1//===-- GDBRemoteRegisterContext.cpp ----------------------------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9
10#include "GDBRemoteRegisterContext.h"
11
12// C Includes
13// C++ Includes
14// Other libraries and framework includes
15#include "lldb/Core/DataBufferHeap.h"
16#include "lldb/Core/DataExtractor.h"
17#include "lldb/Core/RegisterValue.h"
18#include "lldb/Core/Scalar.h"
19#include "lldb/Core/StreamString.h"
20#include "lldb/Target/ExecutionContext.h"
21#include "lldb/Utility/Utils.h"
22// Project includes
23#include "Utility/StringExtractorGDBRemote.h"
24#include "ProcessGDBRemote.h"
25#include "ProcessGDBRemoteLog.h"
26#include "ThreadGDBRemote.h"
27#include "Utility/ARM_GCC_Registers.h"
28#include "Utility/ARM_DWARF_Registers.h"
29
30using namespace lldb;
31using namespace lldb_private;
32
33//----------------------------------------------------------------------
34// GDBRemoteRegisterContext constructor
35//----------------------------------------------------------------------
36GDBRemoteRegisterContext::GDBRemoteRegisterContext
37(
38    ThreadGDBRemote &thread,
39    uint32_t concrete_frame_idx,
40    GDBRemoteDynamicRegisterInfo &reg_info,
41    bool read_all_at_once
42) :
43    RegisterContext (thread, concrete_frame_idx),
44    m_reg_info (reg_info),
45    m_reg_valid (),
46    m_reg_data (),
47    m_read_all_at_once (read_all_at_once)
48{
49    // Resize our vector of bools to contain one bool for every register.
50    // We will use these boolean values to know when a register value
51    // is valid in m_reg_data.
52    m_reg_valid.resize (reg_info.GetNumRegisters());
53
54    // Make a heap based buffer that is big enough to store all registers
55    DataBufferSP reg_data_sp(new DataBufferHeap (reg_info.GetRegisterDataByteSize(), 0));
56    m_reg_data.SetData (reg_data_sp);
57
58}
59
60//----------------------------------------------------------------------
61// Destructor
62//----------------------------------------------------------------------
63GDBRemoteRegisterContext::~GDBRemoteRegisterContext()
64{
65}
66
67void
68GDBRemoteRegisterContext::InvalidateAllRegisters ()
69{
70    SetAllRegisterValid (false);
71}
72
73void
74GDBRemoteRegisterContext::SetAllRegisterValid (bool b)
75{
76    std::vector<bool>::iterator pos, end = m_reg_valid.end();
77    for (pos = m_reg_valid.begin(); pos != end; ++pos)
78        *pos = b;
79}
80
81size_t
82GDBRemoteRegisterContext::GetRegisterCount ()
83{
84    return m_reg_info.GetNumRegisters ();
85}
86
87const RegisterInfo *
88GDBRemoteRegisterContext::GetRegisterInfoAtIndex (size_t reg)
89{
90    return m_reg_info.GetRegisterInfoAtIndex (reg);
91}
92
93size_t
94GDBRemoteRegisterContext::GetRegisterSetCount ()
95{
96    return m_reg_info.GetNumRegisterSets ();
97}
98
99
100
101const RegisterSet *
102GDBRemoteRegisterContext::GetRegisterSet (size_t reg_set)
103{
104    return m_reg_info.GetRegisterSet (reg_set);
105}
106
107
108
109bool
110GDBRemoteRegisterContext::ReadRegister (const RegisterInfo *reg_info, RegisterValue &value)
111{
112    // Read the register
113    if (ReadRegisterBytes (reg_info, m_reg_data))
114    {
115        const bool partial_data_ok = false;
116        Error error (value.SetValueFromData(reg_info, m_reg_data, reg_info->byte_offset, partial_data_ok));
117        return error.Success();
118    }
119    return false;
120}
121
122bool
123GDBRemoteRegisterContext::PrivateSetRegisterValue (uint32_t reg, StringExtractor &response)
124{
125    const RegisterInfo *reg_info = GetRegisterInfoAtIndex (reg);
126    if (reg_info == NULL)
127        return false;
128
129    // Invalidate if needed
130    InvalidateIfNeeded(false);
131
132    const uint32_t reg_byte_size = reg_info->byte_size;
133    const size_t bytes_copied = response.GetHexBytes (const_cast<uint8_t*>(m_reg_data.PeekData(reg_info->byte_offset, reg_byte_size)), reg_byte_size, '\xcc');
134    bool success = bytes_copied == reg_byte_size;
135    if (success)
136    {
137        SetRegisterIsValid(reg, true);
138    }
139    else if (bytes_copied > 0)
140    {
141        // Only set register is valid to false if we copied some bytes, else
142        // leave it as it was.
143        SetRegisterIsValid(reg, false);
144    }
145    return success;
146}
147
148// Helper function for GDBRemoteRegisterContext::ReadRegisterBytes().
149bool
150GDBRemoteRegisterContext::GetPrimordialRegister(const lldb_private::RegisterInfo *reg_info,
151                                                GDBRemoteCommunicationClient &gdb_comm)
152{
153    char packet[64];
154    StringExtractorGDBRemote response;
155    int packet_len = 0;
156    const uint32_t reg = reg_info->kinds[eRegisterKindLLDB];
157    if (gdb_comm.GetThreadSuffixSupported())
158        packet_len = ::snprintf (packet, sizeof(packet), "p%x;thread:%4.4" PRIx64 ";", reg, m_thread.GetProtocolID());
159    else
160        packet_len = ::snprintf (packet, sizeof(packet), "p%x", reg);
161    assert (packet_len < ((int)sizeof(packet) - 1));
162    if (gdb_comm.SendPacketAndWaitForResponse(packet, response, false))
163        return PrivateSetRegisterValue (reg, response);
164
165    return false;
166}
167bool
168GDBRemoteRegisterContext::ReadRegisterBytes (const RegisterInfo *reg_info, DataExtractor &data)
169{
170    ExecutionContext exe_ctx (CalculateThread());
171
172    Process *process = exe_ctx.GetProcessPtr();
173    Thread *thread = exe_ctx.GetThreadPtr();
174    if (process == NULL || thread == NULL)
175        return false;
176
177    GDBRemoteCommunicationClient &gdb_comm (((ProcessGDBRemote *)process)->GetGDBRemote());
178
179    InvalidateIfNeeded(false);
180
181    const uint32_t reg = reg_info->kinds[eRegisterKindLLDB];
182
183    if (!GetRegisterIsValid(reg))
184    {
185        Mutex::Locker locker;
186        if (gdb_comm.GetSequenceMutex (locker, "Didn't get sequence mutex for read register."))
187        {
188            const bool thread_suffix_supported = gdb_comm.GetThreadSuffixSupported();
189            ProcessSP process_sp (m_thread.GetProcess());
190            if (thread_suffix_supported || static_cast<ProcessGDBRemote *>(process_sp.get())->GetGDBRemote().SetCurrentThread(m_thread.GetProtocolID()))
191            {
192                char packet[64];
193                StringExtractorGDBRemote response;
194                int packet_len = 0;
195                if (m_read_all_at_once)
196                {
197                    // Get all registers in one packet
198                    if (thread_suffix_supported)
199                        packet_len = ::snprintf (packet, sizeof(packet), "g;thread:%4.4" PRIx64 ";", m_thread.GetProtocolID());
200                    else
201                        packet_len = ::snprintf (packet, sizeof(packet), "g");
202                    assert (packet_len < ((int)sizeof(packet) - 1));
203                    if (gdb_comm.SendPacketAndWaitForResponse(packet, response, false))
204                    {
205                        if (response.IsNormalResponse())
206                            if (response.GetHexBytes ((void *)m_reg_data.GetDataStart(), m_reg_data.GetByteSize(), '\xcc') == m_reg_data.GetByteSize())
207                                SetAllRegisterValid (true);
208                    }
209                }
210                else if (reg_info->value_regs)
211                {
212                    // Process this composite register request by delegating to the constituent
213                    // primordial registers.
214
215                    // Index of the primordial register.
216                    bool success = true;
217                    for (uint32_t idx = 0; success; ++idx)
218                    {
219                        const uint32_t prim_reg = reg_info->value_regs[idx];
220                        if (prim_reg == LLDB_INVALID_REGNUM)
221                            break;
222                        // We have a valid primordial regsiter as our constituent.
223                        // Grab the corresponding register info.
224                        const RegisterInfo *prim_reg_info = GetRegisterInfoAtIndex(prim_reg);
225                        if (prim_reg_info == NULL)
226                            success = false;
227                        else
228                        {
229                            // Read the containing register if it hasn't already been read
230                            if (!GetRegisterIsValid(prim_reg))
231                                success = GetPrimordialRegister(prim_reg_info, gdb_comm);
232                        }
233                    }
234
235                    if (success)
236                    {
237                        // If we reach this point, all primordial register requests have succeeded.
238                        // Validate this composite register.
239                        SetRegisterIsValid (reg_info, true);
240                    }
241                }
242                else
243                {
244                    // Get each register individually
245                    GetPrimordialRegister(reg_info, gdb_comm);
246                }
247            }
248        }
249        else
250        {
251#if LLDB_CONFIGURATION_DEBUG
252            StreamString strm;
253            gdb_comm.DumpHistory(strm);
254            Host::SetCrashDescription (strm.GetData());
255            assert (!"Didn't get sequence mutex for read register.");
256#else
257            Log *log (ProcessGDBRemoteLog::GetLogIfAnyCategoryIsSet (GDBR_LOG_THREAD | GDBR_LOG_PACKETS));
258            if (log)
259            {
260                if (log->GetVerbose())
261                {
262                    StreamString strm;
263                    gdb_comm.DumpHistory(strm);
264                    log->Printf("error: failed to get packet sequence mutex, not sending read register for \"%s\":\n%s", reg_info->name, strm.GetData());
265                }
266                else
267                {
268                    log->Printf("error: failed to get packet sequence mutex, not sending read register for \"%s\"", reg_info->name);
269                }
270            }
271#endif
272        }
273
274        // Make sure we got a valid register value after reading it
275        if (!GetRegisterIsValid(reg))
276            return false;
277    }
278
279    if (&data != &m_reg_data)
280    {
281        // If we aren't extracting into our own buffer (which
282        // only happens when this function is called from
283        // ReadRegisterValue(uint32_t, Scalar&)) then
284        // we transfer bytes from our buffer into the data
285        // buffer that was passed in
286        data.SetByteOrder (m_reg_data.GetByteOrder());
287        data.SetData (m_reg_data, reg_info->byte_offset, reg_info->byte_size);
288    }
289    return true;
290}
291
292bool
293GDBRemoteRegisterContext::WriteRegister (const RegisterInfo *reg_info,
294                                         const RegisterValue &value)
295{
296    DataExtractor data;
297    if (value.GetData (data))
298        return WriteRegisterBytes (reg_info, data, 0);
299    return false;
300}
301
302// Helper function for GDBRemoteRegisterContext::WriteRegisterBytes().
303bool
304GDBRemoteRegisterContext::SetPrimordialRegister(const lldb_private::RegisterInfo *reg_info,
305                                                GDBRemoteCommunicationClient &gdb_comm)
306{
307    StreamString packet;
308    StringExtractorGDBRemote response;
309    const uint32_t reg = reg_info->kinds[eRegisterKindLLDB];
310    packet.Printf ("P%x=", reg);
311    packet.PutBytesAsRawHex8 (m_reg_data.PeekData(reg_info->byte_offset, reg_info->byte_size),
312                              reg_info->byte_size,
313                              lldb::endian::InlHostByteOrder(),
314                              lldb::endian::InlHostByteOrder());
315
316    if (gdb_comm.GetThreadSuffixSupported())
317        packet.Printf (";thread:%4.4" PRIx64 ";", m_thread.GetProtocolID());
318
319    // Invalidate just this register
320    SetRegisterIsValid(reg, false);
321    if (gdb_comm.SendPacketAndWaitForResponse(packet.GetString().c_str(),
322                                              packet.GetString().size(),
323                                              response,
324                                              false))
325    {
326        if (response.IsOKResponse())
327            return true;
328    }
329    return false;
330}
331
332void
333GDBRemoteRegisterContext::SyncThreadState(Process *process)
334{
335    // NB.  We assume our caller has locked the sequence mutex.
336
337    GDBRemoteCommunicationClient &gdb_comm (((ProcessGDBRemote *) process)->GetGDBRemote());
338    if (!gdb_comm.GetSyncThreadStateSupported())
339        return;
340
341    StreamString packet;
342    StringExtractorGDBRemote response;
343    packet.Printf ("QSyncThreadState:%4.4" PRIx64 ";", m_thread.GetProtocolID());
344    if (gdb_comm.SendPacketAndWaitForResponse(packet.GetString().c_str(),
345                                              packet.GetString().size(),
346                                              response,
347                                              false))
348    {
349        if (response.IsOKResponse())
350            InvalidateAllRegisters();
351    }
352}
353
354bool
355GDBRemoteRegisterContext::WriteRegisterBytes (const lldb_private::RegisterInfo *reg_info, DataExtractor &data, uint32_t data_offset)
356{
357    ExecutionContext exe_ctx (CalculateThread());
358
359    Process *process = exe_ctx.GetProcessPtr();
360    Thread *thread = exe_ctx.GetThreadPtr();
361    if (process == NULL || thread == NULL)
362        return false;
363
364    GDBRemoteCommunicationClient &gdb_comm (((ProcessGDBRemote *)process)->GetGDBRemote());
365// FIXME: This check isn't right because IsRunning checks the Public state, but this
366// is work you need to do - for instance in ShouldStop & friends - before the public
367// state has been changed.
368//    if (gdb_comm.IsRunning())
369//        return false;
370
371    // Grab a pointer to where we are going to put this register
372    uint8_t *dst = const_cast<uint8_t*>(m_reg_data.PeekData(reg_info->byte_offset, reg_info->byte_size));
373
374    if (dst == NULL)
375        return false;
376
377
378    if (data.CopyByteOrderedData (data_offset,                  // src offset
379                                  reg_info->byte_size,          // src length
380                                  dst,                          // dst
381                                  reg_info->byte_size,          // dst length
382                                  m_reg_data.GetByteOrder()))   // dst byte order
383    {
384        Mutex::Locker locker;
385        if (gdb_comm.GetSequenceMutex (locker, "Didn't get sequence mutex for write register."))
386        {
387            const bool thread_suffix_supported = gdb_comm.GetThreadSuffixSupported();
388            ProcessSP process_sp (m_thread.GetProcess());
389            if (thread_suffix_supported || static_cast<ProcessGDBRemote *>(process_sp.get())->GetGDBRemote().SetCurrentThread(m_thread.GetProtocolID()))
390            {
391                StreamString packet;
392                StringExtractorGDBRemote response;
393
394                if (m_read_all_at_once)
395                {
396                    // Set all registers in one packet
397                    packet.PutChar ('G');
398                    packet.PutBytesAsRawHex8 (m_reg_data.GetDataStart(),
399                                              m_reg_data.GetByteSize(),
400                                              lldb::endian::InlHostByteOrder(),
401                                              lldb::endian::InlHostByteOrder());
402
403                    if (thread_suffix_supported)
404                        packet.Printf (";thread:%4.4" PRIx64 ";", m_thread.GetProtocolID());
405
406                    // Invalidate all register values
407                    InvalidateIfNeeded (true);
408
409                    if (gdb_comm.SendPacketAndWaitForResponse(packet.GetString().c_str(),
410                                                              packet.GetString().size(),
411                                                              response,
412                                                              false))
413                    {
414                        SetAllRegisterValid (false);
415                        if (response.IsOKResponse())
416                        {
417                            return true;
418                        }
419                    }
420                }
421                else
422                {
423                    bool success = true;
424
425                    if (reg_info->value_regs)
426                    {
427                        // This register is part of another register. In this case we read the actual
428                        // register data for any "value_regs", and once all that data is read, we will
429                        // have enough data in our register context bytes for the value of this register
430
431                        // Invalidate this composite register first.
432
433                        for (uint32_t idx = 0; success; ++idx)
434                        {
435                            const uint32_t reg = reg_info->value_regs[idx];
436                            if (reg == LLDB_INVALID_REGNUM)
437                                break;
438                            // We have a valid primordial regsiter as our constituent.
439                            // Grab the corresponding register info.
440                            const RegisterInfo *value_reg_info = GetRegisterInfoAtIndex(reg);
441                            if (value_reg_info == NULL)
442                                success = false;
443                            else
444                                success = SetPrimordialRegister(value_reg_info, gdb_comm);
445                        }
446                    }
447                    else
448                    {
449                        // This is an actual register, write it
450                        success = SetPrimordialRegister(reg_info, gdb_comm);
451                    }
452
453                    // Check if writing this register will invalidate any other register values?
454                    // If so, invalidate them
455                    if (reg_info->invalidate_regs)
456                    {
457                        for (uint32_t idx = 0, reg = reg_info->invalidate_regs[0];
458                             reg != LLDB_INVALID_REGNUM;
459                             reg = reg_info->invalidate_regs[++idx])
460                        {
461                            SetRegisterIsValid(reg, false);
462                        }
463                    }
464
465                    return success;
466                }
467            }
468        }
469        else
470        {
471            Log *log (ProcessGDBRemoteLog::GetLogIfAnyCategoryIsSet (GDBR_LOG_THREAD | GDBR_LOG_PACKETS));
472            if (log)
473            {
474                if (log->GetVerbose())
475                {
476                    StreamString strm;
477                    gdb_comm.DumpHistory(strm);
478                    log->Printf("error: failed to get packet sequence mutex, not sending write register for \"%s\":\n%s", reg_info->name, strm.GetData());
479                }
480                else
481                    log->Printf("error: failed to get packet sequence mutex, not sending write register for \"%s\"", reg_info->name);
482            }
483        }
484    }
485    return false;
486}
487
488
489bool
490GDBRemoteRegisterContext::ReadAllRegisterValues (lldb::DataBufferSP &data_sp)
491{
492    ExecutionContext exe_ctx (CalculateThread());
493
494    Process *process = exe_ctx.GetProcessPtr();
495    Thread *thread = exe_ctx.GetThreadPtr();
496    if (process == NULL || thread == NULL)
497        return false;
498
499    GDBRemoteCommunicationClient &gdb_comm (((ProcessGDBRemote *)process)->GetGDBRemote());
500
501    StringExtractorGDBRemote response;
502
503    Mutex::Locker locker;
504    if (gdb_comm.GetSequenceMutex (locker, "Didn't get sequence mutex for read all registers."))
505    {
506        SyncThreadState(process);
507
508        char packet[32];
509        const bool thread_suffix_supported = gdb_comm.GetThreadSuffixSupported();
510        ProcessSP process_sp (m_thread.GetProcess());
511        if (thread_suffix_supported || static_cast<ProcessGDBRemote *>(process_sp.get())->GetGDBRemote().SetCurrentThread(m_thread.GetProtocolID()))
512        {
513            int packet_len = 0;
514            if (thread_suffix_supported)
515                packet_len = ::snprintf (packet, sizeof(packet), "g;thread:%4.4" PRIx64, m_thread.GetProtocolID());
516            else
517                packet_len = ::snprintf (packet, sizeof(packet), "g");
518            assert (packet_len < ((int)sizeof(packet) - 1));
519
520            if (gdb_comm.SendPacketAndWaitForResponse(packet, packet_len, response, false))
521            {
522                if (response.IsErrorResponse())
523                    return false;
524
525                std::string &response_str = response.GetStringRef();
526                if (isxdigit(response_str[0]))
527                {
528                    response_str.insert(0, 1, 'G');
529                    if (thread_suffix_supported)
530                    {
531                        char thread_id_cstr[64];
532                        ::snprintf (thread_id_cstr, sizeof(thread_id_cstr), ";thread:%4.4" PRIx64 ";", m_thread.GetProtocolID());
533                        response_str.append (thread_id_cstr);
534                    }
535                    data_sp.reset (new DataBufferHeap (response_str.c_str(), response_str.size()));
536                    return true;
537                }
538            }
539        }
540    }
541    else
542    {
543        Log *log (ProcessGDBRemoteLog::GetLogIfAnyCategoryIsSet (GDBR_LOG_THREAD | GDBR_LOG_PACKETS));
544        if (log)
545        {
546            if (log->GetVerbose())
547            {
548                StreamString strm;
549                gdb_comm.DumpHistory(strm);
550                log->Printf("error: failed to get packet sequence mutex, not sending read all registers:\n%s", strm.GetData());
551            }
552            else
553                log->Printf("error: failed to get packet sequence mutex, not sending read all registers");
554        }
555    }
556
557    data_sp.reset();
558    return false;
559}
560
561bool
562GDBRemoteRegisterContext::WriteAllRegisterValues (const lldb::DataBufferSP &data_sp)
563{
564    if (!data_sp || data_sp->GetBytes() == NULL || data_sp->GetByteSize() == 0)
565        return false;
566
567    ExecutionContext exe_ctx (CalculateThread());
568
569    Process *process = exe_ctx.GetProcessPtr();
570    Thread *thread = exe_ctx.GetThreadPtr();
571    if (process == NULL || thread == NULL)
572        return false;
573
574    GDBRemoteCommunicationClient &gdb_comm (((ProcessGDBRemote *)process)->GetGDBRemote());
575
576    StringExtractorGDBRemote response;
577    Mutex::Locker locker;
578    if (gdb_comm.GetSequenceMutex (locker, "Didn't get sequence mutex for write all registers."))
579    {
580        const bool thread_suffix_supported = gdb_comm.GetThreadSuffixSupported();
581        ProcessSP process_sp (m_thread.GetProcess());
582        if (thread_suffix_supported || static_cast<ProcessGDBRemote *>(process_sp.get())->GetGDBRemote().SetCurrentThread(m_thread.GetProtocolID()))
583        {
584            // The data_sp contains the entire G response packet including the
585            // G, and if the thread suffix is supported, it has the thread suffix
586            // as well.
587            const char *G_packet = (const char *)data_sp->GetBytes();
588            size_t G_packet_len = data_sp->GetByteSize();
589            if (gdb_comm.SendPacketAndWaitForResponse (G_packet,
590                                                       G_packet_len,
591                                                       response,
592                                                       false))
593            {
594                if (response.IsOKResponse())
595                    return true;
596                else if (response.IsErrorResponse())
597                {
598                    uint32_t num_restored = 0;
599                    // We need to manually go through all of the registers and
600                    // restore them manually
601
602                    response.GetStringRef().assign (G_packet, G_packet_len);
603                    response.SetFilePos(1); // Skip the leading 'G'
604                    DataBufferHeap buffer (m_reg_data.GetByteSize(), 0);
605                    DataExtractor restore_data (buffer.GetBytes(),
606                                                buffer.GetByteSize(),
607                                                m_reg_data.GetByteOrder(),
608                                                m_reg_data.GetAddressByteSize());
609
610                    const uint32_t bytes_extracted = response.GetHexBytes ((void *)restore_data.GetDataStart(),
611                                                                           restore_data.GetByteSize(),
612                                                                           '\xcc');
613
614                    if (bytes_extracted < restore_data.GetByteSize())
615                        restore_data.SetData(restore_data.GetDataStart(), bytes_extracted, m_reg_data.GetByteOrder());
616
617                    //ReadRegisterBytes (const RegisterInfo *reg_info, RegisterValue &value, DataExtractor &data)
618                    const RegisterInfo *reg_info;
619                    // We have to march the offset of each register along in the
620                    // buffer to make sure we get the right offset.
621                    uint32_t reg_byte_offset = 0;
622                    for (uint32_t reg_idx=0; (reg_info = GetRegisterInfoAtIndex (reg_idx)) != NULL; ++reg_idx, reg_byte_offset += reg_info->byte_size)
623                    {
624                        const uint32_t reg = reg_info->kinds[eRegisterKindLLDB];
625
626                        // Skip composite registers.
627                        if (reg_info->value_regs)
628                            continue;
629
630                        // Only write down the registers that need to be written
631                        // if we are going to be doing registers individually.
632                        bool write_reg = true;
633                        const uint32_t reg_byte_size = reg_info->byte_size;
634
635                        const char *restore_src = (const char *)restore_data.PeekData(reg_byte_offset, reg_byte_size);
636                        if (restore_src)
637                        {
638                            if (GetRegisterIsValid(reg))
639                            {
640                                const char *current_src = (const char *)m_reg_data.PeekData(reg_byte_offset, reg_byte_size);
641                                if (current_src)
642                                    write_reg = memcmp (current_src, restore_src, reg_byte_size) != 0;
643                            }
644
645                            if (write_reg)
646                            {
647                                StreamString packet;
648                                packet.Printf ("P%x=", reg);
649                                packet.PutBytesAsRawHex8 (restore_src,
650                                                          reg_byte_size,
651                                                          lldb::endian::InlHostByteOrder(),
652                                                          lldb::endian::InlHostByteOrder());
653
654                                if (thread_suffix_supported)
655                                    packet.Printf (";thread:%4.4" PRIx64 ";", m_thread.GetProtocolID());
656
657                                SetRegisterIsValid(reg, false);
658                                if (gdb_comm.SendPacketAndWaitForResponse(packet.GetString().c_str(),
659                                                                          packet.GetString().size(),
660                                                                          response,
661                                                                          false))
662                                {
663                                    if (response.IsOKResponse())
664                                        ++num_restored;
665                                }
666                            }
667                        }
668                    }
669                    return num_restored > 0;
670                }
671            }
672        }
673    }
674    else
675    {
676        Log *log (ProcessGDBRemoteLog::GetLogIfAnyCategoryIsSet (GDBR_LOG_THREAD | GDBR_LOG_PACKETS));
677        if (log)
678        {
679            if (log->GetVerbose())
680            {
681                StreamString strm;
682                gdb_comm.DumpHistory(strm);
683                log->Printf("error: failed to get packet sequence mutex, not sending write all registers:\n%s", strm.GetData());
684            }
685            else
686                log->Printf("error: failed to get packet sequence mutex, not sending write all registers");
687        }
688    }
689    return false;
690}
691
692
693uint32_t
694GDBRemoteRegisterContext::ConvertRegisterKindToRegisterNumber (uint32_t kind, uint32_t num)
695{
696    return m_reg_info.ConvertRegisterKindToRegisterNumber (kind, num);
697}
698
699void
700GDBRemoteDynamicRegisterInfo::HardcodeARMRegisters(bool from_scratch)
701{
702    // For Advanced SIMD and VFP register mapping.
703    static uint32_t g_d0_regs[] =  { 26, 27, LLDB_INVALID_REGNUM }; // (s0, s1)
704    static uint32_t g_d1_regs[] =  { 28, 29, LLDB_INVALID_REGNUM }; // (s2, s3)
705    static uint32_t g_d2_regs[] =  { 30, 31, LLDB_INVALID_REGNUM }; // (s4, s5)
706    static uint32_t g_d3_regs[] =  { 32, 33, LLDB_INVALID_REGNUM }; // (s6, s7)
707    static uint32_t g_d4_regs[] =  { 34, 35, LLDB_INVALID_REGNUM }; // (s8, s9)
708    static uint32_t g_d5_regs[] =  { 36, 37, LLDB_INVALID_REGNUM }; // (s10, s11)
709    static uint32_t g_d6_regs[] =  { 38, 39, LLDB_INVALID_REGNUM }; // (s12, s13)
710    static uint32_t g_d7_regs[] =  { 40, 41, LLDB_INVALID_REGNUM }; // (s14, s15)
711    static uint32_t g_d8_regs[] =  { 42, 43, LLDB_INVALID_REGNUM }; // (s16, s17)
712    static uint32_t g_d9_regs[] =  { 44, 45, LLDB_INVALID_REGNUM }; // (s18, s19)
713    static uint32_t g_d10_regs[] = { 46, 47, LLDB_INVALID_REGNUM }; // (s20, s21)
714    static uint32_t g_d11_regs[] = { 48, 49, LLDB_INVALID_REGNUM }; // (s22, s23)
715    static uint32_t g_d12_regs[] = { 50, 51, LLDB_INVALID_REGNUM }; // (s24, s25)
716    static uint32_t g_d13_regs[] = { 52, 53, LLDB_INVALID_REGNUM }; // (s26, s27)
717    static uint32_t g_d14_regs[] = { 54, 55, LLDB_INVALID_REGNUM }; // (s28, s29)
718    static uint32_t g_d15_regs[] = { 56, 57, LLDB_INVALID_REGNUM }; // (s30, s31)
719    static uint32_t g_q0_regs[] =  { 26, 27, 28, 29, LLDB_INVALID_REGNUM }; // (d0, d1) -> (s0, s1, s2, s3)
720    static uint32_t g_q1_regs[] =  { 30, 31, 32, 33, LLDB_INVALID_REGNUM }; // (d2, d3) -> (s4, s5, s6, s7)
721    static uint32_t g_q2_regs[] =  { 34, 35, 36, 37, LLDB_INVALID_REGNUM }; // (d4, d5) -> (s8, s9, s10, s11)
722    static uint32_t g_q3_regs[] =  { 38, 39, 40, 41, LLDB_INVALID_REGNUM }; // (d6, d7) -> (s12, s13, s14, s15)
723    static uint32_t g_q4_regs[] =  { 42, 43, 44, 45, LLDB_INVALID_REGNUM }; // (d8, d9) -> (s16, s17, s18, s19)
724    static uint32_t g_q5_regs[] =  { 46, 47, 48, 49, LLDB_INVALID_REGNUM }; // (d10, d11) -> (s20, s21, s22, s23)
725    static uint32_t g_q6_regs[] =  { 50, 51, 52, 53, LLDB_INVALID_REGNUM }; // (d12, d13) -> (s24, s25, s26, s27)
726    static uint32_t g_q7_regs[] =  { 54, 55, 56, 57, LLDB_INVALID_REGNUM }; // (d14, d15) -> (s28, s29, s30, s31)
727    static uint32_t g_q8_regs[] =  { 59, 60, LLDB_INVALID_REGNUM }; // (d16, d17)
728    static uint32_t g_q9_regs[] =  { 61, 62, LLDB_INVALID_REGNUM }; // (d18, d19)
729    static uint32_t g_q10_regs[] = { 63, 64, LLDB_INVALID_REGNUM }; // (d20, d21)
730    static uint32_t g_q11_regs[] = { 65, 66, LLDB_INVALID_REGNUM }; // (d22, d23)
731    static uint32_t g_q12_regs[] = { 67, 68, LLDB_INVALID_REGNUM }; // (d24, d25)
732    static uint32_t g_q13_regs[] = { 69, 70, LLDB_INVALID_REGNUM }; // (d26, d27)
733    static uint32_t g_q14_regs[] = { 71, 72, LLDB_INVALID_REGNUM }; // (d28, d29)
734    static uint32_t g_q15_regs[] = { 73, 74, LLDB_INVALID_REGNUM }; // (d30, d31)
735
736    // This is our array of composite registers, with each element coming from the above register mappings.
737    static uint32_t *g_composites[] = {
738        g_d0_regs, g_d1_regs,  g_d2_regs,  g_d3_regs,  g_d4_regs,  g_d5_regs,  g_d6_regs,  g_d7_regs,
739        g_d8_regs, g_d9_regs, g_d10_regs, g_d11_regs, g_d12_regs, g_d13_regs, g_d14_regs, g_d15_regs,
740        g_q0_regs, g_q1_regs,  g_q2_regs,  g_q3_regs,  g_q4_regs,  g_q5_regs,  g_q6_regs,  g_q7_regs,
741        g_q8_regs, g_q9_regs, g_q10_regs, g_q11_regs, g_q12_regs, g_q13_regs, g_q14_regs, g_q15_regs
742    };
743
744    static RegisterInfo g_register_infos[] = {
745//   NAME    ALT    SZ  OFF  ENCODING          FORMAT          COMPILER             DWARF                GENERIC                 GDB    LLDB      VALUE REGS    INVALIDATE REGS
746//   ======  ====== === ===  =============     ============    ===================  ===================  ======================  ===    ====      ==========    ===============
747    { "r0", "arg1",   4,   0, eEncodingUint,    eFormatHex,   { gcc_r0,              dwarf_r0,            LLDB_REGNUM_GENERIC_ARG1,0,      0 },        NULL,              NULL},
748    { "r1", "arg2",   4,   0, eEncodingUint,    eFormatHex,   { gcc_r1,              dwarf_r1,            LLDB_REGNUM_GENERIC_ARG2,1,      1 },        NULL,              NULL},
749    { "r2", "arg3",   4,   0, eEncodingUint,    eFormatHex,   { gcc_r2,              dwarf_r2,            LLDB_REGNUM_GENERIC_ARG3,2,      2 },        NULL,              NULL},
750    { "r3", "arg4",   4,   0, eEncodingUint,    eFormatHex,   { gcc_r3,              dwarf_r3,            LLDB_REGNUM_GENERIC_ARG4,3,      3 },        NULL,              NULL},
751    { "r4",   NULL,   4,   0, eEncodingUint,    eFormatHex,   { gcc_r4,              dwarf_r4,            LLDB_INVALID_REGNUM,     4,      4 },        NULL,              NULL},
752    { "r5",   NULL,   4,   0, eEncodingUint,    eFormatHex,   { gcc_r5,              dwarf_r5,            LLDB_INVALID_REGNUM,     5,      5 },        NULL,              NULL},
753    { "r6",   NULL,   4,   0, eEncodingUint,    eFormatHex,   { gcc_r6,              dwarf_r6,            LLDB_INVALID_REGNUM,     6,      6 },        NULL,              NULL},
754    { "r7",   "fp",   4,   0, eEncodingUint,    eFormatHex,   { gcc_r7,              dwarf_r7,            LLDB_REGNUM_GENERIC_FP,  7,      7 },        NULL,              NULL},
755    { "r8",   NULL,   4,   0, eEncodingUint,    eFormatHex,   { gcc_r8,              dwarf_r8,            LLDB_INVALID_REGNUM,     8,      8 },        NULL,              NULL},
756    { "r9",   NULL,   4,   0, eEncodingUint,    eFormatHex,   { gcc_r9,              dwarf_r9,            LLDB_INVALID_REGNUM,     9,      9 },        NULL,              NULL},
757    { "r10",  NULL,   4,   0, eEncodingUint,    eFormatHex,   { gcc_r10,             dwarf_r10,           LLDB_INVALID_REGNUM,    10,     10 },        NULL,              NULL},
758    { "r11",  NULL,   4,   0, eEncodingUint,    eFormatHex,   { gcc_r11,             dwarf_r11,           LLDB_INVALID_REGNUM,    11,     11 },        NULL,              NULL},
759    { "r12",  NULL,   4,   0, eEncodingUint,    eFormatHex,   { gcc_r12,             dwarf_r12,           LLDB_INVALID_REGNUM,    12,     12 },        NULL,              NULL},
760    { "sp",   "r13",  4,   0, eEncodingUint,    eFormatHex,   { gcc_sp,              dwarf_sp,            LLDB_REGNUM_GENERIC_SP, 13,     13 },        NULL,              NULL},
761    { "lr",   "r14",  4,   0, eEncodingUint,    eFormatHex,   { gcc_lr,              dwarf_lr,            LLDB_REGNUM_GENERIC_RA, 14,     14 },        NULL,              NULL},
762    { "pc",   "r15",  4,   0, eEncodingUint,    eFormatHex,   { gcc_pc,              dwarf_pc,            LLDB_REGNUM_GENERIC_PC, 15,     15 },        NULL,              NULL},
763    { "f0",   NULL,  12,   0, eEncodingUint,    eFormatHex,   { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,    16,     16 },        NULL,              NULL},
764    { "f1",   NULL,  12,   0, eEncodingUint,    eFormatHex,   { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,    17,     17 },        NULL,              NULL},
765    { "f2",   NULL,  12,   0, eEncodingUint,    eFormatHex,   { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,    18,     18 },        NULL,              NULL},
766    { "f3",   NULL,  12,   0, eEncodingUint,    eFormatHex,   { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,    19,     19 },        NULL,              NULL},
767    { "f4",   NULL,  12,   0, eEncodingUint,    eFormatHex,   { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,    20,     20 },        NULL,              NULL},
768    { "f5",   NULL,  12,   0, eEncodingUint,    eFormatHex,   { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,    21,     21 },        NULL,              NULL},
769    { "f6",   NULL,  12,   0, eEncodingUint,    eFormatHex,   { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,    22,     22 },        NULL,              NULL},
770    { "f7",   NULL,  12,   0, eEncodingUint,    eFormatHex,   { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,    23,     23 },        NULL,              NULL},
771    { "fps",  NULL,   4,   0, eEncodingUint,    eFormatHex,   { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,    24,     24 },        NULL,              NULL},
772    { "cpsr","flags", 4,   0, eEncodingUint,    eFormatHex,   { gcc_cpsr,            dwarf_cpsr,          LLDB_INVALID_REGNUM,    25,     25 },        NULL,              NULL},
773    { "s0",   NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s0,            LLDB_INVALID_REGNUM,    26,     26 },        NULL,              NULL},
774    { "s1",   NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s1,            LLDB_INVALID_REGNUM,    27,     27 },        NULL,              NULL},
775    { "s2",   NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s2,            LLDB_INVALID_REGNUM,    28,     28 },        NULL,              NULL},
776    { "s3",   NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s3,            LLDB_INVALID_REGNUM,    29,     29 },        NULL,              NULL},
777    { "s4",   NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s4,            LLDB_INVALID_REGNUM,    30,     30 },        NULL,              NULL},
778    { "s5",   NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s5,            LLDB_INVALID_REGNUM,    31,     31 },        NULL,              NULL},
779    { "s6",   NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s6,            LLDB_INVALID_REGNUM,    32,     32 },        NULL,              NULL},
780    { "s7",   NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s7,            LLDB_INVALID_REGNUM,    33,     33 },        NULL,              NULL},
781    { "s8",   NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s8,            LLDB_INVALID_REGNUM,    34,     34 },        NULL,              NULL},
782    { "s9",   NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s9,            LLDB_INVALID_REGNUM,    35,     35 },        NULL,              NULL},
783    { "s10",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s10,           LLDB_INVALID_REGNUM,    36,     36 },        NULL,              NULL},
784    { "s11",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s11,           LLDB_INVALID_REGNUM,    37,     37 },        NULL,              NULL},
785    { "s12",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s12,           LLDB_INVALID_REGNUM,    38,     38 },        NULL,              NULL},
786    { "s13",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s13,           LLDB_INVALID_REGNUM,    39,     39 },        NULL,              NULL},
787    { "s14",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s14,           LLDB_INVALID_REGNUM,    40,     40 },        NULL,              NULL},
788    { "s15",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s15,           LLDB_INVALID_REGNUM,    41,     41 },        NULL,              NULL},
789    { "s16",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s16,           LLDB_INVALID_REGNUM,    42,     42 },        NULL,              NULL},
790    { "s17",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s17,           LLDB_INVALID_REGNUM,    43,     43 },        NULL,              NULL},
791    { "s18",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s18,           LLDB_INVALID_REGNUM,    44,     44 },        NULL,              NULL},
792    { "s19",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s19,           LLDB_INVALID_REGNUM,    45,     45 },        NULL,              NULL},
793    { "s20",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s20,           LLDB_INVALID_REGNUM,    46,     46 },        NULL,              NULL},
794    { "s21",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s21,           LLDB_INVALID_REGNUM,    47,     47 },        NULL,              NULL},
795    { "s22",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s22,           LLDB_INVALID_REGNUM,    48,     48 },        NULL,              NULL},
796    { "s23",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s23,           LLDB_INVALID_REGNUM,    49,     49 },        NULL,              NULL},
797    { "s24",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s24,           LLDB_INVALID_REGNUM,    50,     50 },        NULL,              NULL},
798    { "s25",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s25,           LLDB_INVALID_REGNUM,    51,     51 },        NULL,              NULL},
799    { "s26",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s26,           LLDB_INVALID_REGNUM,    52,     52 },        NULL,              NULL},
800    { "s27",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s27,           LLDB_INVALID_REGNUM,    53,     53 },        NULL,              NULL},
801    { "s28",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s28,           LLDB_INVALID_REGNUM,    54,     54 },        NULL,              NULL},
802    { "s29",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s29,           LLDB_INVALID_REGNUM,    55,     55 },        NULL,              NULL},
803    { "s30",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s30,           LLDB_INVALID_REGNUM,    56,     56 },        NULL,              NULL},
804    { "s31",  NULL,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s31,           LLDB_INVALID_REGNUM,    57,     57 },        NULL,              NULL},
805    { "fpscr",NULL,   4,   0, eEncodingUint,    eFormatHex,   { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,    58,     58 },        NULL,              NULL},
806    { "d16",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d16,           LLDB_INVALID_REGNUM,    59,     59 },        NULL,              NULL},
807    { "d17",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d17,           LLDB_INVALID_REGNUM,    60,     60 },        NULL,              NULL},
808    { "d18",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d18,           LLDB_INVALID_REGNUM,    61,     61 },        NULL,              NULL},
809    { "d19",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d19,           LLDB_INVALID_REGNUM,    62,     62 },        NULL,              NULL},
810    { "d20",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d20,           LLDB_INVALID_REGNUM,    63,     63 },        NULL,              NULL},
811    { "d21",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d21,           LLDB_INVALID_REGNUM,    64,     64 },        NULL,              NULL},
812    { "d22",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d22,           LLDB_INVALID_REGNUM,    65,     65 },        NULL,              NULL},
813    { "d23",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d23,           LLDB_INVALID_REGNUM,    66,     66 },        NULL,              NULL},
814    { "d24",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d24,           LLDB_INVALID_REGNUM,    67,     67 },        NULL,              NULL},
815    { "d25",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d25,           LLDB_INVALID_REGNUM,    68,     68 },        NULL,              NULL},
816    { "d26",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d26,           LLDB_INVALID_REGNUM,    69,     69 },        NULL,              NULL},
817    { "d27",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d27,           LLDB_INVALID_REGNUM,    70,     70 },        NULL,              NULL},
818    { "d28",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d28,           LLDB_INVALID_REGNUM,    71,     71 },        NULL,              NULL},
819    { "d29",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d29,           LLDB_INVALID_REGNUM,    72,     72 },        NULL,              NULL},
820    { "d30",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d30,           LLDB_INVALID_REGNUM,    73,     73 },        NULL,              NULL},
821    { "d31",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d31,           LLDB_INVALID_REGNUM,    74,     74 },        NULL,              NULL},
822    { "d0",   NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d0,            LLDB_INVALID_REGNUM,    75,     75 },   g_d0_regs,              NULL},
823    { "d1",   NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d1,            LLDB_INVALID_REGNUM,    76,     76 },   g_d1_regs,              NULL},
824    { "d2",   NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d2,            LLDB_INVALID_REGNUM,    77,     77 },   g_d2_regs,              NULL},
825    { "d3",   NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d3,            LLDB_INVALID_REGNUM,    78,     78 },   g_d3_regs,              NULL},
826    { "d4",   NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d4,            LLDB_INVALID_REGNUM,    79,     79 },   g_d4_regs,              NULL},
827    { "d5",   NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d5,            LLDB_INVALID_REGNUM,    80,     80 },   g_d5_regs,              NULL},
828    { "d6",   NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d6,            LLDB_INVALID_REGNUM,    81,     81 },   g_d6_regs,              NULL},
829    { "d7",   NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d7,            LLDB_INVALID_REGNUM,    82,     82 },   g_d7_regs,              NULL},
830    { "d8",   NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d8,            LLDB_INVALID_REGNUM,    83,     83 },   g_d8_regs,              NULL},
831    { "d9",   NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d9,            LLDB_INVALID_REGNUM,    84,     84 },   g_d9_regs,              NULL},
832    { "d10",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d10,           LLDB_INVALID_REGNUM,    85,     85 },  g_d10_regs,              NULL},
833    { "d11",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d11,           LLDB_INVALID_REGNUM,    86,     86 },  g_d11_regs,              NULL},
834    { "d12",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d12,           LLDB_INVALID_REGNUM,    87,     87 },  g_d12_regs,              NULL},
835    { "d13",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d13,           LLDB_INVALID_REGNUM,    88,     88 },  g_d13_regs,              NULL},
836    { "d14",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d14,           LLDB_INVALID_REGNUM,    89,     89 },  g_d14_regs,              NULL},
837    { "d15",  NULL,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d15,           LLDB_INVALID_REGNUM,    90,     90 },  g_d15_regs,              NULL},
838    { "q0",   NULL,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q0,    LLDB_INVALID_REGNUM,    91,     91 },   g_q0_regs,              NULL},
839    { "q1",   NULL,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q1,    LLDB_INVALID_REGNUM,    92,     92 },   g_q1_regs,              NULL},
840    { "q2",   NULL,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q2,    LLDB_INVALID_REGNUM,    93,     93 },   g_q2_regs,              NULL},
841    { "q3",   NULL,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q3,    LLDB_INVALID_REGNUM,    94,     94 },   g_q3_regs,              NULL},
842    { "q4",   NULL,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q4,    LLDB_INVALID_REGNUM,    95,     95 },   g_q4_regs,              NULL},
843    { "q5",   NULL,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q5,    LLDB_INVALID_REGNUM,    96,     96 },   g_q5_regs,              NULL},
844    { "q6",   NULL,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q6,    LLDB_INVALID_REGNUM,    97,     97 },   g_q6_regs,              NULL},
845    { "q7",   NULL,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q7,    LLDB_INVALID_REGNUM,    98,     98 },   g_q7_regs,              NULL},
846    { "q8",   NULL,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q8,    LLDB_INVALID_REGNUM,    99,     99 },   g_q8_regs,              NULL},
847    { "q9",   NULL,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q9,    LLDB_INVALID_REGNUM,   100,    100 },   g_q9_regs,              NULL},
848    { "q10",  NULL,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q10,   LLDB_INVALID_REGNUM,   101,    101 },  g_q10_regs,              NULL},
849    { "q11",  NULL,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q11,   LLDB_INVALID_REGNUM,   102,    102 },  g_q11_regs,              NULL},
850    { "q12",  NULL,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q12,   LLDB_INVALID_REGNUM,   103,    103 },  g_q12_regs,              NULL},
851    { "q13",  NULL,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q13,   LLDB_INVALID_REGNUM,   104,    104 },  g_q13_regs,              NULL},
852    { "q14",  NULL,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q14,   LLDB_INVALID_REGNUM,   105,    105 },  g_q14_regs,              NULL},
853    { "q15",  NULL,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q15,   LLDB_INVALID_REGNUM,   106,    106 },  g_q15_regs,              NULL}
854    };
855
856    static const uint32_t num_registers = llvm::array_lengthof(g_register_infos);
857    static ConstString gpr_reg_set ("General Purpose Registers");
858    static ConstString sfp_reg_set ("Software Floating Point Registers");
859    static ConstString vfp_reg_set ("Floating Point Registers");
860    size_t i;
861    if (from_scratch)
862    {
863        // Calculate the offsets of the registers
864        // Note that the layout of the "composite" registers (d0-d15 and q0-q15) which comes after the
865        // "primordial" registers is important.  This enables us to calculate the offset of the composite
866        // register by using the offset of its first primordial register.  For example, to calculate the
867        // offset of q0, use s0's offset.
868        if (g_register_infos[2].byte_offset == 0)
869        {
870            uint32_t byte_offset = 0;
871            for (i=0; i<num_registers; ++i)
872            {
873                // For primordial registers, increment the byte_offset by the byte_size to arrive at the
874                // byte_offset for the next register.  Otherwise, we have a composite register whose
875                // offset can be calculated by consulting the offset of its first primordial register.
876                if (!g_register_infos[i].value_regs)
877                {
878                    g_register_infos[i].byte_offset = byte_offset;
879                    byte_offset += g_register_infos[i].byte_size;
880                }
881                else
882                {
883                    const uint32_t first_primordial_reg = g_register_infos[i].value_regs[0];
884                    g_register_infos[i].byte_offset = g_register_infos[first_primordial_reg].byte_offset;
885                }
886            }
887        }
888        for (i=0; i<num_registers; ++i)
889        {
890            ConstString name;
891            ConstString alt_name;
892            if (g_register_infos[i].name && g_register_infos[i].name[0])
893                name.SetCString(g_register_infos[i].name);
894            if (g_register_infos[i].alt_name && g_register_infos[i].alt_name[0])
895                alt_name.SetCString(g_register_infos[i].alt_name);
896
897            if (i <= 15 || i == 25)
898                AddRegister (g_register_infos[i], name, alt_name, gpr_reg_set);
899            else if (i <= 24)
900                AddRegister (g_register_infos[i], name, alt_name, sfp_reg_set);
901            else
902                AddRegister (g_register_infos[i], name, alt_name, vfp_reg_set);
903        }
904    }
905    else
906    {
907        // Add composite registers to our primordial registers, then.
908        const size_t num_composites = llvm::array_lengthof(g_composites);
909        const size_t num_dynamic_regs = GetNumRegisters();
910        const size_t num_common_regs = num_registers - num_composites;
911        RegisterInfo *g_comp_register_infos = g_register_infos + num_common_regs;
912
913        // First we need to validate that all registers that we already have match the non composite regs.
914        // If so, then we can add the registers, else we need to bail
915        bool match = true;
916        if (num_dynamic_regs == num_common_regs)
917        {
918            for (i=0; match && i<num_dynamic_regs; ++i)
919            {
920                // Make sure all register names match
921                if (m_regs[i].name && g_register_infos[i].name)
922                {
923                    if (strcmp(m_regs[i].name, g_register_infos[i].name))
924                    {
925                        match = false;
926                        break;
927                    }
928                }
929
930                // Make sure all register byte sizes match
931                if (m_regs[i].byte_size != g_register_infos[i].byte_size)
932                {
933                    match = false;
934                    break;
935                }
936            }
937        }
938        else
939        {
940            // Wrong number of registers.
941            match = false;
942        }
943        // If "match" is true, then we can add extra registers.
944        if (match)
945        {
946            for (i=0; i<num_composites; ++i)
947            {
948                ConstString name;
949                ConstString alt_name;
950                const uint32_t first_primordial_reg = g_comp_register_infos[i].value_regs[0];
951                const char *reg_name = g_register_infos[first_primordial_reg].name;
952                if (reg_name && reg_name[0])
953                {
954                    for (uint32_t j = 0; j < num_dynamic_regs; ++j)
955                    {
956                        const RegisterInfo *reg_info = GetRegisterInfoAtIndex(j);
957                        // Find a matching primordial register info entry.
958                        if (reg_info && reg_info->name && ::strcasecmp(reg_info->name, reg_name) == 0)
959                        {
960                            // The name matches the existing primordial entry.
961                            // Find and assign the offset, and then add this composite register entry.
962                            g_comp_register_infos[i].byte_offset = reg_info->byte_offset;
963                            name.SetCString(g_comp_register_infos[i].name);
964                            AddRegister(g_comp_register_infos[i], name, alt_name, vfp_reg_set);
965                        }
966                    }
967                }
968            }
969        }
970    }
971}
972