52  vp9_write_token(w, vp9_intra_mode_tree, probs, &intra_mode_encodings[mode]);
53}
54
55static void write_inter_mode(vp9_writer *w, MB_PREDICTION_MODE mode,
56                             const vp9_prob *probs) {
57  assert(is_inter_mode(mode));
58  vp9_write_token(w, vp9_inter_mode_tree, probs,
59                  &inter_mode_encodings[INTER_OFFSET(mode)]);
60}
61
62static void encode_unsigned_max(struct vp9_write_bit_buffer *wb,
63                                int data, int max) {
64  vp9_wb_write_literal(wb, data, get_unsigned_bits(max));
65}
66
67static void prob_diff_update(const vp9_tree_index *tree,
68                             vp9_prob probs[/*n - 1*/],
69                             const unsigned int counts[/*n - 1*/],
70                             int n, vp9_writer *w) {
71  int i;
72  unsigned int branch_ct[32][2];
73
74  // Assuming max number of probabilities <= 32
75  assert(n <= 32);
76
77  vp9_tree_probs_from_distribution(tree, branch_ct, counts);
78  for (i = 0; i < n - 1; ++i)
79    vp9_cond_prob_diff_update(w, &probs[i], branch_ct[i]);
80}
81
82static void write_selected_tx_size(const VP9_COMP *cpi,
83                                   TX_SIZE tx_size, BLOCK_SIZE bsize,
84                                   vp9_writer *w) {
85  const TX_SIZE max_tx_size = max_txsize_lookup[bsize];
86  const MACROBLOCKD *const xd = &cpi->mb.e_mbd;
87  const vp9_prob *const tx_probs = get_tx_probs2(max_tx_size, xd,
88                                                 &cpi->common.fc.tx_probs);
89  vp9_write(w, tx_size != TX_4X4, tx_probs[0]);
90  if (tx_size != TX_4X4 && max_tx_size >= TX_16X16) {
91    vp9_write(w, tx_size != TX_8X8, tx_probs[1]);
92    if (tx_size != TX_8X8 && max_tx_size >= TX_32X32)
93      vp9_write(w, tx_size != TX_16X16, tx_probs[2]);
94  }
95}
96
97static int write_skip(const VP9_COMP *cpi, int segment_id, const MODE_INFO *mi,
98                      vp9_writer *w) {
99  const MACROBLOCKD *const xd = &cpi->mb.e_mbd;
100  if (vp9_segfeature_active(&cpi->common.seg, segment_id, SEG_LVL_SKIP)) {
101    return 1;
102  } else {
103    const int skip = mi->mbmi.skip;
104    vp9_write(w, skip, vp9_get_skip_prob(&cpi->common, xd));
105    return skip;
106  }
107}
108
109static void update_skip_probs(VP9_COMMON *cm, vp9_writer *w) {
110  int k;
111
112  for (k = 0; k < SKIP_CONTEXTS; ++k)
113    vp9_cond_prob_diff_update(w, &cm->fc.skip_probs[k], cm->counts.skip[k]);
114}
115
116static void update_switchable_interp_probs(VP9_COMMON *cm, vp9_writer *w) {
117  int j;
118  for (j = 0; j < SWITCHABLE_FILTER_CONTEXTS; ++j)
119    prob_diff_update(vp9_switchable_interp_tree,
120                     cm->fc.switchable_interp_prob[j],
121                     cm->counts.switchable_interp[j], SWITCHABLE_FILTERS, w);
122}
123
124static void pack_mb_tokens(vp9_writer *w,
125                           TOKENEXTRA **tp, const TOKENEXTRA *stop) {
126  TOKENEXTRA *p = *tp;
127
128  while (p < stop && p->token != EOSB_TOKEN) {
129    const int t = p->token;
130    const struct vp9_token *const a = &vp9_coef_encodings[t];
131    const vp9_extra_bit *const b = &vp9_extra_bits[t];
132    int i = 0;
133    int v = a->value;
134    int n = a->len;
135
136    /* skip one or two nodes */
137    if (p->skip_eob_node) {
138      n -= p->skip_eob_node;
139      i = 2 * p->skip_eob_node;
140    }
141
142    // TODO(jbb): expanding this can lead to big gains.  It allows
143    // much better branch prediction and would enable us to avoid numerous
144    // lookups and compares.
145
146    // If we have a token that's in the constrained set, the coefficient tree
147    // is split into two treed writes.  The first treed write takes care of the
148    // unconstrained nodes.  The second treed write takes care of the
149    // constrained nodes.
150    if (t >= TWO_TOKEN && t < EOB_TOKEN) {
151      int len = UNCONSTRAINED_NODES - p->skip_eob_node;
152      int bits = v >> (n - len);
153      vp9_write_tree(w, vp9_coef_tree, p->context_tree, bits, len, i);
154      vp9_write_tree(w, vp9_coef_con_tree,
155                     vp9_pareto8_full[p->context_tree[PIVOT_NODE] - 1],
156                     v, n - len, 0);
157    } else {
158      vp9_write_tree(w, vp9_coef_tree, p->context_tree, v, n, i);
159    }
160
161    if (b->base_val) {
162      const int e = p->extra, l = b->len;
163
164      if (l) {
165        const unsigned char *pb = b->prob;
166        int v = e >> 1;
167        int n = l;              /* number of bits in v, assumed nonzero */
168        int i = 0;
169
170        do {
171          const int bb = (v >> --n) & 1;
172          vp9_write(w, bb, pb[i >> 1]);
173          i = b->tree[i + bb];
174        } while (n);
175      }
176
177      vp9_write_bit(w, e & 1);
178    }
179    ++p;
180  }
181
182  *tp = p + (p->token == EOSB_TOKEN);
183}
184
185static void write_segment_id(vp9_writer *w, const struct segmentation *seg,
186                             int segment_id) {
187  if (seg->enabled && seg->update_map)
188    vp9_write_tree(w, vp9_segment_tree, seg->tree_probs, segment_id, 3, 0);
189}
190
191// This function encodes the reference frame
192static void write_ref_frames(const VP9_COMP *cpi, vp9_writer *w) {
193  const VP9_COMMON *const cm = &cpi->common;
194  const MACROBLOCKD *const xd = &cpi->mb.e_mbd;
195  const MB_MODE_INFO *const mbmi = &xd->mi_8x8[0]->mbmi;
196  const int is_compound = has_second_ref(mbmi);
197  const int segment_id = mbmi->segment_id;
198
199  // If segment level coding of this signal is disabled...
200  // or the segment allows multiple reference frame options
201  if (vp9_segfeature_active(&cm->seg, segment_id, SEG_LVL_REF_FRAME)) {
202    assert(!is_compound);
203    assert(mbmi->ref_frame[0] ==
204               vp9_get_segdata(&cm->seg, segment_id, SEG_LVL_REF_FRAME));
205  } else {
206    // does the feature use compound prediction or not
207    // (if not specified at the frame/segment level)
208    if (cm->reference_mode == REFERENCE_MODE_SELECT) {
209      vp9_write(w, is_compound, vp9_get_reference_mode_prob(cm, xd));
210    } else {
211      assert(!is_compound == (cm->reference_mode == SINGLE_REFERENCE));
212    }
213
214    if (is_compound) {
215      vp9_write(w, mbmi->ref_frame[0] == GOLDEN_FRAME,
216                vp9_get_pred_prob_comp_ref_p(cm, xd));
217    } else {
218      const int bit0 = mbmi->ref_frame[0] != LAST_FRAME;
219      vp9_write(w, bit0, vp9_get_pred_prob_single_ref_p1(cm, xd));
220      if (bit0) {
221        const int bit1 = mbmi->ref_frame[0] != GOLDEN_FRAME;
222        vp9_write(w, bit1, vp9_get_pred_prob_single_ref_p2(cm, xd));
223      }
224    }
225  }
226}
227
228static void pack_inter_mode_mvs(VP9_COMP *cpi, const MODE_INFO *mi,
229                                vp9_writer *w) {
230  VP9_COMMON *const cm = &cpi->common;
231  const nmv_context *nmvc = &cm->fc.nmvc;
232  const MACROBLOCK *const x = &cpi->mb;
233  const MACROBLOCKD *const xd = &x->e_mbd;
234  const struct segmentation *const seg = &cm->seg;
235  const MB_MODE_INFO *const mbmi = &mi->mbmi;
236  const MB_PREDICTION_MODE mode = mbmi->mode;
237  const int segment_id = mbmi->segment_id;
238  const BLOCK_SIZE bsize = mbmi->sb_type;
239  const int allow_hp = cm->allow_high_precision_mv;
240  const int is_inter = is_inter_block(mbmi);
241  const int is_compound = has_second_ref(mbmi);
242  int skip, ref;
243
244  if (seg->update_map) {
245    if (seg->temporal_update) {
246      const int pred_flag = mbmi->seg_id_predicted;
247      vp9_prob pred_prob = vp9_get_pred_prob_seg_id(seg, xd);
248      vp9_write(w, pred_flag, pred_prob);
249      if (!pred_flag)
250        write_segment_id(w, seg, segment_id);
251    } else {
252      write_segment_id(w, seg, segment_id);
253    }
254  }
255
256  skip = write_skip(cpi, segment_id, mi, w);
257
258  if (!vp9_segfeature_active(seg, segment_id, SEG_LVL_REF_FRAME))
259    vp9_write(w, is_inter, vp9_get_intra_inter_prob(cm, xd));
260
261  if (bsize >= BLOCK_8X8 && cm->tx_mode == TX_MODE_SELECT &&
262      !(is_inter &&
263        (skip || vp9_segfeature_active(seg, segment_id, SEG_LVL_SKIP)))) {
264    write_selected_tx_size(cpi, mbmi->tx_size, bsize, w);
265  }
266
267  if (!is_inter) {
268    if (bsize >= BLOCK_8X8) {
269      write_intra_mode(w, mode, cm->fc.y_mode_prob[size_group_lookup[bsize]]);
270    } else {
271      int idx, idy;
272      const int num_4x4_w = num_4x4_blocks_wide_lookup[bsize];
273      const int num_4x4_h = num_4x4_blocks_high_lookup[bsize];
274      for (idy = 0; idy < 2; idy += num_4x4_h) {
275        for (idx = 0; idx < 2; idx += num_4x4_w) {
276          const MB_PREDICTION_MODE b_mode = mi->bmi[idy * 2 + idx].as_mode;
277          write_intra_mode(w, b_mode, cm->fc.y_mode_prob[0]);
278        }
279      }
280    }
281    write_intra_mode(w, mbmi->uv_mode, cm->fc.uv_mode_prob[mode]);
282  } else {
283    const int mode_ctx = mbmi->mode_context[mbmi->ref_frame[0]];
284    const vp9_prob *const inter_probs = cm->fc.inter_mode_probs[mode_ctx];
285    write_ref_frames(cpi, w);
286
287    // If segment skip is not enabled code the mode.
288    if (!vp9_segfeature_active(seg, segment_id, SEG_LVL_SKIP)) {
289      if (bsize >= BLOCK_8X8) {
290        write_inter_mode(w, mode, inter_probs);
291        ++cm->counts.inter_mode[mode_ctx][INTER_OFFSET(mode)];
292      }
293    }
294
295    if (cm->interp_filter == SWITCHABLE) {
296      const int ctx = vp9_get_pred_context_switchable_interp(xd);
297      vp9_write_token(w, vp9_switchable_interp_tree,
298                      cm->fc.switchable_interp_prob[ctx],
299                      &switchable_interp_encodings[mbmi->interp_filter]);
300    } else {
301      assert(mbmi->interp_filter == cm->interp_filter);
302    }
303
304    if (bsize < BLOCK_8X8) {
305      const int num_4x4_w = num_4x4_blocks_wide_lookup[bsize];
306      const int num_4x4_h = num_4x4_blocks_high_lookup[bsize];
307      int idx, idy;
308      for (idy = 0; idy < 2; idy += num_4x4_h) {
309        for (idx = 0; idx < 2; idx += num_4x4_w) {
310          const int j = idy * 2 + idx;
311          const MB_PREDICTION_MODE b_mode = mi->bmi[j].as_mode;
312          write_inter_mode(w, b_mode, inter_probs);
313          ++cm->counts.inter_mode[mode_ctx][INTER_OFFSET(b_mode)];
314          if (b_mode == NEWMV) {
315            for (ref = 0; ref < 1 + is_compound; ++ref)
316              vp9_encode_mv(cpi, w, &mi->bmi[j].as_mv[ref].as_mv,
317                            &mbmi->ref_mvs[mbmi->ref_frame[ref]][0].as_mv,
318                            nmvc, allow_hp);
319          }
320        }
321      }
322    } else {
323      if (mode == NEWMV) {
324        for (ref = 0; ref < 1 + is_compound; ++ref)
325          vp9_encode_mv(cpi, w, &mbmi->mv[ref].as_mv,
326                        &mbmi->ref_mvs[mbmi->ref_frame[ref]][0].as_mv, nmvc,
327                        allow_hp);
328      }
329    }
330  }
331}
332
333static void write_mb_modes_kf(const VP9_COMP *cpi, MODE_INFO **mi_8x8,
334                              vp9_writer *w) {
335  const VP9_COMMON *const cm = &cpi->common;
336  const MACROBLOCKD *const xd = &cpi->mb.e_mbd;
337  const struct segmentation *const seg = &cm->seg;
338  const MODE_INFO *const mi = mi_8x8[0];
339  const MODE_INFO *const above_mi = mi_8x8[-xd->mode_info_stride];
340  const MODE_INFO *const left_mi = xd->left_available ? mi_8x8[-1] : NULL;
341  const MB_MODE_INFO *const mbmi = &mi->mbmi;
342  const BLOCK_SIZE bsize = mbmi->sb_type;
343
344  if (seg->update_map)
345    write_segment_id(w, seg, mbmi->segment_id);
346
347  write_skip(cpi, mbmi->segment_id, mi, w);
348
349  if (bsize >= BLOCK_8X8 && cm->tx_mode == TX_MODE_SELECT)
350    write_selected_tx_size(cpi, mbmi->tx_size, bsize, w);
351
352  if (bsize >= BLOCK_8X8) {
353    write_intra_mode(w, mbmi->mode, get_y_mode_probs(mi, above_mi, left_mi, 0));
354  } else {
355    const int num_4x4_w = num_4x4_blocks_wide_lookup[bsize];
356    const int num_4x4_h = num_4x4_blocks_high_lookup[bsize];
357    int idx, idy;
358
359    for (idy = 0; idy < 2; idy += num_4x4_h) {
360      for (idx = 0; idx < 2; idx += num_4x4_w) {
361        const int block = idy * 2 + idx;
362        write_intra_mode(w, mi->bmi[block].as_mode,
363                         get_y_mode_probs(mi, above_mi, left_mi, block));
364      }
365    }
366  }
367
368  write_intra_mode(w, mbmi->uv_mode, vp9_kf_uv_mode_prob[mbmi->mode]);
369}
370
371static void write_modes_b(VP9_COMP *cpi, const TileInfo *const tile,
372                          vp9_writer *w, TOKENEXTRA **tok, TOKENEXTRA *tok_end,
373                          int mi_row, int mi_col) {
374  VP9_COMMON *const cm = &cpi->common;
375  MACROBLOCKD *const xd = &cpi->mb.e_mbd;
376  MODE_INFO *m;
377
378  xd->mi_8x8 = cm->mi_grid_visible + (mi_row * cm->mode_info_stride + mi_col);
379  m = xd->mi_8x8[0];
380
381  set_mi_row_col(xd, tile,
382                 mi_row, num_8x8_blocks_high_lookup[m->mbmi.sb_type],
383                 mi_col, num_8x8_blocks_wide_lookup[m->mbmi.sb_type],
384                 cm->mi_rows, cm->mi_cols);
385  if (frame_is_intra_only(cm)) {
386    write_mb_modes_kf(cpi, xd->mi_8x8, w);
387  } else {
388    pack_inter_mode_mvs(cpi, m, w);
389  }
390
391  assert(*tok < tok_end);
392  pack_mb_tokens(w, tok, tok_end);
393}
394
395static void write_partition(VP9_COMP *cpi, int hbs, int mi_row, int mi_col,
396                            PARTITION_TYPE p, BLOCK_SIZE bsize, vp9_writer *w) {
397  VP9_COMMON *const cm = &cpi->common;
398  const int ctx = partition_plane_context(cpi->above_seg_context,
399                                          cpi->left_seg_context,
400                                          mi_row, mi_col, bsize);
401  const vp9_prob *const probs = get_partition_probs(cm, ctx);
402  const int has_rows = (mi_row + hbs) < cm->mi_rows;
403  const int has_cols = (mi_col + hbs) < cm->mi_cols;
404
405  if (has_rows && has_cols) {
406    vp9_write_token(w, vp9_partition_tree, probs, &partition_encodings[p]);
407  } else if (!has_rows && has_cols) {
408    assert(p == PARTITION_SPLIT || p == PARTITION_HORZ);
409    vp9_write(w, p == PARTITION_SPLIT, probs[1]);
410  } else if (has_rows && !has_cols) {
411    assert(p == PARTITION_SPLIT || p == PARTITION_VERT);
412    vp9_write(w, p == PARTITION_SPLIT, probs[2]);
413  } else {
414    assert(p == PARTITION_SPLIT);
415  }
416}
417
418static void write_modes_sb(VP9_COMP *cpi, const TileInfo *const tile,
419                           vp9_writer *w, TOKENEXTRA **tok, TOKENEXTRA *tok_end,
420                           int mi_row, int mi_col, BLOCK_SIZE bsize) {
421  VP9_COMMON *const cm = &cpi->common;
422  const int bsl = b_width_log2(bsize);
423  const int bs = (1 << bsl) / 4;
424  PARTITION_TYPE partition;
425  BLOCK_SIZE subsize;
426  MODE_INFO *m = cm->mi_grid_visible[mi_row * cm->mode_info_stride + mi_col];
427
428  if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols)
429    return;
430
431  partition = partition_lookup[bsl][m->mbmi.sb_type];
432  write_partition(cpi, bs, mi_row, mi_col, partition, bsize, w);
433  subsize = get_subsize(bsize, partition);
434  if (subsize < BLOCK_8X8) {
435    write_modes_b(cpi, tile, w, tok, tok_end, mi_row, mi_col);
436  } else {
437    switch (partition) {
438      case PARTITION_NONE:
439        write_modes_b(cpi, tile, w, tok, tok_end, mi_row, mi_col);
440        break;
441      case PARTITION_HORZ:
442        write_modes_b(cpi, tile, w, tok, tok_end, mi_row, mi_col);
443        if (mi_row + bs < cm->mi_rows)
444          write_modes_b(cpi, tile, w, tok, tok_end, mi_row + bs, mi_col);
445        break;
446      case PARTITION_VERT:
447        write_modes_b(cpi, tile, w, tok, tok_end, mi_row, mi_col);
448        if (mi_col + bs < cm->mi_cols)
449          write_modes_b(cpi, tile, w, tok, tok_end, mi_row, mi_col + bs);
450        break;
451      case PARTITION_SPLIT:
452        write_modes_sb(cpi, tile, w, tok, tok_end, mi_row, mi_col, subsize);
453        write_modes_sb(cpi, tile, w, tok, tok_end, mi_row, mi_col + bs,
454                       subsize);
455        write_modes_sb(cpi, tile, w, tok, tok_end, mi_row + bs, mi_col,
456                       subsize);
457        write_modes_sb(cpi, tile, w, tok, tok_end, mi_row + bs, mi_col + bs,
458                       subsize);
459        break;
460      default:
461        assert(0);
462    }
463  }
464
465  // update partition context
466  if (bsize >= BLOCK_8X8 &&
467      (bsize == BLOCK_8X8 || partition != PARTITION_SPLIT))
468    update_partition_context(cpi->above_seg_context, cpi->left_seg_context,
469                             mi_row, mi_col, subsize, bsize);
470}
471
472static void write_modes(VP9_COMP *cpi, const TileInfo *const tile,
473                        vp9_writer *w, TOKENEXTRA **tok, TOKENEXTRA *tok_end) {
474  int mi_row, mi_col;
475
476  for (mi_row = tile->mi_row_start; mi_row < tile->mi_row_end;
477       mi_row += MI_BLOCK_SIZE) {
478      vp9_zero(cpi->left_seg_context);
479    for (mi_col = tile->mi_col_start; mi_col < tile->mi_col_end;
480         mi_col += MI_BLOCK_SIZE)
481      write_modes_sb(cpi, tile, w, tok, tok_end, mi_row, mi_col, BLOCK_64X64);
482  }
483}
484
485static void build_tree_distribution(VP9_COMP *cpi, TX_SIZE tx_size) {
486  vp9_coeff_probs_model *coef_probs = cpi->frame_coef_probs[tx_size];
487  vp9_coeff_count *coef_counts = cpi->coef_counts[tx_size];
488  unsigned int (*eob_branch_ct)[REF_TYPES][COEF_BANDS][COEFF_CONTEXTS] =
489      cpi->common.counts.eob_branch[tx_size];
490  vp9_coeff_stats *coef_branch_ct = cpi->frame_branch_ct[tx_size];
491  int i, j, k, l, m;
492
493  for (i = 0; i < PLANE_TYPES; ++i) {
494    for (j = 0; j < REF_TYPES; ++j) {
495      for (k = 0; k < COEF_BANDS; ++k) {
496        for (l = 0; l < BAND_COEFF_CONTEXTS(k); ++l) {
497          vp9_tree_probs_from_distribution(vp9_coef_tree,
498                                           coef_branch_ct[i][j][k][l],
499                                           coef_counts[i][j][k][l]);
500          coef_branch_ct[i][j][k][l][0][1] = eob_branch_ct[i][j][k][l] -
501                                             coef_branch_ct[i][j][k][l][0][0];
502          for (m = 0; m < UNCONSTRAINED_NODES; ++m)
503            coef_probs[i][j][k][l][m] = get_binary_prob(
504                                            coef_branch_ct[i][j][k][l][m][0],
505                                            coef_branch_ct[i][j][k][l][m][1]);
506        }
507      }
508    }
509  }
510}
511
512static void update_coef_probs_common(vp9_writer* const bc, VP9_COMP *cpi,
513                                     TX_SIZE tx_size) {
514  vp9_coeff_probs_model *new_frame_coef_probs = cpi->frame_coef_probs[tx_size];
515  vp9_coeff_probs_model *old_frame_coef_probs =
516      cpi->common.fc.coef_probs[tx_size];
517  vp9_coeff_stats *frame_branch_ct = cpi->frame_branch_ct[tx_size];
518  const vp9_prob upd = DIFF_UPDATE_PROB;
519  const int entropy_nodes_update = UNCONSTRAINED_NODES;
520  int i, j, k, l, t;
521  switch (cpi->sf.use_fast_coef_updates) {
522    case 0: {
523      /* dry run to see if there is any udpate at all needed */
524      int savings = 0;
525      int update[2] = {0, 0};
526      for (i = 0; i < PLANE_TYPES; ++i) {
527        for (j = 0; j < REF_TYPES; ++j) {
528          for (k = 0; k < COEF_BANDS; ++k) {
529            for (l = 0; l < BAND_COEFF_CONTEXTS(k); ++l) {
530              for (t = 0; t < entropy_nodes_update; ++t) {
531                vp9_prob newp = new_frame_coef_probs[i][j][k][l][t];
532                const vp9_prob oldp = old_frame_coef_probs[i][j][k][l][t];
533                int s;
534                int u = 0;
535                if (t == PIVOT_NODE)
536                  s = vp9_prob_diff_update_savings_search_model(
537                      frame_branch_ct[i][j][k][l][0],
538                      old_frame_coef_probs[i][j][k][l], &newp, upd);
539                else
540                  s = vp9_prob_diff_update_savings_search(
541                      frame_branch_ct[i][j][k][l][t], oldp, &newp, upd);
542                if (s > 0 && newp != oldp)
543                  u = 1;
544                if (u)
545                  savings += s - (int)(vp9_cost_zero(upd));
546                else
547                  savings -= (int)(vp9_cost_zero(upd));
548                update[u]++;
549              }
550            }
551          }
552        }
553      }
554
555      // printf("Update %d %d, savings %d\n", update[0], update[1], savings);
556      /* Is coef updated at all */
557      if (update[1] == 0 || savings < 0) {
558        vp9_write_bit(bc, 0);
559        return;
560      }
561      vp9_write_bit(bc, 1);
562      for (i = 0; i < PLANE_TYPES; ++i) {
563        for (j = 0; j < REF_TYPES; ++j) {
564          for (k = 0; k < COEF_BANDS; ++k) {
565            for (l = 0; l < BAND_COEFF_CONTEXTS(k); ++l) {
566              // calc probs and branch cts for this frame only
567              for (t = 0; t < entropy_nodes_update; ++t) {
568                vp9_prob newp = new_frame_coef_probs[i][j][k][l][t];
569                vp9_prob *oldp = old_frame_coef_probs[i][j][k][l] + t;
570                const vp9_prob upd = DIFF_UPDATE_PROB;
571                int s;
572                int u = 0;
573                if (t == PIVOT_NODE)
574                  s = vp9_prob_diff_update_savings_search_model(
575                      frame_branch_ct[i][j][k][l][0],
576                      old_frame_coef_probs[i][j][k][l], &newp, upd);
577                else
578                  s = vp9_prob_diff_update_savings_search(
579                      frame_branch_ct[i][j][k][l][t],
580                      *oldp, &newp, upd);
581                if (s > 0 && newp != *oldp)
582                  u = 1;
583                vp9_write(bc, u, upd);
584                if (u) {
585                  /* send/use new probability */
586                  vp9_write_prob_diff_update(bc, newp, *oldp);
587                  *oldp = newp;
588                }
589              }
590            }
591          }
592        }
593      }
594      return;
595    }
596
597    case 1:
598    case 2: {
599      const int prev_coef_contexts_to_update =
600          cpi->sf.use_fast_coef_updates == 2 ? COEFF_CONTEXTS >> 1
601                                             : COEFF_CONTEXTS;
602      const int coef_band_to_update =
603          cpi->sf.use_fast_coef_updates == 2 ? COEF_BANDS >> 1
604                                             : COEF_BANDS;
605      int updates = 0;
606      int noupdates_before_first = 0;
607      for (i = 0; i < PLANE_TYPES; ++i) {
608        for (j = 0; j < REF_TYPES; ++j) {
609          for (k = 0; k < COEF_BANDS; ++k) {
610            for (l = 0; l < BAND_COEFF_CONTEXTS(k); ++l) {
611              // calc probs and branch cts for this frame only
612              for (t = 0; t < entropy_nodes_update; ++t) {
613                vp9_prob newp = new_frame_coef_probs[i][j][k][l][t];
614                vp9_prob *oldp = old_frame_coef_probs[i][j][k][l] + t;
615                int s;
616                int u = 0;
617                if (l >= prev_coef_contexts_to_update ||
618                    k >= coef_band_to_update) {
619                  u = 0;
620                } else {
621                  if (t == PIVOT_NODE)
622                    s = vp9_prob_diff_update_savings_search_model(
623                        frame_branch_ct[i][j][k][l][0],
624                        old_frame_coef_probs[i][j][k][l], &newp, upd);
625                  else
626                    s = vp9_prob_diff_update_savings_search(
627                        frame_branch_ct[i][j][k][l][t],
628                        *oldp, &newp, upd);
629                  if (s > 0 && newp != *oldp)
630                    u = 1;
631                }
632                updates += u;
633                if (u == 0 && updates == 0) {
634                  noupdates_before_first++;
635                  continue;
636                }
637                if (u == 1 && updates == 1) {
638                  int v;
639                  // first update
640                  vp9_write_bit(bc, 1);
641                  for (v = 0; v < noupdates_before_first; ++v)
642                    vp9_write(bc, 0, upd);
643                }
644                vp9_write(bc, u, upd);
645                if (u) {
646                  /* send/use new probability */
647                  vp9_write_prob_diff_update(bc, newp, *oldp);
648                  *oldp = newp;
649                }
650              }
651            }
652          }
653        }
654      }
655      if (updates == 0) {
656        vp9_write_bit(bc, 0);  // no updates
657      }
658      return;
659    }
660
661    default:
662      assert(0);
663  }
664}
665
666static void update_coef_probs(VP9_COMP *cpi, vp9_writer* w) {
667  const TX_MODE tx_mode = cpi->common.tx_mode;
668  const TX_SIZE max_tx_size = tx_mode_to_biggest_tx_size[tx_mode];
669  TX_SIZE tx_size;
670  vp9_clear_system_state();
671
672  for (tx_size = TX_4X4; tx_size <= TX_32X32; ++tx_size)
673    build_tree_distribution(cpi, tx_size);
674
675  for (tx_size = TX_4X4; tx_size <= max_tx_size; ++tx_size)
676    update_coef_probs_common(w, cpi, tx_size);
677}
678
679static void encode_loopfilter(struct loopfilter *lf,
680                              struct vp9_write_bit_buffer *wb) {
681  int i;
682
683  // Encode the loop filter level and type
684  vp9_wb_write_literal(wb, lf->filter_level, 6);
685  vp9_wb_write_literal(wb, lf->sharpness_level, 3);
686
687  // Write out loop filter deltas applied at the MB level based on mode or
688  // ref frame (if they are enabled).
689  vp9_wb_write_bit(wb, lf->mode_ref_delta_enabled);
690
691  if (lf->mode_ref_delta_enabled) {
692    vp9_wb_write_bit(wb, lf->mode_ref_delta_update);
693    if (lf->mode_ref_delta_update) {
694      for (i = 0; i < MAX_REF_LF_DELTAS; i++) {
695        const int delta = lf->ref_deltas[i];
696        const int changed = delta != lf->last_ref_deltas[i];
697        vp9_wb_write_bit(wb, changed);
698        if (changed) {
699          lf->last_ref_deltas[i] = delta;
700          vp9_wb_write_literal(wb, abs(delta) & 0x3F, 6);
701          vp9_wb_write_bit(wb, delta < 0);
702        }
703      }
704
705      for (i = 0; i < MAX_MODE_LF_DELTAS; i++) {
706        const int delta = lf->mode_deltas[i];
707        const int changed = delta != lf->last_mode_deltas[i];
708        vp9_wb_write_bit(wb, changed);
709        if (changed) {
710          lf->last_mode_deltas[i] = delta;
711          vp9_wb_write_literal(wb, abs(delta) & 0x3F, 6);
712          vp9_wb_write_bit(wb, delta < 0);
713        }
714      }
715    }
716  }
717}
718
719static void write_delta_q(struct vp9_write_bit_buffer *wb, int delta_q) {
720  if (delta_q != 0) {
721    vp9_wb_write_bit(wb, 1);
722    vp9_wb_write_literal(wb, abs(delta_q), 4);
723    vp9_wb_write_bit(wb, delta_q < 0);
724  } else {
725    vp9_wb_write_bit(wb, 0);
726  }
727}
728
729static void encode_quantization(VP9_COMMON *cm,
730                                struct vp9_write_bit_buffer *wb) {
731  vp9_wb_write_literal(wb, cm->base_qindex, QINDEX_BITS);
732  write_delta_q(wb, cm->y_dc_delta_q);
733  write_delta_q(wb, cm->uv_dc_delta_q);
734  write_delta_q(wb, cm->uv_ac_delta_q);
735}
736
737
738static void encode_segmentation(VP9_COMP *cpi,
739                                struct vp9_write_bit_buffer *wb) {
740  int i, j;
741
742  struct segmentation *seg = &cpi->common.seg;
743
744  vp9_wb_write_bit(wb, seg->enabled);
745  if (!seg->enabled)
746    return;
747
748  // Segmentation map
749  vp9_wb_write_bit(wb, seg->update_map);
750  if (seg->update_map) {
751    // Select the coding strategy (temporal or spatial)
752    vp9_choose_segmap_coding_method(cpi);
753    // Write out probabilities used to decode unpredicted  macro-block segments
754    for (i = 0; i < SEG_TREE_PROBS; i++) {
755      const int prob = seg->tree_probs[i];
756      const int update = prob != MAX_PROB;
757      vp9_wb_write_bit(wb, update);
758      if (update)
759        vp9_wb_write_literal(wb, prob, 8);
760    }
761
762    // Write out the chosen coding method.
763    vp9_wb_write_bit(wb, seg->temporal_update);
764    if (seg->temporal_update) {
765      for (i = 0; i < PREDICTION_PROBS; i++) {
766        const int prob = seg->pred_probs[i];
767        const int update = prob != MAX_PROB;
768        vp9_wb_write_bit(wb, update);
769        if (update)
770          vp9_wb_write_literal(wb, prob, 8);
771      }
772    }
773  }
774
775  // Segmentation data
776  vp9_wb_write_bit(wb, seg->update_data);
777  if (seg->update_data) {
778    vp9_wb_write_bit(wb, seg->abs_delta);
779
780    for (i = 0; i < MAX_SEGMENTS; i++) {
781      for (j = 0; j < SEG_LVL_MAX; j++) {
782        const int active = vp9_segfeature_active(seg, i, j);
783        vp9_wb_write_bit(wb, active);
784        if (active) {
785          const int data = vp9_get_segdata(seg, i, j);
786          const int data_max = vp9_seg_feature_data_max(j);
787
788          if (vp9_is_segfeature_signed(j)) {
789            encode_unsigned_max(wb, abs(data), data_max);
790            vp9_wb_write_bit(wb, data < 0);
791          } else {
792            encode_unsigned_max(wb, data, data_max);
793          }
794        }
795      }
796    }
797  }
798}
799
800
801static void encode_txfm_probs(VP9_COMMON *cm, vp9_writer *w) {
802  // Mode
803  vp9_write_literal(w, MIN(cm->tx_mode, ALLOW_32X32), 2);
804  if (cm->tx_mode >= ALLOW_32X32)
805    vp9_write_bit(w, cm->tx_mode == TX_MODE_SELECT);
806
807  // Probabilities
808  if (cm->tx_mode == TX_MODE_SELECT) {
809    int i, j;
810    unsigned int ct_8x8p[TX_SIZES - 3][2];
811    unsigned int ct_16x16p[TX_SIZES - 2][2];
812    unsigned int ct_32x32p[TX_SIZES - 1][2];
813
814
815    for (i = 0; i < TX_SIZE_CONTEXTS; i++) {
816      tx_counts_to_branch_counts_8x8(cm->counts.tx.p8x8[i], ct_8x8p);
817      for (j = 0; j < TX_SIZES - 3; j++)
818        vp9_cond_prob_diff_update(w, &cm->fc.tx_probs.p8x8[i][j], ct_8x8p[j]);
819    }
820
821    for (i = 0; i < TX_SIZE_CONTEXTS; i++) {
822      tx_counts_to_branch_counts_16x16(cm->counts.tx.p16x16[i], ct_16x16p);
823      for (j = 0; j < TX_SIZES - 2; j++)
824        vp9_cond_prob_diff_update(w, &cm->fc.tx_probs.p16x16[i][j],
825                                  ct_16x16p[j]);
826    }
827
828    for (i = 0; i < TX_SIZE_CONTEXTS; i++) {
829      tx_counts_to_branch_counts_32x32(cm->counts.tx.p32x32[i], ct_32x32p);
830      for (j = 0; j < TX_SIZES - 1; j++)
831        vp9_cond_prob_diff_update(w, &cm->fc.tx_probs.p32x32[i][j],
832                                  ct_32x32p[j]);
833    }
834  }
835}
836
837static void write_interp_filter(INTERP_FILTER filter,
838                                struct vp9_write_bit_buffer *wb) {
839  const int filter_to_literal[] = { 1, 0, 2, 3 };
840
841  vp9_wb_write_bit(wb, filter == SWITCHABLE);
842  if (filter != SWITCHABLE)
843    vp9_wb_write_literal(wb, filter_to_literal[filter], 2);
844}
845
846static void fix_interp_filter(VP9_COMMON *cm) {
847  if (cm->interp_filter == SWITCHABLE) {
848    // Check to see if only one of the filters is actually used
849    int count[SWITCHABLE_FILTERS];
850    int i, j, c = 0;
851    for (i = 0; i < SWITCHABLE_FILTERS; ++i) {
852      count[i] = 0;
853      for (j = 0; j < SWITCHABLE_FILTER_CONTEXTS; ++j)
854        count[i] += cm->counts.switchable_interp[j][i];
855      c += (count[i] > 0);
856    }
857    if (c == 1) {
858      // Only one filter is used. So set the filter at frame level
859      for (i = 0; i < SWITCHABLE_FILTERS; ++i) {
860        if (count[i]) {
861          cm->interp_filter = i;
862          break;
863        }
864      }
865    }
866  }
867}
868
869static void write_tile_info(VP9_COMMON *cm, struct vp9_write_bit_buffer *wb) {
870  int min_log2_tile_cols, max_log2_tile_cols, ones;
871  vp9_get_tile_n_bits(cm->mi_cols, &min_log2_tile_cols, &max_log2_tile_cols);
872
873  // columns
874  ones = cm->log2_tile_cols - min_log2_tile_cols;
875  while (ones--)
876    vp9_wb_write_bit(wb, 1);
877
878  if (cm->log2_tile_cols < max_log2_tile_cols)
879    vp9_wb_write_bit(wb, 0);
880
881  // rows
882  vp9_wb_write_bit(wb, cm->log2_tile_rows != 0);
883  if (cm->log2_tile_rows != 0)
884    vp9_wb_write_bit(wb, cm->log2_tile_rows != 1);
885}
886
887static int get_refresh_mask(VP9_COMP *cpi) {
888    // Should the GF or ARF be updated using the transmitted frame or buffer
889#if CONFIG_MULTIPLE_ARF
890    if (!cpi->multi_arf_enabled && cpi->refresh_golden_frame &&
891        !cpi->refresh_alt_ref_frame) {
892#else
893    if (cpi->refresh_golden_frame && !cpi->refresh_alt_ref_frame &&
894        !cpi->use_svc) {
895#endif
896      // Preserve the previously existing golden frame and update the frame in
897      // the alt ref slot instead. This is highly specific to the use of
898      // alt-ref as a forward reference, and this needs to be generalized as
899      // other uses are implemented (like RTC/temporal scaling)
900      //
901      // gld_fb_idx and alt_fb_idx need to be swapped for future frames, but
902      // that happens in vp9_onyx_if.c:update_reference_frames() so that it can
903      // be done outside of the recode loop.
904      return (cpi->refresh_last_frame << cpi->lst_fb_idx) |
905             (cpi->refresh_golden_frame << cpi->alt_fb_idx);
906    } else {
907      int arf_idx = cpi->alt_fb_idx;
908#if CONFIG_MULTIPLE_ARF
909      // Determine which ARF buffer to use to encode this ARF frame.
910      if (cpi->multi_arf_enabled) {
911        int sn = cpi->sequence_number;
912        arf_idx = (cpi->frame_coding_order[sn] < 0) ?
913            cpi->arf_buffer_idx[sn + 1] :
914            cpi->arf_buffer_idx[sn];
915      }
916#endif
917      return (cpi->refresh_last_frame << cpi->lst_fb_idx) |
918             (cpi->refresh_golden_frame << cpi->gld_fb_idx) |
919             (cpi->refresh_alt_ref_frame << arf_idx);
920    }
921}
922
923static size_t encode_tiles(VP9_COMP *cpi, uint8_t *data_ptr) {
924  VP9_COMMON *const cm = &cpi->common;
925  vp9_writer residual_bc;
926
927  int tile_row, tile_col;
928  TOKENEXTRA *tok[4][1 << 6], *tok_end;
929  size_t total_size = 0;
930  const int tile_cols = 1 << cm->log2_tile_cols;
931  const int tile_rows = 1 << cm->log2_tile_rows;
932
933  vpx_memset(cpi->above_seg_context, 0, sizeof(*cpi->above_seg_context) *
934             mi_cols_aligned_to_sb(cm->mi_cols));
935
936  tok[0][0] = cpi->tok;
937  for (tile_row = 0; tile_row < tile_rows; tile_row++) {
938    if (tile_row)
939      tok[tile_row][0] = tok[tile_row - 1][tile_cols - 1] +
940                         cpi->tok_count[tile_row - 1][tile_cols - 1];
941
942    for (tile_col = 1; tile_col < tile_cols; tile_col++)
943      tok[tile_row][tile_col] = tok[tile_row][tile_col - 1] +
944                                cpi->tok_count[tile_row][tile_col - 1];
945  }
946
947  for (tile_row = 0; tile_row < tile_rows; tile_row++) {
948    for (tile_col = 0; tile_col < tile_cols; tile_col++) {
949      TileInfo tile;
950
951      vp9_tile_init(&tile, cm, tile_row, tile_col);
952      tok_end = tok[tile_row][tile_col] + cpi->tok_count[tile_row][tile_col];
953
954      if (tile_col < tile_cols - 1 || tile_row < tile_rows - 1)
955        vp9_start_encode(&residual_bc, data_ptr + total_size + 4);
956      else
957        vp9_start_encode(&residual_bc, data_ptr + total_size);
958
959      write_modes(cpi, &tile, &residual_bc, &tok[tile_row][tile_col], tok_end);
960      assert(tok[tile_row][tile_col] == tok_end);
961      vp9_stop_encode(&residual_bc);
962      if (tile_col < tile_cols - 1 || tile_row < tile_rows - 1) {
963        // size of this tile
964        mem_put_be32(data_ptr + total_size, residual_bc.pos);
965        total_size += 4;
966      }
967
968      total_size += residual_bc.pos;
969    }
970  }
971
972  return total_size;
973}
974
975static void write_display_size(const VP9_COMMON *cm,
976                               struct vp9_write_bit_buffer *wb) {
977  const int scaling_active = cm->width != cm->display_width ||
978                             cm->height != cm->display_height;
979  vp9_wb_write_bit(wb, scaling_active);
980  if (scaling_active) {
981    vp9_wb_write_literal(wb, cm->display_width - 1, 16);
982    vp9_wb_write_literal(wb, cm->display_height - 1, 16);
983  }
984}
985
986static void write_frame_size(const VP9_COMMON *cm,
987                             struct vp9_write_bit_buffer *wb) {
988  vp9_wb_write_literal(wb, cm->width - 1, 16);
989  vp9_wb_write_literal(wb, cm->height - 1, 16);
990
991  write_display_size(cm, wb);
992}
993
994static void write_frame_size_with_refs(VP9_COMP *cpi,
995                                       struct vp9_write_bit_buffer *wb) {
996  VP9_COMMON *const cm = &cpi->common;
997  int found = 0;
998
999  MV_REFERENCE_FRAME ref_frame;
1000  for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) {
1001    YV12_BUFFER_CONFIG *cfg = get_ref_frame_buffer(cpi, ref_frame);
1002    found = cm->width == cfg->y_crop_width &&
1003            cm->height == cfg->y_crop_height;
1004
1005    // TODO(ivan): This prevents a bug while more than 3 buffers are used. Do it
1006    // in a better way.
1007    if (cpi->use_svc) {
1008      found = 0;
1009    }
1010    vp9_wb_write_bit(wb, found);
1011    if (found) {
1012      break;
1013    }
1014  }
1015
1016  if (!found) {
1017    vp9_wb_write_literal(wb, cm->width - 1, 16);
1018    vp9_wb_write_literal(wb, cm->height - 1, 16);
1019  }
1020
1021  write_display_size(cm, wb);
1022}
1023
1024static void write_sync_code(struct vp9_write_bit_buffer *wb) {
1025  vp9_wb_write_literal(wb, VP9_SYNC_CODE_0, 8);
1026  vp9_wb_write_literal(wb, VP9_SYNC_CODE_1, 8);
1027  vp9_wb_write_literal(wb, VP9_SYNC_CODE_2, 8);
1028}
1029
1030static void write_uncompressed_header(VP9_COMP *cpi,
1031                                      struct vp9_write_bit_buffer *wb) {
1032  VP9_COMMON *const cm = &cpi->common;
1033
1034  vp9_wb_write_literal(wb, VP9_FRAME_MARKER, 2);
1035
1036  // bitstream version.
1037  // 00 - profile 0. 4:2:0 only
1038  // 10 - profile 1. adds 4:4:4, 4:2:2, alpha
1039  vp9_wb_write_bit(wb, cm->version);
1040  vp9_wb_write_bit(wb, 0);
1041
1042  vp9_wb_write_bit(wb, 0);
1043  vp9_wb_write_bit(wb, cm->frame_type);
1044  vp9_wb_write_bit(wb, cm->show_frame);
1045  vp9_wb_write_bit(wb, cm->error_resilient_mode);
1046
1047  if (cm->frame_type == KEY_FRAME) {
1048    const COLOR_SPACE cs = UNKNOWN;
1049    write_sync_code(wb);
1050    vp9_wb_write_literal(wb, cs, 3);
1051    if (cs != SRGB) {
1052      vp9_wb_write_bit(wb, 0);  // 0: [16, 235] (i.e. xvYCC), 1: [0, 255]
1053      if (cm->version == 1) {
1054        vp9_wb_write_bit(wb, cm->subsampling_x);
1055        vp9_wb_write_bit(wb, cm->subsampling_y);
1056        vp9_wb_write_bit(wb, 0);  // has extra plane
1057      }
1058    } else {
1059      assert(cm->version == 1);
1060      vp9_wb_write_bit(wb, 0);  // has extra plane
1061    }
1062
1063    write_frame_size(cm, wb);
1064  } else {
1065    if (!cm->show_frame)
1066      vp9_wb_write_bit(wb, cm->intra_only);
1067
1068    if (!cm->error_resilient_mode)
1069      vp9_wb_write_literal(wb, cm->reset_frame_context, 2);
1070
1071    if (cm->intra_only) {
1072      write_sync_code(wb);
1073
1074      vp9_wb_write_literal(wb, get_refresh_mask(cpi), REF_FRAMES);
1075      write_frame_size(cm, wb);
1076    } else {
1077      MV_REFERENCE_FRAME ref_frame;
1078      vp9_wb_write_literal(wb, get_refresh_mask(cpi), REF_FRAMES);
1079      for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) {
1080        vp9_wb_write_literal(wb, get_ref_frame_idx(cpi, ref_frame),
1081                             REF_FRAMES_LOG2);
1082        vp9_wb_write_bit(wb, cm->ref_frame_sign_bias[ref_frame]);
1083      }
1084
1085      write_frame_size_with_refs(cpi, wb);
1086
1087      vp9_wb_write_bit(wb, cm->allow_high_precision_mv);
1088
1089      fix_interp_filter(cm);
1090      write_interp_filter(cm->interp_filter, wb);
1091    }
1092  }
1093
1094  if (!cm->error_resilient_mode) {
1095    vp9_wb_write_bit(wb, cm->refresh_frame_context);
1096    vp9_wb_write_bit(wb, cm->frame_parallel_decoding_mode);
1097  }
1098
1099  vp9_wb_write_literal(wb, cm->frame_context_idx, FRAME_CONTEXTS_LOG2);
1100
1101  encode_loopfilter(&cm->lf, wb);
1102  encode_quantization(cm, wb);
1103  encode_segmentation(cpi, wb);
1104
1105  write_tile_info(cm, wb);
1106}
1107
1108static size_t write_compressed_header(VP9_COMP *cpi, uint8_t *data) {
1109  VP9_COMMON *const cm = &cpi->common;
1110  MACROBLOCKD *const xd = &cpi->mb.e_mbd;
1111  FRAME_CONTEXT *const fc = &cm->fc;
1112  vp9_writer header_bc;
1113
1114  vp9_start_encode(&header_bc, data);
1115
1116  if (xd->lossless)
1117    cm->tx_mode = ONLY_4X4;
1118  else
1119    encode_txfm_probs(cm, &header_bc);
1120
1121  update_coef_probs(cpi, &header_bc);
1122  update_skip_probs(cm, &header_bc);
1123
1124  if (!frame_is_intra_only(cm)) {
1125    int i;
1126
1127    for (i = 0; i < INTER_MODE_CONTEXTS; ++i)
1128      prob_diff_update(vp9_inter_mode_tree, cm->fc.inter_mode_probs[i],
1129                       cm->counts.inter_mode[i], INTER_MODES, &header_bc);
1130
1131    vp9_zero(cm->counts.inter_mode);
1132
1133    if (cm->interp_filter == SWITCHABLE)
1134      update_switchable_interp_probs(cm, &header_bc);
1135
1136    for (i = 0; i < INTRA_INTER_CONTEXTS; i++)
1137      vp9_cond_prob_diff_update(&header_bc, &fc->intra_inter_prob[i],
1138                                cm->counts.intra_inter[i]);
1139
1140    if (cm->allow_comp_inter_inter) {
1141      const int use_compound_pred = cm->reference_mode != SINGLE_REFERENCE;
1142      const int use_hybrid_pred = cm->reference_mode == REFERENCE_MODE_SELECT;
1143
1144      vp9_write_bit(&header_bc, use_compound_pred);
1145      if (use_compound_pred) {
1146        vp9_write_bit(&header_bc, use_hybrid_pred);
1147        if (use_hybrid_pred)
1148          for (i = 0; i < COMP_INTER_CONTEXTS; i++)
1149            vp9_cond_prob_diff_update(&header_bc, &fc->comp_inter_prob[i],
1150                                      cm->counts.comp_inter[i]);
1151      }
1152    }
1153
1154    if (cm->reference_mode != COMPOUND_REFERENCE) {
1155      for (i = 0; i < REF_CONTEXTS; i++) {
1156        vp9_cond_prob_diff_update(&header_bc, &fc->single_ref_prob[i][0],
1157                                  cm->counts.single_ref[i][0]);
1158        vp9_cond_prob_diff_update(&header_bc, &fc->single_ref_prob[i][1],
1159                                  cm->counts.single_ref[i][1]);
1160      }
1161    }
1162
1163    if (cm->reference_mode != SINGLE_REFERENCE)
1164      for (i = 0; i < REF_CONTEXTS; i++)
1165        vp9_cond_prob_diff_update(&header_bc, &fc->comp_ref_prob[i],
1166                                  cm->counts.comp_ref[i]);
1167
1168    for (i = 0; i < BLOCK_SIZE_GROUPS; ++i)
1169      prob_diff_update(vp9_intra_mode_tree, cm->fc.y_mode_prob[i],
1170                       cm->counts.y_mode[i], INTRA_MODES, &header_bc);
1171
1172    for (i = 0; i < PARTITION_CONTEXTS; ++i)
1173      prob_diff_update(vp9_partition_tree, fc->partition_prob[i],
1174                       cm->counts.partition[i], PARTITION_TYPES, &header_bc);
1175
1176    vp9_write_nmv_probs(cm, cm->allow_high_precision_mv, &header_bc);
1177  }
1178
1179  vp9_stop_encode(&header_bc);
1180  assert(header_bc.pos <= 0xffff);
1181
1182  return header_bc.pos;
1183}
1184
1185void vp9_pack_bitstream(VP9_COMP *cpi, uint8_t *dest, size_t *size) {
1186  uint8_t *data = dest;
1187  size_t first_part_size;
1188  struct vp9_write_bit_buffer wb = {data, 0};
1189  struct vp9_write_bit_buffer saved_wb;
1190
1191  write_uncompressed_header(cpi, &wb);
1192  saved_wb = wb;
1193  vp9_wb_write_literal(&wb, 0, 16);  // don't know in advance first part. size
1194
1195  data += vp9_rb_bytes_written(&wb);
1196
1197  vp9_compute_update_table();
1198
1199  vp9_clear_system_state();
1200
1201  first_part_size = write_compressed_header(cpi, data);
1202  data += first_part_size;
1203  // TODO(jbb): Figure out what to do if first_part_size > 16 bits.
1204  vp9_wb_write_literal(&saved_wb, (int)first_part_size, 16);
1205
1206  data += encode_tiles(cpi, data);
1207
1208  *size = data - dest;
1209}
1210
1211