DNB.cpp revision 0689f164af4e83dad8b48dc1248433f65a553f20
1//===-- DNB.cpp -------------------------------------------------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  Created by Greg Clayton on 3/23/07.
11//
12//===----------------------------------------------------------------------===//
13
14#include "DNB.h"
15#include <inttypes.h>
16#include <signal.h>
17#include <stdio.h>
18#include <stdlib.h>
19#include <sys/resource.h>
20#include <sys/stat.h>
21#include <sys/types.h>
22#include <sys/wait.h>
23#include <unistd.h>
24#include <sys/sysctl.h>
25#include <map>
26#include <vector>
27#include <libproc.h>
28
29#include "MacOSX/MachProcess.h"
30#include "MacOSX/MachTask.h"
31#include "CFString.h"
32#include "DNBLog.h"
33#include "DNBDataRef.h"
34#include "DNBThreadResumeActions.h"
35#include "DNBTimer.h"
36#include "CFBundle.h"
37
38
39typedef std::shared_ptr<MachProcess> MachProcessSP;
40typedef std::map<nub_process_t, MachProcessSP> ProcessMap;
41typedef ProcessMap::iterator ProcessMapIter;
42typedef ProcessMap::const_iterator ProcessMapConstIter;
43
44size_t GetAllInfos (std::vector<struct kinfo_proc>& proc_infos);
45static size_t GetAllInfosMatchingName (const char *process_name, std::vector<struct kinfo_proc>& matching_proc_infos);
46
47//----------------------------------------------------------------------
48// A Thread safe singleton to get a process map pointer.
49//
50// Returns a pointer to the existing process map, or a pointer to a
51// newly created process map if CAN_CREATE is non-zero.
52//----------------------------------------------------------------------
53static ProcessMap*
54GetProcessMap(bool can_create)
55{
56    static ProcessMap* g_process_map_ptr = NULL;
57
58    if (can_create && g_process_map_ptr == NULL)
59    {
60        static pthread_mutex_t g_process_map_mutex = PTHREAD_MUTEX_INITIALIZER;
61        PTHREAD_MUTEX_LOCKER (locker, &g_process_map_mutex);
62        if (g_process_map_ptr == NULL)
63            g_process_map_ptr = new ProcessMap;
64    }
65    return g_process_map_ptr;
66}
67
68//----------------------------------------------------------------------
69// Add PID to the shared process pointer map.
70//
71// Return non-zero value if we succeed in adding the process to the map.
72// The only time this should fail is if we run out of memory and can't
73// allocate a ProcessMap.
74//----------------------------------------------------------------------
75static nub_bool_t
76AddProcessToMap (nub_process_t pid, MachProcessSP& procSP)
77{
78    ProcessMap* process_map = GetProcessMap(true);
79    if (process_map)
80    {
81        process_map->insert(std::make_pair(pid, procSP));
82        return true;
83    }
84    return false;
85}
86
87//----------------------------------------------------------------------
88// Remove the shared pointer for PID from the process map.
89//
90// Returns the number of items removed from the process map.
91//----------------------------------------------------------------------
92static size_t
93RemoveProcessFromMap (nub_process_t pid)
94{
95    ProcessMap* process_map = GetProcessMap(false);
96    if (process_map)
97    {
98        return process_map->erase(pid);
99    }
100    return 0;
101}
102
103//----------------------------------------------------------------------
104// Get the shared pointer for PID from the existing process map.
105//
106// Returns true if we successfully find a shared pointer to a
107// MachProcess object.
108//----------------------------------------------------------------------
109static nub_bool_t
110GetProcessSP (nub_process_t pid, MachProcessSP& procSP)
111{
112    ProcessMap* process_map = GetProcessMap(false);
113    if (process_map != NULL)
114    {
115        ProcessMapIter pos = process_map->find(pid);
116        if (pos != process_map->end())
117        {
118            procSP = pos->second;
119            return true;
120        }
121    }
122    procSP.reset();
123    return false;
124}
125
126
127static void *
128waitpid_thread (void *arg)
129{
130    const pid_t pid = (pid_t)(intptr_t)arg;
131    int status;
132    while (1)
133    {
134        pid_t child_pid = waitpid(pid, &status, 0);
135        DNBLogThreadedIf(LOG_PROCESS, "waitpid_process_thread (): waitpid (pid = %i, &status, 0) => %i, status = %i, errno = %i", pid, child_pid, status, errno);
136
137        if (child_pid < 0)
138        {
139            if (errno == EINTR)
140                continue;
141            break;
142        }
143        else
144        {
145            if (WIFSTOPPED(status))
146            {
147                continue;
148            }
149            else// if (WIFEXITED(status) || WIFSIGNALED(status))
150            {
151                DNBLogThreadedIf(LOG_PROCESS, "waitpid_process_thread (): setting exit status for pid = %i to %i", child_pid, status);
152                DNBProcessSetExitStatus (child_pid, status);
153                return NULL;
154            }
155        }
156    }
157
158    // We should never exit as long as our child process is alive, so if we
159    // do something else went wrong and we should exit...
160    DNBLogThreadedIf(LOG_PROCESS, "waitpid_process_thread (): main loop exited, setting exit status to an invalid value (-1) for pid %i", pid);
161    DNBProcessSetExitStatus (pid, -1);
162    return NULL;
163}
164
165static bool
166spawn_waitpid_thread (pid_t pid)
167{
168    pthread_t thread = THREAD_NULL;
169    ::pthread_create (&thread, NULL, waitpid_thread, (void *)(intptr_t)pid);
170    if (thread != THREAD_NULL)
171    {
172        ::pthread_detach (thread);
173        return true;
174    }
175    return false;
176}
177
178nub_process_t
179DNBProcessLaunch (const char *path,
180                  char const *argv[],
181                  const char *envp[],
182                  const char *working_directory, // NULL => dont' change, non-NULL => set working directory for inferior to this
183                  const char *stdin_path,
184                  const char *stdout_path,
185                  const char *stderr_path,
186                  bool no_stdio,
187                  nub_launch_flavor_t launch_flavor,
188                  int disable_aslr,
189                  char *err_str,
190                  size_t err_len)
191{
192    DNBLogThreadedIf(LOG_PROCESS, "%s ( path='%s', argv = %p, envp = %p, working_dir=%s, stdin=%s, stdout=%s, stderr=%s, no-stdio=%i, launch_flavor = %u, disable_aslr = %d, err = %p, err_len = %llu) called...",
193                     __FUNCTION__,
194                     path,
195                     argv,
196                     envp,
197                     working_directory,
198                     stdin_path,
199                     stdout_path,
200                     stderr_path,
201                     no_stdio,
202                     launch_flavor,
203                     disable_aslr,
204                     err_str,
205                     (uint64_t)err_len);
206
207    if (err_str && err_len > 0)
208        err_str[0] = '\0';
209    struct stat path_stat;
210    if (::stat(path, &path_stat) == -1)
211    {
212        char stat_error[256];
213        ::strerror_r (errno, stat_error, sizeof(stat_error));
214        snprintf(err_str, err_len, "%s (%s)", stat_error, path);
215        return INVALID_NUB_PROCESS;
216    }
217
218    MachProcessSP processSP (new MachProcess);
219    if (processSP.get())
220    {
221        DNBError launch_err;
222        pid_t pid = processSP->LaunchForDebug (path,
223                                               argv,
224                                               envp,
225                                               working_directory,
226                                               stdin_path,
227                                               stdout_path,
228                                               stderr_path,
229                                               no_stdio,
230                                               launch_flavor,
231                                               disable_aslr,
232                                               launch_err);
233        if (err_str)
234        {
235            *err_str = '\0';
236            if (launch_err.Fail())
237            {
238                const char *launch_err_str = launch_err.AsString();
239                if (launch_err_str)
240                {
241                    strncpy(err_str, launch_err_str, err_len-1);
242                    err_str[err_len-1] = '\0';  // Make sure the error string is terminated
243                }
244            }
245        }
246
247        DNBLogThreadedIf(LOG_PROCESS, "(DebugNub) new pid is %d...", pid);
248
249        if (pid != INVALID_NUB_PROCESS)
250        {
251            // Spawn a thread to reap our child inferior process...
252            spawn_waitpid_thread (pid);
253
254            if (processSP->Task().TaskPortForProcessID (launch_err) == TASK_NULL)
255            {
256                // We failed to get the task for our process ID which is bad.
257                // Kill our process otherwise it will be stopped at the entry
258                // point and get reparented to someone else and never go away.
259                DNBLog ("Could not get task port for process, sending SIGKILL and exiting.");
260                kill (SIGKILL, pid);
261
262                if (err_str && err_len > 0)
263                {
264                    if (launch_err.AsString())
265                    {
266                        ::snprintf (err_str, err_len, "failed to get the task for process %i (%s)", pid, launch_err.AsString());
267                    }
268                    else
269                    {
270                        ::snprintf (err_str, err_len, "failed to get the task for process %i", pid);
271                    }
272                }
273            }
274            else
275            {
276                bool res = AddProcessToMap(pid, processSP);
277                assert(res && "Couldn't add process to map!");
278                return pid;
279            }
280        }
281    }
282    return INVALID_NUB_PROCESS;
283}
284
285nub_process_t
286DNBProcessAttachByName (const char *name, struct timespec *timeout, char *err_str, size_t err_len)
287{
288    if (err_str && err_len > 0)
289        err_str[0] = '\0';
290    std::vector<struct kinfo_proc> matching_proc_infos;
291    size_t num_matching_proc_infos = GetAllInfosMatchingName(name, matching_proc_infos);
292    if (num_matching_proc_infos == 0)
293    {
294        DNBLogError ("error: no processes match '%s'\n", name);
295        return INVALID_NUB_PROCESS;
296    }
297    else if (num_matching_proc_infos > 1)
298    {
299        DNBLogError ("error: %llu processes match '%s':\n", (uint64_t)num_matching_proc_infos, name);
300        size_t i;
301        for (i=0; i<num_matching_proc_infos; ++i)
302            DNBLogError ("%6u - %s\n", matching_proc_infos[i].kp_proc.p_pid, matching_proc_infos[i].kp_proc.p_comm);
303        return INVALID_NUB_PROCESS;
304    }
305
306    return DNBProcessAttach (matching_proc_infos[0].kp_proc.p_pid, timeout, err_str, err_len);
307}
308
309nub_process_t
310DNBProcessAttach (nub_process_t attach_pid, struct timespec *timeout, char *err_str, size_t err_len)
311{
312    if (err_str && err_len > 0)
313        err_str[0] = '\0';
314
315    pid_t pid = INVALID_NUB_PROCESS;
316    MachProcessSP processSP(new MachProcess);
317    if (processSP.get())
318    {
319        DNBLogThreadedIf(LOG_PROCESS, "(DebugNub) attaching to pid %d...", attach_pid);
320        pid = processSP->AttachForDebug (attach_pid, err_str,  err_len);
321
322        if (pid != INVALID_NUB_PROCESS)
323        {
324            bool res = AddProcessToMap(pid, processSP);
325            assert(res && "Couldn't add process to map!");
326            spawn_waitpid_thread(pid);
327        }
328    }
329
330    while (pid != INVALID_NUB_PROCESS)
331    {
332        // Wait for process to start up and hit entry point
333        DNBLogThreadedIf (LOG_PROCESS,
334                          "%s DNBProcessWaitForEvent (%4.4x, eEventProcessRunningStateChanged | eEventProcessStoppedStateChanged, true, INFINITE)...",
335                          __FUNCTION__,
336                          pid);
337        nub_event_t set_events = DNBProcessWaitForEvents (pid,
338                                                          eEventProcessRunningStateChanged | eEventProcessStoppedStateChanged,
339                                                          true,
340                                                          timeout);
341
342        DNBLogThreadedIf (LOG_PROCESS,
343                          "%s DNBProcessWaitForEvent (%4.4x, eEventProcessRunningStateChanged | eEventProcessStoppedStateChanged, true, INFINITE) => 0x%8.8x",
344                          __FUNCTION__,
345                          pid,
346                          set_events);
347
348        if (set_events == 0)
349        {
350            if (err_str && err_len > 0)
351                snprintf(err_str, err_len, "operation timed out");
352            pid = INVALID_NUB_PROCESS;
353        }
354        else
355        {
356            if (set_events & (eEventProcessRunningStateChanged | eEventProcessStoppedStateChanged))
357            {
358                nub_state_t pid_state = DNBProcessGetState (pid);
359                DNBLogThreadedIf (LOG_PROCESS, "%s process %4.4x state changed (eEventProcessStateChanged): %s",
360                        __FUNCTION__, pid, DNBStateAsString(pid_state));
361
362                switch (pid_state)
363                {
364                    default:
365                    case eStateInvalid:
366                    case eStateUnloaded:
367                    case eStateAttaching:
368                    case eStateLaunching:
369                    case eStateSuspended:
370                        break;  // Ignore
371
372                    case eStateRunning:
373                    case eStateStepping:
374                        // Still waiting to stop at entry point...
375                        break;
376
377                    case eStateStopped:
378                    case eStateCrashed:
379                        return pid;
380
381                    case eStateDetached:
382                    case eStateExited:
383                        if (err_str && err_len > 0)
384                            snprintf(err_str, err_len, "process exited");
385                        return INVALID_NUB_PROCESS;
386                }
387            }
388
389            DNBProcessResetEvents(pid, set_events);
390        }
391    }
392
393    return INVALID_NUB_PROCESS;
394}
395
396size_t
397GetAllInfos (std::vector<struct kinfo_proc>& proc_infos)
398{
399    size_t size = 0;
400    int name[] = { CTL_KERN, KERN_PROC, KERN_PROC_ALL };
401    u_int namelen = sizeof(name)/sizeof(int);
402    int err;
403
404    // Try to find out how many processes are around so we can
405    // size the buffer appropriately.  sysctl's man page specifically suggests
406    // this approach, and says it returns a bit larger size than needed to
407    // handle any new processes created between then and now.
408
409    err = ::sysctl (name, namelen, NULL, &size, NULL, 0);
410
411    if ((err < 0) && (err != ENOMEM))
412    {
413        proc_infos.clear();
414        perror("sysctl (mib, miblen, NULL, &num_processes, NULL, 0)");
415        return 0;
416    }
417
418
419    // Increase the size of the buffer by a few processes in case more have
420    // been spawned
421    proc_infos.resize (size / sizeof(struct kinfo_proc));
422    size = proc_infos.size() * sizeof(struct kinfo_proc);   // Make sure we don't exceed our resize...
423    err = ::sysctl (name, namelen, &proc_infos[0], &size, NULL, 0);
424    if (err < 0)
425    {
426        proc_infos.clear();
427        return 0;
428    }
429
430    // Trim down our array to fit what we actually got back
431    proc_infos.resize(size / sizeof(struct kinfo_proc));
432    return proc_infos.size();
433}
434
435static size_t
436GetAllInfosMatchingName(const char *full_process_name, std::vector<struct kinfo_proc>& matching_proc_infos)
437{
438
439    matching_proc_infos.clear();
440    if (full_process_name && full_process_name[0])
441    {
442        // We only get the process name, not the full path, from the proc_info.  So just take the
443        // base name of the process name...
444        const char *process_name;
445        process_name = strrchr (full_process_name, '/');
446        if (process_name == NULL)
447            process_name = full_process_name;
448        else
449            process_name++;
450
451        const int process_name_len = strlen(process_name);
452        std::vector<struct kinfo_proc> proc_infos;
453        const size_t num_proc_infos = GetAllInfos(proc_infos);
454        if (num_proc_infos > 0)
455        {
456            uint32_t i;
457            for (i=0; i<num_proc_infos; i++)
458            {
459                // Skip zombie processes and processes with unset status
460                if (proc_infos[i].kp_proc.p_stat == 0 || proc_infos[i].kp_proc.p_stat == SZOMB)
461                    continue;
462
463                // Check for process by name. We only check the first MAXCOMLEN
464                // chars as that is all that kp_proc.p_comm holds.
465
466                if (::strncasecmp(process_name, proc_infos[i].kp_proc.p_comm, MAXCOMLEN) == 0)
467                {
468                    if (process_name_len > MAXCOMLEN)
469                    {
470                        // We found a matching process name whose first MAXCOMLEN
471                        // characters match, but there is more to the name than
472                        // this. We need to get the full process name.  Use proc_pidpath, which will get
473                        // us the full path to the executed process.
474
475                        char proc_path_buf[PATH_MAX];
476
477                        int return_val = proc_pidpath (proc_infos[i].kp_proc.p_pid, proc_path_buf, PATH_MAX);
478                        if (return_val > 0)
479                        {
480                            // Okay, now search backwards from that to see if there is a
481                            // slash in the name.  Note, even though we got all the args we don't care
482                            // because the list data is just a bunch of concatenated null terminated strings
483                            // so strrchr will start from the end of argv0.
484
485                            const char *argv_basename = strrchr(proc_path_buf, '/');
486                            if (argv_basename)
487                            {
488                                // Skip the '/'
489                                ++argv_basename;
490                            }
491                            else
492                            {
493                                // We didn't find a directory delimiter in the process argv[0], just use what was in there
494                                argv_basename = proc_path_buf;
495                            }
496
497                            if (argv_basename)
498                            {
499                                if (::strncasecmp(process_name, argv_basename, PATH_MAX) == 0)
500                                {
501                                    matching_proc_infos.push_back(proc_infos[i]);
502                                }
503                            }
504                        }
505                    }
506                    else
507                    {
508                        // We found a matching process, add it to our list
509                        matching_proc_infos.push_back(proc_infos[i]);
510                    }
511                }
512            }
513        }
514    }
515    // return the newly added matches.
516    return matching_proc_infos.size();
517}
518
519nub_process_t
520DNBProcessAttachWait (const char *waitfor_process_name,
521                      nub_launch_flavor_t launch_flavor,
522                      bool ignore_existing,
523                      struct timespec *timeout_abstime,
524                      useconds_t waitfor_interval,
525                      char *err_str,
526                      size_t err_len,
527                      DNBShouldCancelCallback should_cancel_callback,
528                      void *callback_data)
529{
530    DNBError prepare_error;
531    std::vector<struct kinfo_proc> exclude_proc_infos;
532    size_t num_exclude_proc_infos;
533
534    // If the PrepareForAttach returns a valid token, use  MachProcess to check
535    // for the process, otherwise scan the process table.
536
537    const void *attach_token = MachProcess::PrepareForAttach (waitfor_process_name, launch_flavor, true, prepare_error);
538
539    if (prepare_error.Fail())
540    {
541        DNBLogError ("Error in PrepareForAttach: %s", prepare_error.AsString());
542        return INVALID_NUB_PROCESS;
543    }
544
545    if (attach_token == NULL)
546    {
547        if (ignore_existing)
548            num_exclude_proc_infos = GetAllInfosMatchingName (waitfor_process_name, exclude_proc_infos);
549        else
550            num_exclude_proc_infos = 0;
551    }
552
553    DNBLogThreadedIf (LOG_PROCESS, "Waiting for '%s' to appear...\n", waitfor_process_name);
554
555    // Loop and try to find the process by name
556    nub_process_t waitfor_pid = INVALID_NUB_PROCESS;
557
558    while (waitfor_pid == INVALID_NUB_PROCESS)
559    {
560        if (attach_token != NULL)
561        {
562            nub_process_t pid;
563            pid = MachProcess::CheckForProcess(attach_token);
564            if (pid != INVALID_NUB_PROCESS)
565            {
566                waitfor_pid = pid;
567                break;
568            }
569        }
570        else
571        {
572
573            // Get the current process list, and check for matches that
574            // aren't in our original list. If anyone wants to attach
575            // to an existing process by name, they should do it with
576            // --attach=PROCNAME. Else we will wait for the first matching
577            // process that wasn't in our exclusion list.
578            std::vector<struct kinfo_proc> proc_infos;
579            const size_t num_proc_infos = GetAllInfosMatchingName (waitfor_process_name, proc_infos);
580            for (size_t i=0; i<num_proc_infos; i++)
581            {
582                nub_process_t curr_pid = proc_infos[i].kp_proc.p_pid;
583                for (size_t j=0; j<num_exclude_proc_infos; j++)
584                {
585                    if (curr_pid == exclude_proc_infos[j].kp_proc.p_pid)
586                    {
587                        // This process was in our exclusion list, don't use it.
588                        curr_pid = INVALID_NUB_PROCESS;
589                        break;
590                    }
591                }
592
593                // If we didn't find CURR_PID in our exclusion list, then use it.
594                if (curr_pid != INVALID_NUB_PROCESS)
595                {
596                    // We found our process!
597                    waitfor_pid = curr_pid;
598                    break;
599                }
600            }
601        }
602
603        // If we haven't found our process yet, check for a timeout
604        // and then sleep for a bit until we poll again.
605        if (waitfor_pid == INVALID_NUB_PROCESS)
606        {
607            if (timeout_abstime != NULL)
608            {
609                // Check to see if we have a waitfor-duration option that
610                // has timed out?
611                if (DNBTimer::TimeOfDayLaterThan(*timeout_abstime))
612                {
613                    if (err_str && err_len > 0)
614                        snprintf(err_str, err_len, "operation timed out");
615                    DNBLogError ("error: waiting for process '%s' timed out.\n", waitfor_process_name);
616                    return INVALID_NUB_PROCESS;
617                }
618            }
619
620            // Call the should cancel callback as well...
621
622            if (should_cancel_callback != NULL
623                && should_cancel_callback (callback_data))
624            {
625                DNBLogThreadedIf (LOG_PROCESS, "DNBProcessAttachWait cancelled by should_cancel callback.");
626                waitfor_pid = INVALID_NUB_PROCESS;
627                break;
628            }
629
630            ::usleep (waitfor_interval);    // Sleep for WAITFOR_INTERVAL, then poll again
631        }
632    }
633
634    if (waitfor_pid != INVALID_NUB_PROCESS)
635    {
636        DNBLogThreadedIf (LOG_PROCESS, "Attaching to %s with pid %i...\n", waitfor_process_name, waitfor_pid);
637        waitfor_pid = DNBProcessAttach (waitfor_pid, timeout_abstime, err_str, err_len);
638    }
639
640    bool success = waitfor_pid != INVALID_NUB_PROCESS;
641    MachProcess::CleanupAfterAttach (attach_token, success, prepare_error);
642
643    return waitfor_pid;
644}
645
646nub_bool_t
647DNBProcessDetach (nub_process_t pid)
648{
649    MachProcessSP procSP;
650    if (GetProcessSP (pid, procSP))
651    {
652        return procSP->Detach();
653    }
654    return false;
655}
656
657nub_bool_t
658DNBProcessKill (nub_process_t pid)
659{
660    MachProcessSP procSP;
661    if (GetProcessSP (pid, procSP))
662    {
663        return procSP->Kill ();
664    }
665    return false;
666}
667
668nub_bool_t
669DNBProcessSignal (nub_process_t pid, int signal)
670{
671    MachProcessSP procSP;
672    if (GetProcessSP (pid, procSP))
673    {
674        return procSP->Signal (signal);
675    }
676    return false;
677}
678
679
680nub_bool_t
681DNBProcessIsAlive (nub_process_t pid)
682{
683    MachProcessSP procSP;
684    if (GetProcessSP (pid, procSP))
685    {
686        return MachTask::IsValid (procSP->Task().TaskPort());
687    }
688    return eStateInvalid;
689}
690
691//----------------------------------------------------------------------
692// Process and Thread state information
693//----------------------------------------------------------------------
694nub_state_t
695DNBProcessGetState (nub_process_t pid)
696{
697    MachProcessSP procSP;
698    if (GetProcessSP (pid, procSP))
699    {
700        return procSP->GetState();
701    }
702    return eStateInvalid;
703}
704
705//----------------------------------------------------------------------
706// Process and Thread state information
707//----------------------------------------------------------------------
708nub_bool_t
709DNBProcessGetExitStatus (nub_process_t pid, int* status)
710{
711    MachProcessSP procSP;
712    if (GetProcessSP (pid, procSP))
713    {
714        return procSP->GetExitStatus(status);
715    }
716    return false;
717}
718
719nub_bool_t
720DNBProcessSetExitStatus (nub_process_t pid, int status)
721{
722    MachProcessSP procSP;
723    if (GetProcessSP (pid, procSP))
724    {
725        procSP->SetExitStatus(status);
726        return true;
727    }
728    return false;
729}
730
731
732const char *
733DNBThreadGetName (nub_process_t pid, nub_thread_t tid)
734{
735    MachProcessSP procSP;
736    if (GetProcessSP (pid, procSP))
737        return procSP->ThreadGetName(tid);
738    return NULL;
739}
740
741
742nub_bool_t
743DNBThreadGetIdentifierInfo (nub_process_t pid, nub_thread_t tid, thread_identifier_info_data_t *ident_info)
744{
745    MachProcessSP procSP;
746    if (GetProcessSP (pid, procSP))
747        return procSP->GetThreadList().GetIdentifierInfo(tid, ident_info);
748    return false;
749}
750
751nub_state_t
752DNBThreadGetState (nub_process_t pid, nub_thread_t tid)
753{
754    MachProcessSP procSP;
755    if (GetProcessSP (pid, procSP))
756    {
757        return procSP->ThreadGetState(tid);
758    }
759    return eStateInvalid;
760}
761
762const char *
763DNBStateAsString(nub_state_t state)
764{
765    switch (state)
766    {
767    case eStateInvalid:     return "Invalid";
768    case eStateUnloaded:    return "Unloaded";
769    case eStateAttaching:   return "Attaching";
770    case eStateLaunching:   return "Launching";
771    case eStateStopped:     return "Stopped";
772    case eStateRunning:     return "Running";
773    case eStateStepping:    return "Stepping";
774    case eStateCrashed:     return "Crashed";
775    case eStateDetached:    return "Detached";
776    case eStateExited:      return "Exited";
777    case eStateSuspended:   return "Suspended";
778    }
779    return "nub_state_t ???";
780}
781
782const char *
783DNBProcessGetExecutablePath (nub_process_t pid)
784{
785    MachProcessSP procSP;
786    if (GetProcessSP (pid, procSP))
787    {
788        return procSP->Path();
789    }
790    return NULL;
791}
792
793nub_size_t
794DNBProcessGetArgumentCount (nub_process_t pid)
795{
796    MachProcessSP procSP;
797    if (GetProcessSP (pid, procSP))
798    {
799        return procSP->ArgumentCount();
800    }
801    return 0;
802}
803
804const char *
805DNBProcessGetArgumentAtIndex (nub_process_t pid, nub_size_t idx)
806{
807    MachProcessSP procSP;
808    if (GetProcessSP (pid, procSP))
809    {
810        return procSP->ArgumentAtIndex (idx);
811    }
812    return NULL;
813}
814
815
816//----------------------------------------------------------------------
817// Execution control
818//----------------------------------------------------------------------
819nub_bool_t
820DNBProcessResume (nub_process_t pid, const DNBThreadResumeAction *actions, size_t num_actions)
821{
822    DNBLogThreadedIf(LOG_PROCESS, "%s(pid = %4.4x)", __FUNCTION__, pid);
823    MachProcessSP procSP;
824    if (GetProcessSP (pid, procSP))
825    {
826        DNBThreadResumeActions thread_actions (actions, num_actions);
827
828        // Below we add a default thread plan just in case one wasn't
829        // provided so all threads always know what they were supposed to do
830        if (thread_actions.IsEmpty())
831        {
832            // No thread plans were given, so the default it to run all threads
833            thread_actions.SetDefaultThreadActionIfNeeded (eStateRunning, 0);
834        }
835        else
836        {
837            // Some thread plans were given which means anything that wasn't
838            // specified should remain stopped.
839            thread_actions.SetDefaultThreadActionIfNeeded (eStateStopped, 0);
840        }
841        return procSP->Resume (thread_actions);
842    }
843    return false;
844}
845
846nub_bool_t
847DNBProcessHalt (nub_process_t pid)
848{
849    DNBLogThreadedIf(LOG_PROCESS, "%s(pid = %4.4x)", __FUNCTION__, pid);
850    MachProcessSP procSP;
851    if (GetProcessSP (pid, procSP))
852        return procSP->Signal (SIGSTOP);
853    return false;
854}
855//
856//nub_bool_t
857//DNBThreadResume (nub_process_t pid, nub_thread_t tid, nub_bool_t step)
858//{
859//    DNBLogThreadedIf(LOG_THREAD, "%s(pid = %4.4x, tid = %4.4x, step = %u)", __FUNCTION__, pid, tid, (uint32_t)step);
860//    MachProcessSP procSP;
861//    if (GetProcessSP (pid, procSP))
862//    {
863//        return procSP->Resume(tid, step, 0);
864//    }
865//    return false;
866//}
867//
868//nub_bool_t
869//DNBThreadResumeWithSignal (nub_process_t pid, nub_thread_t tid, nub_bool_t step, int signal)
870//{
871//    DNBLogThreadedIf(LOG_THREAD, "%s(pid = %4.4x, tid = %4.4x, step = %u, signal = %i)", __FUNCTION__, pid, tid, (uint32_t)step, signal);
872//    MachProcessSP procSP;
873//    if (GetProcessSP (pid, procSP))
874//    {
875//        return procSP->Resume(tid, step, signal);
876//    }
877//    return false;
878//}
879
880nub_event_t
881DNBProcessWaitForEvents (nub_process_t pid, nub_event_t event_mask, bool wait_for_set, struct timespec* timeout)
882{
883    nub_event_t result = 0;
884    MachProcessSP procSP;
885    if (GetProcessSP (pid, procSP))
886    {
887        if (wait_for_set)
888            result = procSP->Events().WaitForSetEvents(event_mask, timeout);
889        else
890            result = procSP->Events().WaitForEventsToReset(event_mask, timeout);
891    }
892    return result;
893}
894
895void
896DNBProcessResetEvents (nub_process_t pid, nub_event_t event_mask)
897{
898    MachProcessSP procSP;
899    if (GetProcessSP (pid, procSP))
900        procSP->Events().ResetEvents(event_mask);
901}
902
903// Breakpoints
904nub_break_t
905DNBBreakpointSet (nub_process_t pid, nub_addr_t addr, nub_size_t size, nub_bool_t hardware)
906{
907    MachProcessSP procSP;
908    if (GetProcessSP (pid, procSP))
909    {
910        return procSP->CreateBreakpoint(addr, size, hardware, THREAD_NULL);
911    }
912    return INVALID_NUB_BREAK_ID;
913}
914
915nub_bool_t
916DNBBreakpointClear (nub_process_t pid, nub_break_t breakID)
917{
918    if (NUB_BREAK_ID_IS_VALID(breakID))
919    {
920        MachProcessSP procSP;
921        if (GetProcessSP (pid, procSP))
922        {
923            return procSP->DisableBreakpoint(breakID, true);
924        }
925    }
926    return false; // Failed
927}
928
929nub_ssize_t
930DNBBreakpointGetHitCount (nub_process_t pid, nub_break_t breakID)
931{
932    if (NUB_BREAK_ID_IS_VALID(breakID))
933    {
934        MachProcessSP procSP;
935        if (GetProcessSP (pid, procSP))
936        {
937            DNBBreakpoint *bp = procSP->Breakpoints().FindByID(breakID);
938            if (bp)
939                return bp->GetHitCount();
940        }
941    }
942    return 0;
943}
944
945nub_ssize_t
946DNBBreakpointGetIgnoreCount (nub_process_t pid, nub_break_t breakID)
947{
948    if (NUB_BREAK_ID_IS_VALID(breakID))
949    {
950        MachProcessSP procSP;
951        if (GetProcessSP (pid, procSP))
952        {
953            DNBBreakpoint *bp = procSP->Breakpoints().FindByID(breakID);
954            if (bp)
955                return bp->GetIgnoreCount();
956        }
957    }
958    return 0;
959}
960
961nub_bool_t
962DNBBreakpointSetIgnoreCount (nub_process_t pid, nub_break_t breakID, nub_size_t ignore_count)
963{
964    if (NUB_BREAK_ID_IS_VALID(breakID))
965    {
966        MachProcessSP procSP;
967        if (GetProcessSP (pid, procSP))
968        {
969            DNBBreakpoint *bp = procSP->Breakpoints().FindByID(breakID);
970            if (bp)
971            {
972                bp->SetIgnoreCount(ignore_count);
973                return true;
974            }
975        }
976    }
977    return false;
978}
979
980// Set the callback function for a given breakpoint. The callback function will
981// get called as soon as the breakpoint is hit. The function will be called
982// with the process ID, thread ID, breakpoint ID and the baton, and can return
983//
984nub_bool_t
985DNBBreakpointSetCallback (nub_process_t pid, nub_break_t breakID, DNBCallbackBreakpointHit callback, void *baton)
986{
987    if (NUB_BREAK_ID_IS_VALID(breakID))
988    {
989        MachProcessSP procSP;
990        if (GetProcessSP (pid, procSP))
991        {
992            DNBBreakpoint *bp = procSP->Breakpoints().FindByID(breakID);
993            if (bp)
994            {
995                bp->SetCallback(callback, baton);
996                return true;
997            }
998        }
999    }
1000    return false;
1001}
1002
1003//----------------------------------------------------------------------
1004// Dump the breakpoints stats for process PID for a breakpoint by ID.
1005//----------------------------------------------------------------------
1006void
1007DNBBreakpointPrint (nub_process_t pid, nub_break_t breakID)
1008{
1009    MachProcessSP procSP;
1010    if (GetProcessSP (pid, procSP))
1011        procSP->DumpBreakpoint(breakID);
1012}
1013
1014//----------------------------------------------------------------------
1015// Watchpoints
1016//----------------------------------------------------------------------
1017nub_watch_t
1018DNBWatchpointSet (nub_process_t pid, nub_addr_t addr, nub_size_t size, uint32_t watch_flags, nub_bool_t hardware)
1019{
1020    MachProcessSP procSP;
1021    if (GetProcessSP (pid, procSP))
1022    {
1023        return procSP->CreateWatchpoint(addr, size, watch_flags, hardware, THREAD_NULL);
1024    }
1025    return INVALID_NUB_WATCH_ID;
1026}
1027
1028nub_bool_t
1029DNBWatchpointClear (nub_process_t pid, nub_watch_t watchID)
1030{
1031    if (NUB_WATCH_ID_IS_VALID(watchID))
1032    {
1033        MachProcessSP procSP;
1034        if (GetProcessSP (pid, procSP))
1035        {
1036            return procSP->DisableWatchpoint(watchID, true);
1037        }
1038    }
1039    return false; // Failed
1040}
1041
1042nub_ssize_t
1043DNBWatchpointGetHitCount (nub_process_t pid, nub_watch_t watchID)
1044{
1045    if (NUB_WATCH_ID_IS_VALID(watchID))
1046    {
1047        MachProcessSP procSP;
1048        if (GetProcessSP (pid, procSP))
1049        {
1050            DNBBreakpoint *bp = procSP->Watchpoints().FindByID(watchID);
1051            if (bp)
1052                return bp->GetHitCount();
1053        }
1054    }
1055    return 0;
1056}
1057
1058nub_ssize_t
1059DNBWatchpointGetIgnoreCount (nub_process_t pid, nub_watch_t watchID)
1060{
1061    if (NUB_WATCH_ID_IS_VALID(watchID))
1062    {
1063        MachProcessSP procSP;
1064        if (GetProcessSP (pid, procSP))
1065        {
1066            DNBBreakpoint *bp = procSP->Watchpoints().FindByID(watchID);
1067            if (bp)
1068                return bp->GetIgnoreCount();
1069        }
1070    }
1071    return 0;
1072}
1073
1074nub_bool_t
1075DNBWatchpointSetIgnoreCount (nub_process_t pid, nub_watch_t watchID, nub_size_t ignore_count)
1076{
1077    if (NUB_WATCH_ID_IS_VALID(watchID))
1078    {
1079        MachProcessSP procSP;
1080        if (GetProcessSP (pid, procSP))
1081        {
1082            DNBBreakpoint *bp = procSP->Watchpoints().FindByID(watchID);
1083            if (bp)
1084            {
1085                bp->SetIgnoreCount(ignore_count);
1086                return true;
1087            }
1088        }
1089    }
1090    return false;
1091}
1092
1093// Set the callback function for a given watchpoint. The callback function will
1094// get called as soon as the watchpoint is hit. The function will be called
1095// with the process ID, thread ID, watchpoint ID and the baton, and can return
1096//
1097nub_bool_t
1098DNBWatchpointSetCallback (nub_process_t pid, nub_watch_t watchID, DNBCallbackBreakpointHit callback, void *baton)
1099{
1100    if (NUB_WATCH_ID_IS_VALID(watchID))
1101    {
1102        MachProcessSP procSP;
1103        if (GetProcessSP (pid, procSP))
1104        {
1105            DNBBreakpoint *bp = procSP->Watchpoints().FindByID(watchID);
1106            if (bp)
1107            {
1108                bp->SetCallback(callback, baton);
1109                return true;
1110            }
1111        }
1112    }
1113    return false;
1114}
1115
1116//----------------------------------------------------------------------
1117// Dump the watchpoints stats for process PID for a watchpoint by ID.
1118//----------------------------------------------------------------------
1119void
1120DNBWatchpointPrint (nub_process_t pid, nub_watch_t watchID)
1121{
1122    MachProcessSP procSP;
1123    if (GetProcessSP (pid, procSP))
1124        procSP->DumpWatchpoint(watchID);
1125}
1126
1127//----------------------------------------------------------------------
1128// Return the number of supported hardware watchpoints.
1129//----------------------------------------------------------------------
1130uint32_t
1131DNBWatchpointGetNumSupportedHWP (nub_process_t pid)
1132{
1133    MachProcessSP procSP;
1134    if (GetProcessSP (pid, procSP))
1135        return procSP->GetNumSupportedHardwareWatchpoints();
1136    return 0;
1137}
1138
1139//----------------------------------------------------------------------
1140// Read memory in the address space of process PID. This call will take
1141// care of setting and restoring permissions and breaking up the memory
1142// read into multiple chunks as required.
1143//
1144// RETURNS: number of bytes actually read
1145//----------------------------------------------------------------------
1146nub_size_t
1147DNBProcessMemoryRead (nub_process_t pid, nub_addr_t addr, nub_size_t size, void *buf)
1148{
1149    MachProcessSP procSP;
1150    if (GetProcessSP (pid, procSP))
1151        return procSP->ReadMemory(addr, size, buf);
1152    return 0;
1153}
1154
1155//----------------------------------------------------------------------
1156// Write memory to the address space of process PID. This call will take
1157// care of setting and restoring permissions and breaking up the memory
1158// write into multiple chunks as required.
1159//
1160// RETURNS: number of bytes actually written
1161//----------------------------------------------------------------------
1162nub_size_t
1163DNBProcessMemoryWrite (nub_process_t pid, nub_addr_t addr, nub_size_t size, const void *buf)
1164{
1165    MachProcessSP procSP;
1166    if (GetProcessSP (pid, procSP))
1167        return procSP->WriteMemory(addr, size, buf);
1168    return 0;
1169}
1170
1171nub_addr_t
1172DNBProcessMemoryAllocate (nub_process_t pid, nub_size_t size, uint32_t permissions)
1173{
1174    MachProcessSP procSP;
1175    if (GetProcessSP (pid, procSP))
1176        return procSP->Task().AllocateMemory (size, permissions);
1177    return 0;
1178}
1179
1180nub_bool_t
1181DNBProcessMemoryDeallocate (nub_process_t pid, nub_addr_t addr)
1182{
1183    MachProcessSP procSP;
1184    if (GetProcessSP (pid, procSP))
1185        return procSP->Task().DeallocateMemory (addr);
1186    return 0;
1187}
1188
1189//----------------------------------------------------------------------
1190// Find attributes of the memory region that contains ADDR for process PID,
1191// if possible, and return a string describing those attributes.
1192//
1193// Returns 1 if we could find attributes for this region and OUTBUF can
1194// be sent to the remote debugger.
1195//
1196// Returns 0 if we couldn't find the attributes for a region of memory at
1197// that address and OUTBUF should not be sent.
1198//
1199// Returns -1 if this platform cannot look up information about memory regions
1200// or if we do not yet have a valid launched process.
1201//
1202//----------------------------------------------------------------------
1203int
1204DNBProcessMemoryRegionInfo (nub_process_t pid, nub_addr_t addr, DNBRegionInfo *region_info)
1205{
1206    MachProcessSP procSP;
1207    if (GetProcessSP (pid, procSP))
1208        return procSP->Task().GetMemoryRegionInfo (addr, region_info);
1209
1210    return -1;
1211}
1212
1213std::string
1214DNBProcessGetProfileData (nub_process_t pid, DNBProfileDataScanType scanType)
1215{
1216    MachProcessSP procSP;
1217    if (GetProcessSP (pid, procSP))
1218        return procSP->Task().GetProfileData(scanType);
1219
1220    return std::string("");
1221}
1222
1223nub_bool_t
1224DNBProcessSetEnableAsyncProfiling (nub_process_t pid, nub_bool_t enable, uint64_t interval_usec, DNBProfileDataScanType scan_type)
1225{
1226    MachProcessSP procSP;
1227    if (GetProcessSP (pid, procSP))
1228    {
1229        procSP->SetEnableAsyncProfiling(enable, interval_usec, scan_type);
1230        return true;
1231    }
1232
1233    return false;
1234}
1235
1236//----------------------------------------------------------------------
1237// Formatted output that uses memory and registers from process and
1238// thread in place of arguments.
1239//----------------------------------------------------------------------
1240nub_size_t
1241DNBPrintf (nub_process_t pid, nub_thread_t tid, nub_addr_t base_addr, FILE *file, const char *format)
1242{
1243    if (file == NULL)
1244        return 0;
1245    enum printf_flags
1246    {
1247        alternate_form          = (1 << 0),
1248        zero_padding            = (1 << 1),
1249        negative_field_width    = (1 << 2),
1250        blank_space             = (1 << 3),
1251        show_sign               = (1 << 4),
1252        show_thousands_separator= (1 << 5),
1253    };
1254
1255    enum printf_length_modifiers
1256    {
1257        length_mod_h            = (1 << 0),
1258        length_mod_hh           = (1 << 1),
1259        length_mod_l            = (1 << 2),
1260        length_mod_ll           = (1 << 3),
1261        length_mod_L            = (1 << 4),
1262        length_mod_j            = (1 << 5),
1263        length_mod_t            = (1 << 6),
1264        length_mod_z            = (1 << 7),
1265        length_mod_q            = (1 << 8),
1266    };
1267
1268    nub_addr_t addr = base_addr;
1269    char *end_format = (char*)format + strlen(format);
1270    char *end = NULL;    // For strtoXXXX calls;
1271    std::basic_string<uint8_t> buf;
1272    nub_size_t total_bytes_read = 0;
1273    DNBDataRef data;
1274    const char *f;
1275    for (f = format; *f != '\0' && f < end_format; f++)
1276    {
1277        char ch = *f;
1278        switch (ch)
1279        {
1280        case '%':
1281            {
1282                f++;    // Skip the '%' character
1283//                int min_field_width = 0;
1284//                int precision = 0;
1285                //uint32_t flags = 0;
1286                uint32_t length_modifiers = 0;
1287                uint32_t byte_size = 0;
1288                uint32_t actual_byte_size = 0;
1289                bool is_string = false;
1290                bool is_register = false;
1291                DNBRegisterValue register_value;
1292                int64_t    register_offset = 0;
1293                nub_addr_t register_addr = INVALID_NUB_ADDRESS;
1294
1295                // Create the format string to use for this conversion specification
1296                // so we can remove and mprintf specific flags and formatters.
1297                std::string fprintf_format("%");
1298
1299                // Decode any flags
1300                switch (*f)
1301                {
1302                case '#': fprintf_format += *f++; break; //flags |= alternate_form;          break;
1303                case '0': fprintf_format += *f++; break; //flags |= zero_padding;            break;
1304                case '-': fprintf_format += *f++; break; //flags |= negative_field_width;    break;
1305                case ' ': fprintf_format += *f++; break; //flags |= blank_space;             break;
1306                case '+': fprintf_format += *f++; break; //flags |= show_sign;               break;
1307                case ',': fprintf_format += *f++; break; //flags |= show_thousands_separator;break;
1308                case '{':
1309                case '[':
1310                    {
1311                        // We have a register name specification that can take two forms:
1312                        // ${regname} or ${regname+offset}
1313                        //        The action is to read the register value and add the signed offset
1314                        //        (if any) and use that as the value to format.
1315                        // $[regname] or $[regname+offset]
1316                        //        The action is to read the register value and add the signed offset
1317                        //        (if any) and use the result as an address to dereference. The size
1318                        //        of what is dereferenced is specified by the actual byte size that
1319                        //        follows the minimum field width and precision (see comments below).
1320                        switch (*f)
1321                        {
1322                        case '{':
1323                        case '[':
1324                            {
1325                                char open_scope_ch = *f;
1326                                f++;
1327                                const char *reg_name = f;
1328                                size_t reg_name_length = strcspn(f, "+-}]");
1329                                if (reg_name_length > 0)
1330                                {
1331                                    std::string register_name(reg_name, reg_name_length);
1332                                    f += reg_name_length;
1333                                    register_offset = strtoll(f, &end, 0);
1334                                    if (f < end)
1335                                        f = end;
1336                                    if ((open_scope_ch == '{' && *f != '}') || (open_scope_ch == '[' && *f != ']'))
1337                                    {
1338                                        fprintf(file, "error: Invalid register format string. Valid formats are %%{regname} or %%{regname+offset}, %%[regname] or %%[regname+offset]\n");
1339                                        return total_bytes_read;
1340                                    }
1341                                    else
1342                                    {
1343                                        f++;
1344                                        if (DNBThreadGetRegisterValueByName(pid, tid, REGISTER_SET_ALL, register_name.c_str(), &register_value))
1345                                        {
1346                                            // Set the address to dereference using the register value plus the offset
1347                                            switch (register_value.info.size)
1348                                            {
1349                                            default:
1350                                            case 0:
1351                                                fprintf (file, "error: unsupported register size of %u.\n", register_value.info.size);
1352                                                return total_bytes_read;
1353
1354                                            case 1:        register_addr = register_value.value.uint8  + register_offset; break;
1355                                            case 2:        register_addr = register_value.value.uint16 + register_offset; break;
1356                                            case 4:        register_addr = register_value.value.uint32 + register_offset; break;
1357                                            case 8:        register_addr = register_value.value.uint64 + register_offset; break;
1358                                            case 16:
1359                                                if (open_scope_ch == '[')
1360                                                {
1361                                                    fprintf (file, "error: register size (%u) too large for address.\n", register_value.info.size);
1362                                                    return total_bytes_read;
1363                                                }
1364                                                break;
1365                                            }
1366
1367                                            if (open_scope_ch == '{')
1368                                            {
1369                                                byte_size = register_value.info.size;
1370                                                is_register = true;    // value is in a register
1371
1372                                            }
1373                                            else
1374                                            {
1375                                                addr = register_addr;    // Use register value and offset as the address
1376                                            }
1377                                        }
1378                                        else
1379                                        {
1380                                            fprintf(file, "error: unable to read register '%s' for process %#.4x and thread %#.8" PRIx64 "\n", register_name.c_str(), pid, tid);
1381                                            return total_bytes_read;
1382                                        }
1383                                    }
1384                                }
1385                            }
1386                            break;
1387
1388                        default:
1389                            fprintf(file, "error: %%$ must be followed by (regname + n) or [regname + n]\n");
1390                            return total_bytes_read;
1391                        }
1392                    }
1393                    break;
1394                }
1395
1396                // Check for a minimum field width
1397                if (isdigit(*f))
1398                {
1399                    //min_field_width = strtoul(f, &end, 10);
1400                    strtoul(f, &end, 10);
1401                    if (end > f)
1402                    {
1403                        fprintf_format.append(f, end - f);
1404                        f = end;
1405                    }
1406                }
1407
1408
1409                // Check for a precision
1410                if (*f == '.')
1411                {
1412                    f++;
1413                    if (isdigit(*f))
1414                    {
1415                        fprintf_format += '.';
1416                        //precision = strtoul(f, &end, 10);
1417                        strtoul(f, &end, 10);
1418                        if (end > f)
1419                        {
1420                            fprintf_format.append(f, end - f);
1421                            f = end;
1422                        }
1423                    }
1424                }
1425
1426
1427                // mprintf specific: read the optional actual byte size (abs)
1428                // after the standard minimum field width (mfw) and precision (prec).
1429                // Standard printf calls you can have "mfw.prec" or ".prec", but
1430                // mprintf can have "mfw.prec.abs", ".prec.abs" or "..abs". This is nice
1431                // for strings that may be in a fixed size buffer, but may not use all bytes
1432                // in that buffer for printable characters.
1433                if (*f == '.')
1434                {
1435                    f++;
1436                    actual_byte_size = strtoul(f, &end, 10);
1437                    if (end > f)
1438                    {
1439                        byte_size = actual_byte_size;
1440                        f = end;
1441                    }
1442                }
1443
1444                // Decode the length modifiers
1445                switch (*f)
1446                {
1447                case 'h':    // h and hh length modifiers
1448                    fprintf_format += *f++;
1449                    length_modifiers |= length_mod_h;
1450                    if (*f == 'h')
1451                    {
1452                        fprintf_format += *f++;
1453                        length_modifiers |= length_mod_hh;
1454                    }
1455                    break;
1456
1457                case 'l': // l and ll length modifiers
1458                    fprintf_format += *f++;
1459                    length_modifiers |= length_mod_l;
1460                    if (*f == 'h')
1461                    {
1462                        fprintf_format += *f++;
1463                        length_modifiers |= length_mod_ll;
1464                    }
1465                    break;
1466
1467                case 'L':    fprintf_format += *f++;    length_modifiers |= length_mod_L;    break;
1468                case 'j':    fprintf_format += *f++;    length_modifiers |= length_mod_j;    break;
1469                case 't':    fprintf_format += *f++;    length_modifiers |= length_mod_t;    break;
1470                case 'z':    fprintf_format += *f++;    length_modifiers |= length_mod_z;    break;
1471                case 'q':    fprintf_format += *f++;    length_modifiers |= length_mod_q;    break;
1472                }
1473
1474                // Decode the conversion specifier
1475                switch (*f)
1476                {
1477                case '_':
1478                    // mprintf specific format items
1479                    {
1480                        ++f;    // Skip the '_' character
1481                        switch (*f)
1482                        {
1483                        case 'a':    // Print the current address
1484                            ++f;
1485                            fprintf_format += "ll";
1486                            fprintf_format += *f;    // actual format to show address with folows the 'a' ("%_ax")
1487                            fprintf (file, fprintf_format.c_str(), addr);
1488                            break;
1489                        case 'o':    // offset from base address
1490                            ++f;
1491                            fprintf_format += "ll";
1492                            fprintf_format += *f;    // actual format to show address with folows the 'a' ("%_ox")
1493                            fprintf(file, fprintf_format.c_str(), addr - base_addr);
1494                            break;
1495                        default:
1496                            fprintf (file, "error: unsupported mprintf specific format character '%c'.\n", *f);
1497                            break;
1498                        }
1499                        continue;
1500                    }
1501                    break;
1502
1503                case 'D':
1504                case 'O':
1505                case 'U':
1506                    fprintf_format += *f;
1507                    if (byte_size == 0)
1508                        byte_size = sizeof(long int);
1509                    break;
1510
1511                case 'd':
1512                case 'i':
1513                case 'o':
1514                case 'u':
1515                case 'x':
1516                case 'X':
1517                    fprintf_format += *f;
1518                    if (byte_size == 0)
1519                    {
1520                        if (length_modifiers & length_mod_hh)
1521                            byte_size = sizeof(char);
1522                        else if (length_modifiers & length_mod_h)
1523                            byte_size = sizeof(short);
1524                        else if (length_modifiers & length_mod_ll)
1525                            byte_size = sizeof(long long);
1526                        else if (length_modifiers & length_mod_l)
1527                            byte_size = sizeof(long);
1528                        else
1529                            byte_size = sizeof(int);
1530                    }
1531                    break;
1532
1533                case 'a':
1534                case 'A':
1535                case 'f':
1536                case 'F':
1537                case 'e':
1538                case 'E':
1539                case 'g':
1540                case 'G':
1541                    fprintf_format += *f;
1542                    if (byte_size == 0)
1543                    {
1544                        if (length_modifiers & length_mod_L)
1545                            byte_size = sizeof(long double);
1546                        else
1547                            byte_size = sizeof(double);
1548                    }
1549                    break;
1550
1551                case 'c':
1552                    if ((length_modifiers & length_mod_l) == 0)
1553                    {
1554                        fprintf_format += *f;
1555                        if (byte_size == 0)
1556                            byte_size = sizeof(char);
1557                        break;
1558                    }
1559                    // Fall through to 'C' modifier below...
1560
1561                case 'C':
1562                    fprintf_format += *f;
1563                    if (byte_size == 0)
1564                        byte_size = sizeof(wchar_t);
1565                    break;
1566
1567                case 's':
1568                    fprintf_format += *f;
1569                    if (is_register || byte_size == 0)
1570                        is_string = 1;
1571                    break;
1572
1573                case 'p':
1574                    fprintf_format += *f;
1575                    if (byte_size == 0)
1576                        byte_size = sizeof(void*);
1577                    break;
1578                }
1579
1580                if (is_string)
1581                {
1582                    std::string mem_string;
1583                    const size_t string_buf_len = 4;
1584                    char string_buf[string_buf_len+1];
1585                    char *string_buf_end = string_buf + string_buf_len;
1586                    string_buf[string_buf_len] = '\0';
1587                    nub_size_t bytes_read;
1588                    nub_addr_t str_addr = is_register ? register_addr : addr;
1589                    while ((bytes_read = DNBProcessMemoryRead(pid, str_addr, string_buf_len, &string_buf[0])) > 0)
1590                    {
1591                        // Did we get a NULL termination character yet?
1592                        if (strchr(string_buf, '\0') == string_buf_end)
1593                        {
1594                            // no NULL terminator yet, append as a std::string
1595                            mem_string.append(string_buf, string_buf_len);
1596                            str_addr += string_buf_len;
1597                        }
1598                        else
1599                        {
1600                            // yep
1601                            break;
1602                        }
1603                    }
1604                    // Append as a C-string so we don't get the extra NULL
1605                    // characters in the temp buffer (since it was resized)
1606                    mem_string += string_buf;
1607                    size_t mem_string_len = mem_string.size() + 1;
1608                    fprintf(file, fprintf_format.c_str(), mem_string.c_str());
1609                    if (mem_string_len > 0)
1610                    {
1611                        if (!is_register)
1612                        {
1613                            addr += mem_string_len;
1614                            total_bytes_read += mem_string_len;
1615                        }
1616                    }
1617                    else
1618                        return total_bytes_read;
1619                }
1620                else
1621                if (byte_size > 0)
1622                {
1623                    buf.resize(byte_size);
1624                    nub_size_t bytes_read = 0;
1625                    if (is_register)
1626                        bytes_read = register_value.info.size;
1627                    else
1628                        bytes_read = DNBProcessMemoryRead(pid, addr, buf.size(), &buf[0]);
1629                    if (bytes_read > 0)
1630                    {
1631                        if (!is_register)
1632                            total_bytes_read += bytes_read;
1633
1634                        if (bytes_read == byte_size)
1635                        {
1636                            switch (*f)
1637                            {
1638                            case 'd':
1639                            case 'i':
1640                            case 'o':
1641                            case 'u':
1642                            case 'X':
1643                            case 'x':
1644                            case 'a':
1645                            case 'A':
1646                            case 'f':
1647                            case 'F':
1648                            case 'e':
1649                            case 'E':
1650                            case 'g':
1651                            case 'G':
1652                            case 'p':
1653                            case 'c':
1654                            case 'C':
1655                                {
1656                                    if (is_register)
1657                                        data.SetData(&register_value.value.v_uint8[0], register_value.info.size);
1658                                    else
1659                                        data.SetData(&buf[0], bytes_read);
1660                                    DNBDataRef::offset_t data_offset = 0;
1661                                    if (byte_size <= 4)
1662                                    {
1663                                        uint32_t u32 = data.GetMax32(&data_offset, byte_size);
1664                                        // Show the actual byte width when displaying hex
1665                                        fprintf(file, fprintf_format.c_str(), u32);
1666                                    }
1667                                    else if (byte_size <= 8)
1668                                    {
1669                                        uint64_t u64 = data.GetMax64(&data_offset, byte_size);
1670                                        // Show the actual byte width when displaying hex
1671                                        fprintf(file, fprintf_format.c_str(), u64);
1672                                    }
1673                                    else
1674                                    {
1675                                        fprintf(file, "error: integer size not supported, must be 8 bytes or less (%u bytes).\n", byte_size);
1676                                    }
1677                                    if (!is_register)
1678                                        addr += byte_size;
1679                                }
1680                                break;
1681
1682                            case 's':
1683                                fprintf(file, fprintf_format.c_str(), buf.c_str());
1684                                addr += byte_size;
1685                                break;
1686
1687                            default:
1688                                fprintf(file, "error: unsupported conversion specifier '%c'.\n", *f);
1689                                break;
1690                            }
1691                        }
1692                    }
1693                }
1694                else
1695                    return total_bytes_read;
1696            }
1697            break;
1698
1699        case '\\':
1700            {
1701                f++;
1702                switch (*f)
1703                {
1704                case 'e': ch = '\e'; break;
1705                case 'a': ch = '\a'; break;
1706                case 'b': ch = '\b'; break;
1707                case 'f': ch = '\f'; break;
1708                case 'n': ch = '\n'; break;
1709                case 'r': ch = '\r'; break;
1710                case 't': ch = '\t'; break;
1711                case 'v': ch = '\v'; break;
1712                case '\'': ch = '\''; break;
1713                case '\\': ch = '\\'; break;
1714                case '0':
1715                case '1':
1716                case '2':
1717                case '3':
1718                case '4':
1719                case '5':
1720                case '6':
1721                case '7':
1722                    ch = strtoul(f, &end, 8);
1723                    f = end;
1724                    break;
1725                default:
1726                    ch = *f;
1727                    break;
1728                }
1729                fputc(ch, file);
1730            }
1731            break;
1732
1733        default:
1734            fputc(ch, file);
1735            break;
1736        }
1737    }
1738    return total_bytes_read;
1739}
1740
1741
1742//----------------------------------------------------------------------
1743// Get the number of threads for the specified process.
1744//----------------------------------------------------------------------
1745nub_size_t
1746DNBProcessGetNumThreads (nub_process_t pid)
1747{
1748    MachProcessSP procSP;
1749    if (GetProcessSP (pid, procSP))
1750        return procSP->GetNumThreads();
1751    return 0;
1752}
1753
1754//----------------------------------------------------------------------
1755// Get the thread ID of the current thread.
1756//----------------------------------------------------------------------
1757nub_thread_t
1758DNBProcessGetCurrentThread (nub_process_t pid)
1759{
1760    MachProcessSP procSP;
1761    if (GetProcessSP (pid, procSP))
1762        return procSP->GetCurrentThread();
1763    return 0;
1764}
1765
1766//----------------------------------------------------------------------
1767// Get the mach port number of the current thread.
1768//----------------------------------------------------------------------
1769nub_thread_t
1770DNBProcessGetCurrentThreadMachPort (nub_process_t pid)
1771{
1772    MachProcessSP procSP;
1773    if (GetProcessSP (pid, procSP))
1774        return procSP->GetCurrentThreadMachPort();
1775    return 0;
1776}
1777
1778//----------------------------------------------------------------------
1779// Change the current thread.
1780//----------------------------------------------------------------------
1781nub_thread_t
1782DNBProcessSetCurrentThread (nub_process_t pid, nub_thread_t tid)
1783{
1784    MachProcessSP procSP;
1785    if (GetProcessSP (pid, procSP))
1786        return procSP->SetCurrentThread (tid);
1787    return INVALID_NUB_THREAD;
1788}
1789
1790
1791//----------------------------------------------------------------------
1792// Dump a string describing a thread's stop reason to the specified file
1793// handle
1794//----------------------------------------------------------------------
1795nub_bool_t
1796DNBThreadGetStopReason (nub_process_t pid, nub_thread_t tid, struct DNBThreadStopInfo *stop_info)
1797{
1798    MachProcessSP procSP;
1799    if (GetProcessSP (pid, procSP))
1800        return procSP->GetThreadStoppedReason (tid, stop_info);
1801    return false;
1802}
1803
1804//----------------------------------------------------------------------
1805// Return string description for the specified thread.
1806//
1807// RETURNS: NULL if the thread isn't valid, else a NULL terminated C
1808// string from a static buffer that must be copied prior to subsequent
1809// calls.
1810//----------------------------------------------------------------------
1811const char *
1812DNBThreadGetInfo (nub_process_t pid, nub_thread_t tid)
1813{
1814    MachProcessSP procSP;
1815    if (GetProcessSP (pid, procSP))
1816        return procSP->GetThreadInfo (tid);
1817    return NULL;
1818}
1819
1820//----------------------------------------------------------------------
1821// Get the thread ID given a thread index.
1822//----------------------------------------------------------------------
1823nub_thread_t
1824DNBProcessGetThreadAtIndex (nub_process_t pid, size_t thread_idx)
1825{
1826    MachProcessSP procSP;
1827    if (GetProcessSP (pid, procSP))
1828        return procSP->GetThreadAtIndex (thread_idx);
1829    return INVALID_NUB_THREAD;
1830}
1831
1832//----------------------------------------------------------------------
1833// Do whatever is needed to sync the thread's register state with it's kernel values.
1834//----------------------------------------------------------------------
1835nub_bool_t
1836DNBProcessSyncThreadState (nub_process_t pid, nub_thread_t tid)
1837{
1838    MachProcessSP procSP;
1839    if (GetProcessSP (pid, procSP))
1840        return procSP->SyncThreadState (tid);
1841    return false;
1842
1843}
1844
1845nub_addr_t
1846DNBProcessGetSharedLibraryInfoAddress (nub_process_t pid)
1847{
1848    MachProcessSP procSP;
1849    DNBError err;
1850    if (GetProcessSP (pid, procSP))
1851        return procSP->Task().GetDYLDAllImageInfosAddress (err);
1852    return INVALID_NUB_ADDRESS;
1853}
1854
1855
1856nub_bool_t
1857DNBProcessSharedLibrariesUpdated(nub_process_t pid)
1858{
1859    MachProcessSP procSP;
1860    if (GetProcessSP (pid, procSP))
1861    {
1862        procSP->SharedLibrariesUpdated ();
1863        return true;
1864    }
1865    return false;
1866}
1867
1868//----------------------------------------------------------------------
1869// Get the current shared library information for a process. Only return
1870// the shared libraries that have changed since the last shared library
1871// state changed event if only_changed is non-zero.
1872//----------------------------------------------------------------------
1873nub_size_t
1874DNBProcessGetSharedLibraryInfo (nub_process_t pid, nub_bool_t only_changed, struct DNBExecutableImageInfo **image_infos)
1875{
1876    MachProcessSP procSP;
1877    if (GetProcessSP (pid, procSP))
1878        return procSP->CopyImageInfos (image_infos, only_changed);
1879
1880    // If we have no process, then return NULL for the shared library info
1881    // and zero for shared library count
1882    *image_infos = NULL;
1883    return 0;
1884}
1885
1886//----------------------------------------------------------------------
1887// Get the register set information for a specific thread.
1888//----------------------------------------------------------------------
1889const DNBRegisterSetInfo *
1890DNBGetRegisterSetInfo (nub_size_t *num_reg_sets)
1891{
1892    return DNBArchProtocol::GetRegisterSetInfo (num_reg_sets);
1893}
1894
1895
1896//----------------------------------------------------------------------
1897// Read a register value by register set and register index.
1898//----------------------------------------------------------------------
1899nub_bool_t
1900DNBThreadGetRegisterValueByID (nub_process_t pid, nub_thread_t tid, uint32_t set, uint32_t reg, DNBRegisterValue *value)
1901{
1902    MachProcessSP procSP;
1903    ::bzero (value, sizeof(DNBRegisterValue));
1904    if (GetProcessSP (pid, procSP))
1905    {
1906        if (tid != INVALID_NUB_THREAD)
1907            return procSP->GetRegisterValue (tid, set, reg, value);
1908    }
1909    return false;
1910}
1911
1912nub_bool_t
1913DNBThreadSetRegisterValueByID (nub_process_t pid, nub_thread_t tid, uint32_t set, uint32_t reg, const DNBRegisterValue *value)
1914{
1915    if (tid != INVALID_NUB_THREAD)
1916    {
1917        MachProcessSP procSP;
1918        if (GetProcessSP (pid, procSP))
1919            return procSP->SetRegisterValue (tid, set, reg, value);
1920    }
1921    return false;
1922}
1923
1924nub_size_t
1925DNBThreadGetRegisterContext (nub_process_t pid, nub_thread_t tid, void *buf, size_t buf_len)
1926{
1927    MachProcessSP procSP;
1928    if (GetProcessSP (pid, procSP))
1929    {
1930        if (tid != INVALID_NUB_THREAD)
1931            return procSP->GetThreadList().GetRegisterContext (tid, buf, buf_len);
1932    }
1933    ::bzero (buf, buf_len);
1934    return 0;
1935
1936}
1937
1938nub_size_t
1939DNBThreadSetRegisterContext (nub_process_t pid, nub_thread_t tid, const void *buf, size_t buf_len)
1940{
1941    MachProcessSP procSP;
1942    if (GetProcessSP (pid, procSP))
1943    {
1944        if (tid != INVALID_NUB_THREAD)
1945            return procSP->GetThreadList().SetRegisterContext (tid, buf, buf_len);
1946    }
1947    return 0;
1948}
1949
1950//----------------------------------------------------------------------
1951// Read a register value by name.
1952//----------------------------------------------------------------------
1953nub_bool_t
1954DNBThreadGetRegisterValueByName (nub_process_t pid, nub_thread_t tid, uint32_t reg_set, const char *reg_name, DNBRegisterValue *value)
1955{
1956    MachProcessSP procSP;
1957    ::bzero (value, sizeof(DNBRegisterValue));
1958    if (GetProcessSP (pid, procSP))
1959    {
1960        const struct DNBRegisterSetInfo *set_info;
1961        nub_size_t num_reg_sets = 0;
1962        set_info = DNBGetRegisterSetInfo (&num_reg_sets);
1963        if (set_info)
1964        {
1965            uint32_t set = reg_set;
1966            uint32_t reg;
1967            if (set == REGISTER_SET_ALL)
1968            {
1969                for (set = 1; set < num_reg_sets; ++set)
1970                {
1971                    for (reg = 0; reg < set_info[set].num_registers; ++reg)
1972                    {
1973                        if (strcasecmp(reg_name, set_info[set].registers[reg].name) == 0)
1974                            return procSP->GetRegisterValue (tid, set, reg, value);
1975                    }
1976                }
1977            }
1978            else
1979            {
1980                for (reg = 0; reg < set_info[set].num_registers; ++reg)
1981                {
1982                    if (strcasecmp(reg_name, set_info[set].registers[reg].name) == 0)
1983                        return procSP->GetRegisterValue (tid, set, reg, value);
1984                }
1985            }
1986        }
1987    }
1988    return false;
1989}
1990
1991
1992//----------------------------------------------------------------------
1993// Read a register set and register number from the register name.
1994//----------------------------------------------------------------------
1995nub_bool_t
1996DNBGetRegisterInfoByName (const char *reg_name, DNBRegisterInfo* info)
1997{
1998    const struct DNBRegisterSetInfo *set_info;
1999    nub_size_t num_reg_sets = 0;
2000    set_info = DNBGetRegisterSetInfo (&num_reg_sets);
2001    if (set_info)
2002    {
2003        uint32_t set, reg;
2004        for (set = 1; set < num_reg_sets; ++set)
2005        {
2006            for (reg = 0; reg < set_info[set].num_registers; ++reg)
2007            {
2008                if (strcasecmp(reg_name, set_info[set].registers[reg].name) == 0)
2009                {
2010                    *info = set_info[set].registers[reg];
2011                    return true;
2012                }
2013            }
2014        }
2015
2016        for (set = 1; set < num_reg_sets; ++set)
2017        {
2018            uint32_t reg;
2019            for (reg = 0; reg < set_info[set].num_registers; ++reg)
2020            {
2021                if (set_info[set].registers[reg].alt == NULL)
2022                    continue;
2023
2024                if (strcasecmp(reg_name, set_info[set].registers[reg].alt) == 0)
2025                {
2026                    *info = set_info[set].registers[reg];
2027                    return true;
2028                }
2029            }
2030        }
2031    }
2032
2033    ::bzero (info, sizeof(DNBRegisterInfo));
2034    return false;
2035}
2036
2037
2038//----------------------------------------------------------------------
2039// Set the name to address callback function that this nub can use
2040// for any name to address lookups that are needed.
2041//----------------------------------------------------------------------
2042nub_bool_t
2043DNBProcessSetNameToAddressCallback (nub_process_t pid, DNBCallbackNameToAddress callback, void *baton)
2044{
2045    MachProcessSP procSP;
2046    if (GetProcessSP (pid, procSP))
2047    {
2048        procSP->SetNameToAddressCallback (callback, baton);
2049        return true;
2050    }
2051    return false;
2052}
2053
2054
2055//----------------------------------------------------------------------
2056// Set the name to address callback function that this nub can use
2057// for any name to address lookups that are needed.
2058//----------------------------------------------------------------------
2059nub_bool_t
2060DNBProcessSetSharedLibraryInfoCallback (nub_process_t pid, DNBCallbackCopyExecutableImageInfos callback, void  *baton)
2061{
2062    MachProcessSP procSP;
2063    if (GetProcessSP (pid, procSP))
2064    {
2065        procSP->SetSharedLibraryInfoCallback (callback, baton);
2066        return true;
2067    }
2068    return false;
2069}
2070
2071nub_addr_t
2072DNBProcessLookupAddress (nub_process_t pid, const char *name, const char *shlib)
2073{
2074    MachProcessSP procSP;
2075    if (GetProcessSP (pid, procSP))
2076    {
2077        return procSP->LookupSymbol (name, shlib);
2078    }
2079    return INVALID_NUB_ADDRESS;
2080}
2081
2082
2083nub_size_t
2084DNBProcessGetAvailableSTDOUT (nub_process_t pid, char *buf, nub_size_t buf_size)
2085{
2086    MachProcessSP procSP;
2087    if (GetProcessSP (pid, procSP))
2088        return procSP->GetAvailableSTDOUT (buf, buf_size);
2089    return 0;
2090}
2091
2092nub_size_t
2093DNBProcessGetAvailableSTDERR (nub_process_t pid, char *buf, nub_size_t buf_size)
2094{
2095    MachProcessSP procSP;
2096    if (GetProcessSP (pid, procSP))
2097        return procSP->GetAvailableSTDERR (buf, buf_size);
2098    return 0;
2099}
2100
2101nub_size_t
2102DNBProcessGetAvailableProfileData (nub_process_t pid, char *buf, nub_size_t buf_size)
2103{
2104    MachProcessSP procSP;
2105    if (GetProcessSP (pid, procSP))
2106        return procSP->GetAsyncProfileData (buf, buf_size);
2107    return 0;
2108}
2109
2110nub_size_t
2111DNBProcessGetStopCount (nub_process_t pid)
2112{
2113    MachProcessSP procSP;
2114    if (GetProcessSP (pid, procSP))
2115        return procSP->StopCount();
2116    return 0;
2117}
2118
2119uint32_t
2120DNBProcessGetCPUType (nub_process_t pid)
2121{
2122    MachProcessSP procSP;
2123    if (GetProcessSP (pid, procSP))
2124        return procSP->GetCPUType ();
2125    return 0;
2126
2127}
2128
2129nub_bool_t
2130DNBResolveExecutablePath (const char *path, char *resolved_path, size_t resolved_path_size)
2131{
2132    if (path == NULL || path[0] == '\0')
2133        return false;
2134
2135    char max_path[PATH_MAX];
2136    std::string result;
2137    CFString::GlobPath(path, result);
2138
2139    if (result.empty())
2140        result = path;
2141
2142    struct stat path_stat;
2143    if (::stat(path, &path_stat) == 0)
2144    {
2145        if ((path_stat.st_mode & S_IFMT) == S_IFDIR)
2146        {
2147            CFBundle bundle (path);
2148            CFReleaser<CFURLRef> url(bundle.CopyExecutableURL ());
2149            if (url.get())
2150            {
2151                if (::CFURLGetFileSystemRepresentation (url.get(), true, (UInt8*)resolved_path, resolved_path_size))
2152                    return true;
2153            }
2154        }
2155    }
2156
2157    if (realpath(path, max_path))
2158    {
2159        // Found the path relatively...
2160        ::strncpy(resolved_path, max_path, resolved_path_size);
2161        return strlen(resolved_path) + 1 < resolved_path_size;
2162    }
2163    else
2164    {
2165        // Not a relative path, check the PATH environment variable if the
2166        const char *PATH = getenv("PATH");
2167        if (PATH)
2168        {
2169            const char *curr_path_start = PATH;
2170            const char *curr_path_end;
2171            while (curr_path_start && *curr_path_start)
2172            {
2173                curr_path_end = strchr(curr_path_start, ':');
2174                if (curr_path_end == NULL)
2175                {
2176                    result.assign(curr_path_start);
2177                    curr_path_start = NULL;
2178                }
2179                else if (curr_path_end > curr_path_start)
2180                {
2181                    size_t len = curr_path_end - curr_path_start;
2182                    result.assign(curr_path_start, len);
2183                    curr_path_start += len + 1;
2184                }
2185                else
2186                    break;
2187
2188                result += '/';
2189                result += path;
2190                struct stat s;
2191                if (stat(result.c_str(), &s) == 0)
2192                {
2193                    ::strncpy(resolved_path, result.c_str(), resolved_path_size);
2194                    return result.size() + 1 < resolved_path_size;
2195                }
2196            }
2197        }
2198    }
2199    return false;
2200}
2201
2202
2203void
2204DNBInitialize()
2205{
2206    DNBLogThreadedIf (LOG_PROCESS, "DNBInitialize ()");
2207#if defined (__i386__) || defined (__x86_64__)
2208    DNBArchImplI386::Initialize();
2209    DNBArchImplX86_64::Initialize();
2210#elif defined (__arm__)
2211    DNBArchMachARM::Initialize();
2212#endif
2213}
2214
2215void
2216DNBTerminate()
2217{
2218}
2219
2220nub_bool_t
2221DNBSetArchitecture (const char *arch)
2222{
2223    if (arch && arch[0])
2224    {
2225        if (strcasecmp (arch, "i386") == 0)
2226            return DNBArchProtocol::SetArchitecture (CPU_TYPE_I386);
2227        else if (strcasecmp (arch, "x86_64") == 0)
2228            return DNBArchProtocol::SetArchitecture (CPU_TYPE_X86_64);
2229        else if (strstr (arch, "arm") == arch)
2230            return DNBArchProtocol::SetArchitecture (CPU_TYPE_ARM);
2231    }
2232    return false;
2233}
2234