1/*
2  Red Black Trees
3  (C) 1999  Andrea Arcangeli <andrea@suse.de>
4  (C) 2002  David Woodhouse <dwmw2@infradead.org>
5  (C) 2012  Michel Lespinasse <walken@google.com>
6
7  This program is free software; you can redistribute it and/or modify
8  it under the terms of the GNU General Public License as published by
9  the Free Software Foundation; either version 2 of the License, or
10  (at your option) any later version.
11
12  This program is distributed in the hope that it will be useful,
13  but WITHOUT ANY WARRANTY; without even the implied warranty of
14  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  GNU General Public License for more details.
16
17  You should have received a copy of the GNU General Public License
18  along with this program; if not, write to the Free Software
19  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
20
21  linux/lib/rbtree.c
22*/
23
24#include <linux/rbtree_augmented.h>
25#include <linux/export.h>
26
27/*
28 * red-black trees properties:  http://en.wikipedia.org/wiki/Rbtree
29 *
30 *  1) A node is either red or black
31 *  2) The root is black
32 *  3) All leaves (NULL) are black
33 *  4) Both children of every red node are black
34 *  5) Every simple path from root to leaves contains the same number
35 *     of black nodes.
36 *
37 *  4 and 5 give the O(log n) guarantee, since 4 implies you cannot have two
38 *  consecutive red nodes in a path and every red node is therefore followed by
39 *  a black. So if B is the number of black nodes on every simple path (as per
40 *  5), then the longest possible path due to 4 is 2B.
41 *
42 *  We shall indicate color with case, where black nodes are uppercase and red
43 *  nodes will be lowercase. Unknown color nodes shall be drawn as red within
44 *  parentheses and have some accompanying text comment.
45 */
46
47static inline void rb_set_black(struct rb_node *rb)
48{
49	rb->__rb_parent_color |= RB_BLACK;
50}
51
52static inline struct rb_node *rb_red_parent(struct rb_node *red)
53{
54	return (struct rb_node *)red->__rb_parent_color;
55}
56
57/*
58 * Helper function for rotations:
59 * - old's parent and color get assigned to new
60 * - old gets assigned new as a parent and 'color' as a color.
61 */
62static inline void
63__rb_rotate_set_parents(struct rb_node *old, struct rb_node *new,
64			struct rb_root *root, int color)
65{
66	struct rb_node *parent = rb_parent(old);
67	new->__rb_parent_color = old->__rb_parent_color;
68	rb_set_parent_color(old, new, color);
69	__rb_change_child(old, new, parent, root);
70}
71
72static __always_inline void
73__rb_insert(struct rb_node *node, struct rb_root *root,
74	    void (*augment_rotate)(struct rb_node *old, struct rb_node *new))
75{
76	struct rb_node *parent = rb_red_parent(node), *gparent, *tmp;
77
78	while (true) {
79		/*
80		 * Loop invariant: node is red
81		 *
82		 * If there is a black parent, we are done.
83		 * Otherwise, take some corrective action as we don't
84		 * want a red root or two consecutive red nodes.
85		 */
86		if (!parent) {
87			rb_set_parent_color(node, NULL, RB_BLACK);
88			break;
89		} else if (rb_is_black(parent))
90			break;
91
92		gparent = rb_red_parent(parent);
93
94		tmp = gparent->rb_right;
95		if (parent != tmp) {	/* parent == gparent->rb_left */
96			if (tmp && rb_is_red(tmp)) {
97				/*
98				 * Case 1 - color flips
99				 *
100				 *       G            g
101				 *      / \          / \
102				 *     p   u  -->   P   U
103				 *    /            /
104				 *   n            N
105				 *
106				 * However, since g's parent might be red, and
107				 * 4) does not allow this, we need to recurse
108				 * at g.
109				 */
110				rb_set_parent_color(tmp, gparent, RB_BLACK);
111				rb_set_parent_color(parent, gparent, RB_BLACK);
112				node = gparent;
113				parent = rb_parent(node);
114				rb_set_parent_color(node, parent, RB_RED);
115				continue;
116			}
117
118			tmp = parent->rb_right;
119			if (node == tmp) {
120				/*
121				 * Case 2 - left rotate at parent
122				 *
123				 *      G             G
124				 *     / \           / \
125				 *    p   U  -->    n   U
126				 *     \           /
127				 *      n         p
128				 *
129				 * This still leaves us in violation of 4), the
130				 * continuation into Case 3 will fix that.
131				 */
132				parent->rb_right = tmp = node->rb_left;
133				node->rb_left = parent;
134				if (tmp)
135					rb_set_parent_color(tmp, parent,
136							    RB_BLACK);
137				rb_set_parent_color(parent, node, RB_RED);
138				augment_rotate(parent, node);
139				parent = node;
140				tmp = node->rb_right;
141			}
142
143			/*
144			 * Case 3 - right rotate at gparent
145			 *
146			 *        G           P
147			 *       / \         / \
148			 *      p   U  -->  n   g
149			 *     /                 \
150			 *    n                   U
151			 */
152			gparent->rb_left = tmp;  /* == parent->rb_right */
153			parent->rb_right = gparent;
154			if (tmp)
155				rb_set_parent_color(tmp, gparent, RB_BLACK);
156			__rb_rotate_set_parents(gparent, parent, root, RB_RED);
157			augment_rotate(gparent, parent);
158			break;
159		} else {
160			tmp = gparent->rb_left;
161			if (tmp && rb_is_red(tmp)) {
162				/* Case 1 - color flips */
163				rb_set_parent_color(tmp, gparent, RB_BLACK);
164				rb_set_parent_color(parent, gparent, RB_BLACK);
165				node = gparent;
166				parent = rb_parent(node);
167				rb_set_parent_color(node, parent, RB_RED);
168				continue;
169			}
170
171			tmp = parent->rb_left;
172			if (node == tmp) {
173				/* Case 2 - right rotate at parent */
174				parent->rb_left = tmp = node->rb_right;
175				node->rb_right = parent;
176				if (tmp)
177					rb_set_parent_color(tmp, parent,
178							    RB_BLACK);
179				rb_set_parent_color(parent, node, RB_RED);
180				augment_rotate(parent, node);
181				parent = node;
182				tmp = node->rb_left;
183			}
184
185			/* Case 3 - left rotate at gparent */
186			gparent->rb_right = tmp;  /* == parent->rb_left */
187			parent->rb_left = gparent;
188			if (tmp)
189				rb_set_parent_color(tmp, gparent, RB_BLACK);
190			__rb_rotate_set_parents(gparent, parent, root, RB_RED);
191			augment_rotate(gparent, parent);
192			break;
193		}
194	}
195}
196
197/*
198 * Inline version for rb_erase() use - we want to be able to inline
199 * and eliminate the dummy_rotate callback there
200 */
201static __always_inline void
202____rb_erase_color(struct rb_node *parent, struct rb_root *root,
203	void (*augment_rotate)(struct rb_node *old, struct rb_node *new))
204{
205	struct rb_node *node = NULL, *sibling, *tmp1, *tmp2;
206
207	while (true) {
208		/*
209		 * Loop invariants:
210		 * - node is black (or NULL on first iteration)
211		 * - node is not the root (parent is not NULL)
212		 * - All leaf paths going through parent and node have a
213		 *   black node count that is 1 lower than other leaf paths.
214		 */
215		sibling = parent->rb_right;
216		if (node != sibling) {	/* node == parent->rb_left */
217			if (rb_is_red(sibling)) {
218				/*
219				 * Case 1 - left rotate at parent
220				 *
221				 *     P               S
222				 *    / \             / \
223				 *   N   s    -->    p   Sr
224				 *      / \         / \
225				 *     Sl  Sr      N   Sl
226				 */
227				parent->rb_right = tmp1 = sibling->rb_left;
228				sibling->rb_left = parent;
229				rb_set_parent_color(tmp1, parent, RB_BLACK);
230				__rb_rotate_set_parents(parent, sibling, root,
231							RB_RED);
232				augment_rotate(parent, sibling);
233				sibling = tmp1;
234			}
235			tmp1 = sibling->rb_right;
236			if (!tmp1 || rb_is_black(tmp1)) {
237				tmp2 = sibling->rb_left;
238				if (!tmp2 || rb_is_black(tmp2)) {
239					/*
240					 * Case 2 - sibling color flip
241					 * (p could be either color here)
242					 *
243					 *    (p)           (p)
244					 *    / \           / \
245					 *   N   S    -->  N   s
246					 *      / \           / \
247					 *     Sl  Sr        Sl  Sr
248					 *
249					 * This leaves us violating 5) which
250					 * can be fixed by flipping p to black
251					 * if it was red, or by recursing at p.
252					 * p is red when coming from Case 1.
253					 */
254					rb_set_parent_color(sibling, parent,
255							    RB_RED);
256					if (rb_is_red(parent))
257						rb_set_black(parent);
258					else {
259						node = parent;
260						parent = rb_parent(node);
261						if (parent)
262							continue;
263					}
264					break;
265				}
266				/*
267				 * Case 3 - right rotate at sibling
268				 * (p could be either color here)
269				 *
270				 *   (p)           (p)
271				 *   / \           / \
272				 *  N   S    -->  N   Sl
273				 *     / \             \
274				 *    sl  Sr            s
275				 *                       \
276				 *                        Sr
277				 */
278				sibling->rb_left = tmp1 = tmp2->rb_right;
279				tmp2->rb_right = sibling;
280				parent->rb_right = tmp2;
281				if (tmp1)
282					rb_set_parent_color(tmp1, sibling,
283							    RB_BLACK);
284				augment_rotate(sibling, tmp2);
285				tmp1 = sibling;
286				sibling = tmp2;
287			}
288			/*
289			 * Case 4 - left rotate at parent + color flips
290			 * (p and sl could be either color here.
291			 *  After rotation, p becomes black, s acquires
292			 *  p's color, and sl keeps its color)
293			 *
294			 *      (p)             (s)
295			 *      / \             / \
296			 *     N   S     -->   P   Sr
297			 *        / \         / \
298			 *      (sl) sr      N  (sl)
299			 */
300			parent->rb_right = tmp2 = sibling->rb_left;
301			sibling->rb_left = parent;
302			rb_set_parent_color(tmp1, sibling, RB_BLACK);
303			if (tmp2)
304				rb_set_parent(tmp2, parent);
305			__rb_rotate_set_parents(parent, sibling, root,
306						RB_BLACK);
307			augment_rotate(parent, sibling);
308			break;
309		} else {
310			sibling = parent->rb_left;
311			if (rb_is_red(sibling)) {
312				/* Case 1 - right rotate at parent */
313				parent->rb_left = tmp1 = sibling->rb_right;
314				sibling->rb_right = parent;
315				rb_set_parent_color(tmp1, parent, RB_BLACK);
316				__rb_rotate_set_parents(parent, sibling, root,
317							RB_RED);
318				augment_rotate(parent, sibling);
319				sibling = tmp1;
320			}
321			tmp1 = sibling->rb_left;
322			if (!tmp1 || rb_is_black(tmp1)) {
323				tmp2 = sibling->rb_right;
324				if (!tmp2 || rb_is_black(tmp2)) {
325					/* Case 2 - sibling color flip */
326					rb_set_parent_color(sibling, parent,
327							    RB_RED);
328					if (rb_is_red(parent))
329						rb_set_black(parent);
330					else {
331						node = parent;
332						parent = rb_parent(node);
333						if (parent)
334							continue;
335					}
336					break;
337				}
338				/* Case 3 - right rotate at sibling */
339				sibling->rb_right = tmp1 = tmp2->rb_left;
340				tmp2->rb_left = sibling;
341				parent->rb_left = tmp2;
342				if (tmp1)
343					rb_set_parent_color(tmp1, sibling,
344							    RB_BLACK);
345				augment_rotate(sibling, tmp2);
346				tmp1 = sibling;
347				sibling = tmp2;
348			}
349			/* Case 4 - left rotate at parent + color flips */
350			parent->rb_left = tmp2 = sibling->rb_right;
351			sibling->rb_right = parent;
352			rb_set_parent_color(tmp1, sibling, RB_BLACK);
353			if (tmp2)
354				rb_set_parent(tmp2, parent);
355			__rb_rotate_set_parents(parent, sibling, root,
356						RB_BLACK);
357			augment_rotate(parent, sibling);
358			break;
359		}
360	}
361}
362
363/* Non-inline version for rb_erase_augmented() use */
364void __rb_erase_color(struct rb_node *parent, struct rb_root *root,
365	void (*augment_rotate)(struct rb_node *old, struct rb_node *new))
366{
367	____rb_erase_color(parent, root, augment_rotate);
368}
369EXPORT_SYMBOL(__rb_erase_color);
370
371/*
372 * Non-augmented rbtree manipulation functions.
373 *
374 * We use dummy augmented callbacks here, and have the compiler optimize them
375 * out of the rb_insert_color() and rb_erase() function definitions.
376 */
377
378static inline void dummy_propagate(struct rb_node *node, struct rb_node *stop) {}
379static inline void dummy_copy(struct rb_node *old, struct rb_node *new) {}
380static inline void dummy_rotate(struct rb_node *old, struct rb_node *new) {}
381
382static const struct rb_augment_callbacks dummy_callbacks = {
383	dummy_propagate, dummy_copy, dummy_rotate
384};
385
386void rb_insert_color(struct rb_node *node, struct rb_root *root)
387{
388	__rb_insert(node, root, dummy_rotate);
389}
390EXPORT_SYMBOL(rb_insert_color);
391
392void rb_erase(struct rb_node *node, struct rb_root *root)
393{
394	struct rb_node *rebalance;
395	rebalance = __rb_erase_augmented(node, root, &dummy_callbacks);
396	if (rebalance)
397		____rb_erase_color(rebalance, root, dummy_rotate);
398}
399EXPORT_SYMBOL(rb_erase);
400
401/*
402 * Augmented rbtree manipulation functions.
403 *
404 * This instantiates the same __always_inline functions as in the non-augmented
405 * case, but this time with user-defined callbacks.
406 */
407
408void __rb_insert_augmented(struct rb_node *node, struct rb_root *root,
409	void (*augment_rotate)(struct rb_node *old, struct rb_node *new))
410{
411	__rb_insert(node, root, augment_rotate);
412}
413EXPORT_SYMBOL(__rb_insert_augmented);
414
415/*
416 * This function returns the first node (in sort order) of the tree.
417 */
418struct rb_node *rb_first(const struct rb_root *root)
419{
420	struct rb_node	*n;
421
422	n = root->rb_node;
423	if (!n)
424		return NULL;
425	while (n->rb_left)
426		n = n->rb_left;
427	return n;
428}
429EXPORT_SYMBOL(rb_first);
430
431struct rb_node *rb_last(const struct rb_root *root)
432{
433	struct rb_node	*n;
434
435	n = root->rb_node;
436	if (!n)
437		return NULL;
438	while (n->rb_right)
439		n = n->rb_right;
440	return n;
441}
442EXPORT_SYMBOL(rb_last);
443
444struct rb_node *rb_next(const struct rb_node *node)
445{
446	struct rb_node *parent;
447
448	if (RB_EMPTY_NODE(node))
449		return NULL;
450
451	/*
452	 * If we have a right-hand child, go down and then left as far
453	 * as we can.
454	 */
455	if (node->rb_right) {
456		node = node->rb_right;
457		while (node->rb_left)
458			node=node->rb_left;
459		return (struct rb_node *)node;
460	}
461
462	/*
463	 * No right-hand children. Everything down and left is smaller than us,
464	 * so any 'next' node must be in the general direction of our parent.
465	 * Go up the tree; any time the ancestor is a right-hand child of its
466	 * parent, keep going up. First time it's a left-hand child of its
467	 * parent, said parent is our 'next' node.
468	 */
469	while ((parent = rb_parent(node)) && node == parent->rb_right)
470		node = parent;
471
472	return parent;
473}
474EXPORT_SYMBOL(rb_next);
475
476struct rb_node *rb_prev(const struct rb_node *node)
477{
478	struct rb_node *parent;
479
480	if (RB_EMPTY_NODE(node))
481		return NULL;
482
483	/*
484	 * If we have a left-hand child, go down and then right as far
485	 * as we can.
486	 */
487	if (node->rb_left) {
488		node = node->rb_left;
489		while (node->rb_right)
490			node=node->rb_right;
491		return (struct rb_node *)node;
492	}
493
494	/*
495	 * No left-hand children. Go up till we find an ancestor which
496	 * is a right-hand child of its parent.
497	 */
498	while ((parent = rb_parent(node)) && node == parent->rb_left)
499		node = parent;
500
501	return parent;
502}
503EXPORT_SYMBOL(rb_prev);
504
505void rb_replace_node(struct rb_node *victim, struct rb_node *new,
506		     struct rb_root *root)
507{
508	struct rb_node *parent = rb_parent(victim);
509
510	/* Set the surrounding nodes to point to the replacement */
511	__rb_change_child(victim, new, parent, root);
512	if (victim->rb_left)
513		rb_set_parent(victim->rb_left, new);
514	if (victim->rb_right)
515		rb_set_parent(victim->rb_right, new);
516
517	/* Copy the pointers/colour from the victim to the replacement */
518	*new = *victim;
519}
520EXPORT_SYMBOL(rb_replace_node);
521
522static struct rb_node *rb_left_deepest_node(const struct rb_node *node)
523{
524	for (;;) {
525		if (node->rb_left)
526			node = node->rb_left;
527		else if (node->rb_right)
528			node = node->rb_right;
529		else
530			return (struct rb_node *)node;
531	}
532}
533
534struct rb_node *rb_next_postorder(const struct rb_node *node)
535{
536	const struct rb_node *parent;
537	if (!node)
538		return NULL;
539	parent = rb_parent(node);
540
541	/* If we're sitting on node, we've already seen our children */
542	if (parent && node == parent->rb_left && parent->rb_right) {
543		/* If we are the parent's left node, go to the parent's right
544		 * node then all the way down to the left */
545		return rb_left_deepest_node(parent->rb_right);
546	} else
547		/* Otherwise we are the parent's right node, and the parent
548		 * should be next */
549		return (struct rb_node *)parent;
550}
551EXPORT_SYMBOL(rb_next_postorder);
552
553struct rb_node *rb_first_postorder(const struct rb_root *root)
554{
555	if (!root->rb_node)
556		return NULL;
557
558	return rb_left_deepest_node(root->rb_node);
559}
560EXPORT_SYMBOL(rb_first_postorder);
561