DNB.cpp revision 102b2c2681c9a830afe25bfea35557421905e42c
1//===-- DNB.cpp -------------------------------------------------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  Created by Greg Clayton on 3/23/07.
11//
12//===----------------------------------------------------------------------===//
13
14#include "DNB.h"
15#include <inttypes.h>
16#include <signal.h>
17#include <stdio.h>
18#include <stdlib.h>
19#include <sys/resource.h>
20#include <sys/stat.h>
21#include <sys/types.h>
22#include <sys/wait.h>
23#include <unistd.h>
24#include <sys/sysctl.h>
25#include <map>
26#include <vector>
27#include <libproc.h>
28
29#include "MacOSX/MachProcess.h"
30#include "MacOSX/MachTask.h"
31#include "CFString.h"
32#include "DNBLog.h"
33#include "DNBDataRef.h"
34#include "DNBThreadResumeActions.h"
35#include "DNBTimer.h"
36#include "CFBundle.h"
37
38
39typedef std::shared_ptr<MachProcess> MachProcessSP;
40typedef std::map<nub_process_t, MachProcessSP> ProcessMap;
41typedef ProcessMap::iterator ProcessMapIter;
42typedef ProcessMap::const_iterator ProcessMapConstIter;
43
44size_t GetAllInfos (std::vector<struct kinfo_proc>& proc_infos);
45static size_t GetAllInfosMatchingName (const char *process_name, std::vector<struct kinfo_proc>& matching_proc_infos);
46
47//----------------------------------------------------------------------
48// A Thread safe singleton to get a process map pointer.
49//
50// Returns a pointer to the existing process map, or a pointer to a
51// newly created process map if CAN_CREATE is non-zero.
52//----------------------------------------------------------------------
53static ProcessMap*
54GetProcessMap(bool can_create)
55{
56    static ProcessMap* g_process_map_ptr = NULL;
57
58    if (can_create && g_process_map_ptr == NULL)
59    {
60        static pthread_mutex_t g_process_map_mutex = PTHREAD_MUTEX_INITIALIZER;
61        PTHREAD_MUTEX_LOCKER (locker, &g_process_map_mutex);
62        if (g_process_map_ptr == NULL)
63            g_process_map_ptr = new ProcessMap;
64    }
65    return g_process_map_ptr;
66}
67
68//----------------------------------------------------------------------
69// Add PID to the shared process pointer map.
70//
71// Return non-zero value if we succeed in adding the process to the map.
72// The only time this should fail is if we run out of memory and can't
73// allocate a ProcessMap.
74//----------------------------------------------------------------------
75static nub_bool_t
76AddProcessToMap (nub_process_t pid, MachProcessSP& procSP)
77{
78    ProcessMap* process_map = GetProcessMap(true);
79    if (process_map)
80    {
81        process_map->insert(std::make_pair(pid, procSP));
82        return true;
83    }
84    return false;
85}
86
87//----------------------------------------------------------------------
88// Remove the shared pointer for PID from the process map.
89//
90// Returns the number of items removed from the process map.
91//----------------------------------------------------------------------
92static size_t
93RemoveProcessFromMap (nub_process_t pid)
94{
95    ProcessMap* process_map = GetProcessMap(false);
96    if (process_map)
97    {
98        return process_map->erase(pid);
99    }
100    return 0;
101}
102
103//----------------------------------------------------------------------
104// Get the shared pointer for PID from the existing process map.
105//
106// Returns true if we successfully find a shared pointer to a
107// MachProcess object.
108//----------------------------------------------------------------------
109static nub_bool_t
110GetProcessSP (nub_process_t pid, MachProcessSP& procSP)
111{
112    ProcessMap* process_map = GetProcessMap(false);
113    if (process_map != NULL)
114    {
115        ProcessMapIter pos = process_map->find(pid);
116        if (pos != process_map->end())
117        {
118            procSP = pos->second;
119            return true;
120        }
121    }
122    procSP.reset();
123    return false;
124}
125
126
127static void *
128waitpid_thread (void *arg)
129{
130    const pid_t pid = (pid_t)(intptr_t)arg;
131    int status;
132    while (1)
133    {
134        pid_t child_pid = waitpid(pid, &status, 0);
135        DNBLogThreadedIf(LOG_PROCESS, "waitpid_process_thread (): waitpid (pid = %i, &status, 0) => %i, status = %i, errno = %i", pid, child_pid, status, errno);
136
137        if (child_pid < 0)
138        {
139            if (errno == EINTR)
140                continue;
141            break;
142        }
143        else
144        {
145            if (WIFSTOPPED(status))
146            {
147                continue;
148            }
149            else// if (WIFEXITED(status) || WIFSIGNALED(status))
150            {
151                DNBLogThreadedIf(LOG_PROCESS, "waitpid_process_thread (): setting exit status for pid = %i to %i", child_pid, status);
152                DNBProcessSetExitStatus (child_pid, status);
153                return NULL;
154            }
155        }
156    }
157
158    // We should never exit as long as our child process is alive, so if we
159    // do something else went wrong and we should exit...
160    DNBLogThreadedIf(LOG_PROCESS, "waitpid_process_thread (): main loop exited, setting exit status to an invalid value (-1) for pid %i", pid);
161    DNBProcessSetExitStatus (pid, -1);
162    return NULL;
163}
164
165static bool
166spawn_waitpid_thread (pid_t pid)
167{
168    pthread_t thread = THREAD_NULL;
169    ::pthread_create (&thread, NULL, waitpid_thread, (void *)(intptr_t)pid);
170    if (thread != THREAD_NULL)
171    {
172        ::pthread_detach (thread);
173        return true;
174    }
175    return false;
176}
177
178nub_process_t
179DNBProcessLaunch (const char *path,
180                  char const *argv[],
181                  const char *envp[],
182                  const char *working_directory, // NULL => dont' change, non-NULL => set working directory for inferior to this
183                  const char *stdin_path,
184                  const char *stdout_path,
185                  const char *stderr_path,
186                  bool no_stdio,
187                  nub_launch_flavor_t launch_flavor,
188                  int disable_aslr,
189                  char *err_str,
190                  size_t err_len)
191{
192    DNBLogThreadedIf(LOG_PROCESS, "%s ( path='%s', argv = %p, envp = %p, working_dir=%s, stdin=%s, stdout=%s, stderr=%s, no-stdio=%i, launch_flavor = %u, disable_aslr = %d, err = %p, err_len = %llu) called...",
193                     __FUNCTION__,
194                     path,
195                     argv,
196                     envp,
197                     working_directory,
198                     stdin_path,
199                     stdout_path,
200                     stderr_path,
201                     no_stdio,
202                     launch_flavor,
203                     disable_aslr,
204                     err_str,
205                     (uint64_t)err_len);
206
207    if (err_str && err_len > 0)
208        err_str[0] = '\0';
209    struct stat path_stat;
210    if (::stat(path, &path_stat) == -1)
211    {
212        char stat_error[256];
213        ::strerror_r (errno, stat_error, sizeof(stat_error));
214        snprintf(err_str, err_len, "%s (%s)", stat_error, path);
215        return INVALID_NUB_PROCESS;
216    }
217
218    MachProcessSP processSP (new MachProcess);
219    if (processSP.get())
220    {
221        DNBError launch_err;
222        pid_t pid = processSP->LaunchForDebug (path,
223                                               argv,
224                                               envp,
225                                               working_directory,
226                                               stdin_path,
227                                               stdout_path,
228                                               stderr_path,
229                                               no_stdio,
230                                               launch_flavor,
231                                               disable_aslr,
232                                               launch_err);
233        if (err_str)
234        {
235            *err_str = '\0';
236            if (launch_err.Fail())
237            {
238                const char *launch_err_str = launch_err.AsString();
239                if (launch_err_str)
240                {
241                    strncpy(err_str, launch_err_str, err_len-1);
242                    err_str[err_len-1] = '\0';  // Make sure the error string is terminated
243                }
244            }
245        }
246
247        DNBLogThreadedIf(LOG_PROCESS, "(DebugNub) new pid is %d...", pid);
248
249        if (pid != INVALID_NUB_PROCESS)
250        {
251            // Spawn a thread to reap our child inferior process...
252            spawn_waitpid_thread (pid);
253
254            if (processSP->Task().TaskPortForProcessID (launch_err) == TASK_NULL)
255            {
256                // We failed to get the task for our process ID which is bad.
257                // Kill our process otherwise it will be stopped at the entry
258                // point and get reparented to someone else and never go away.
259                DNBLog ("Could not get task port for process, sending SIGKILL and exiting.");
260                kill (SIGKILL, pid);
261
262                if (err_str && err_len > 0)
263                {
264                    if (launch_err.AsString())
265                    {
266                        ::snprintf (err_str, err_len, "failed to get the task for process %i (%s)", pid, launch_err.AsString());
267                    }
268                    else
269                    {
270                        ::snprintf (err_str, err_len, "failed to get the task for process %i", pid);
271                    }
272                }
273            }
274            else
275            {
276                bool res = AddProcessToMap(pid, processSP);
277                assert(res && "Couldn't add process to map!");
278                return pid;
279            }
280        }
281    }
282    return INVALID_NUB_PROCESS;
283}
284
285nub_process_t
286DNBProcessAttachByName (const char *name, struct timespec *timeout, char *err_str, size_t err_len)
287{
288    if (err_str && err_len > 0)
289        err_str[0] = '\0';
290    std::vector<struct kinfo_proc> matching_proc_infos;
291    size_t num_matching_proc_infos = GetAllInfosMatchingName(name, matching_proc_infos);
292    if (num_matching_proc_infos == 0)
293    {
294        DNBLogError ("error: no processes match '%s'\n", name);
295        return INVALID_NUB_PROCESS;
296    }
297    else if (num_matching_proc_infos > 1)
298    {
299        DNBLogError ("error: %llu processes match '%s':\n", (uint64_t)num_matching_proc_infos, name);
300        size_t i;
301        for (i=0; i<num_matching_proc_infos; ++i)
302            DNBLogError ("%6u - %s\n", matching_proc_infos[i].kp_proc.p_pid, matching_proc_infos[i].kp_proc.p_comm);
303        return INVALID_NUB_PROCESS;
304    }
305
306    return DNBProcessAttach (matching_proc_infos[0].kp_proc.p_pid, timeout, err_str, err_len);
307}
308
309nub_process_t
310DNBProcessAttach (nub_process_t attach_pid, struct timespec *timeout, char *err_str, size_t err_len)
311{
312    if (err_str && err_len > 0)
313        err_str[0] = '\0';
314
315    pid_t pid = INVALID_NUB_PROCESS;
316    MachProcessSP processSP(new MachProcess);
317    if (processSP.get())
318    {
319        DNBLogThreadedIf(LOG_PROCESS, "(DebugNub) attaching to pid %d...", attach_pid);
320        pid = processSP->AttachForDebug (attach_pid, err_str,  err_len);
321
322        if (pid != INVALID_NUB_PROCESS)
323        {
324            bool res = AddProcessToMap(pid, processSP);
325            assert(res && "Couldn't add process to map!");
326            spawn_waitpid_thread(pid);
327        }
328    }
329
330    while (pid != INVALID_NUB_PROCESS)
331    {
332        // Wait for process to start up and hit entry point
333        DNBLogThreadedIf (LOG_PROCESS,
334                          "%s DNBProcessWaitForEvent (%4.4x, eEventProcessRunningStateChanged | eEventProcessStoppedStateChanged, true, INFINITE)...",
335                          __FUNCTION__,
336                          pid);
337        nub_event_t set_events = DNBProcessWaitForEvents (pid,
338                                                          eEventProcessRunningStateChanged | eEventProcessStoppedStateChanged,
339                                                          true,
340                                                          timeout);
341
342        DNBLogThreadedIf (LOG_PROCESS,
343                          "%s DNBProcessWaitForEvent (%4.4x, eEventProcessRunningStateChanged | eEventProcessStoppedStateChanged, true, INFINITE) => 0x%8.8x",
344                          __FUNCTION__,
345                          pid,
346                          set_events);
347
348        if (set_events == 0)
349        {
350            if (err_str && err_len > 0)
351                snprintf(err_str, err_len, "operation timed out");
352            pid = INVALID_NUB_PROCESS;
353        }
354        else
355        {
356            if (set_events & (eEventProcessRunningStateChanged | eEventProcessStoppedStateChanged))
357            {
358                nub_state_t pid_state = DNBProcessGetState (pid);
359                DNBLogThreadedIf (LOG_PROCESS, "%s process %4.4x state changed (eEventProcessStateChanged): %s",
360                        __FUNCTION__, pid, DNBStateAsString(pid_state));
361
362                switch (pid_state)
363                {
364                    default:
365                    case eStateInvalid:
366                    case eStateUnloaded:
367                    case eStateAttaching:
368                    case eStateLaunching:
369                    case eStateSuspended:
370                        break;  // Ignore
371
372                    case eStateRunning:
373                    case eStateStepping:
374                        // Still waiting to stop at entry point...
375                        break;
376
377                    case eStateStopped:
378                    case eStateCrashed:
379                        return pid;
380
381                    case eStateDetached:
382                    case eStateExited:
383                        if (err_str && err_len > 0)
384                            snprintf(err_str, err_len, "process exited");
385                        return INVALID_NUB_PROCESS;
386                }
387            }
388
389            DNBProcessResetEvents(pid, set_events);
390        }
391    }
392
393    return INVALID_NUB_PROCESS;
394}
395
396size_t
397GetAllInfos (std::vector<struct kinfo_proc>& proc_infos)
398{
399    size_t size = 0;
400    int name[] = { CTL_KERN, KERN_PROC, KERN_PROC_ALL };
401    u_int namelen = sizeof(name)/sizeof(int);
402    int err;
403
404    // Try to find out how many processes are around so we can
405    // size the buffer appropriately.  sysctl's man page specifically suggests
406    // this approach, and says it returns a bit larger size than needed to
407    // handle any new processes created between then and now.
408
409    err = ::sysctl (name, namelen, NULL, &size, NULL, 0);
410
411    if ((err < 0) && (err != ENOMEM))
412    {
413        proc_infos.clear();
414        perror("sysctl (mib, miblen, NULL, &num_processes, NULL, 0)");
415        return 0;
416    }
417
418
419    // Increase the size of the buffer by a few processes in case more have
420    // been spawned
421    proc_infos.resize (size / sizeof(struct kinfo_proc));
422    size = proc_infos.size() * sizeof(struct kinfo_proc);   // Make sure we don't exceed our resize...
423    err = ::sysctl (name, namelen, &proc_infos[0], &size, NULL, 0);
424    if (err < 0)
425    {
426        proc_infos.clear();
427        return 0;
428    }
429
430    // Trim down our array to fit what we actually got back
431    proc_infos.resize(size / sizeof(struct kinfo_proc));
432    return proc_infos.size();
433}
434
435static size_t
436GetAllInfosMatchingName(const char *full_process_name, std::vector<struct kinfo_proc>& matching_proc_infos)
437{
438
439    matching_proc_infos.clear();
440    if (full_process_name && full_process_name[0])
441    {
442        // We only get the process name, not the full path, from the proc_info.  So just take the
443        // base name of the process name...
444        const char *process_name;
445        process_name = strrchr (full_process_name, '/');
446        if (process_name == NULL)
447            process_name = full_process_name;
448        else
449            process_name++;
450
451        const int process_name_len = strlen(process_name);
452        std::vector<struct kinfo_proc> proc_infos;
453        const size_t num_proc_infos = GetAllInfos(proc_infos);
454        if (num_proc_infos > 0)
455        {
456            uint32_t i;
457            for (i=0; i<num_proc_infos; i++)
458            {
459                // Skip zombie processes and processes with unset status
460                if (proc_infos[i].kp_proc.p_stat == 0 || proc_infos[i].kp_proc.p_stat == SZOMB)
461                    continue;
462
463                // Check for process by name. We only check the first MAXCOMLEN
464                // chars as that is all that kp_proc.p_comm holds.
465
466                if (::strncasecmp(process_name, proc_infos[i].kp_proc.p_comm, MAXCOMLEN) == 0)
467                {
468                    if (process_name_len > MAXCOMLEN)
469                    {
470                        // We found a matching process name whose first MAXCOMLEN
471                        // characters match, but there is more to the name than
472                        // this. We need to get the full process name.  Use proc_pidpath, which will get
473                        // us the full path to the executed process.
474
475                        char proc_path_buf[PATH_MAX];
476
477                        int return_val = proc_pidpath (proc_infos[i].kp_proc.p_pid, proc_path_buf, PATH_MAX);
478                        if (return_val > 0)
479                        {
480                            // Okay, now search backwards from that to see if there is a
481                            // slash in the name.  Note, even though we got all the args we don't care
482                            // because the list data is just a bunch of concatenated null terminated strings
483                            // so strrchr will start from the end of argv0.
484
485                            const char *argv_basename = strrchr(proc_path_buf, '/');
486                            if (argv_basename)
487                            {
488                                // Skip the '/'
489                                ++argv_basename;
490                            }
491                            else
492                            {
493                                // We didn't find a directory delimiter in the process argv[0], just use what was in there
494                                argv_basename = proc_path_buf;
495                            }
496
497                            if (argv_basename)
498                            {
499                                if (::strncasecmp(process_name, argv_basename, PATH_MAX) == 0)
500                                {
501                                    matching_proc_infos.push_back(proc_infos[i]);
502                                }
503                            }
504                        }
505                    }
506                    else
507                    {
508                        // We found a matching process, add it to our list
509                        matching_proc_infos.push_back(proc_infos[i]);
510                    }
511                }
512            }
513        }
514    }
515    // return the newly added matches.
516    return matching_proc_infos.size();
517}
518
519nub_process_t
520DNBProcessAttachWait (const char *waitfor_process_name,
521                      nub_launch_flavor_t launch_flavor,
522                      bool ignore_existing,
523                      struct timespec *timeout_abstime,
524                      useconds_t waitfor_interval,
525                      char *err_str,
526                      size_t err_len,
527                      DNBShouldCancelCallback should_cancel_callback,
528                      void *callback_data)
529{
530    DNBError prepare_error;
531    std::vector<struct kinfo_proc> exclude_proc_infos;
532    size_t num_exclude_proc_infos;
533
534    // If the PrepareForAttach returns a valid token, use  MachProcess to check
535    // for the process, otherwise scan the process table.
536
537    const void *attach_token = MachProcess::PrepareForAttach (waitfor_process_name, launch_flavor, true, prepare_error);
538
539    if (prepare_error.Fail())
540    {
541        DNBLogError ("Error in PrepareForAttach: %s", prepare_error.AsString());
542        return INVALID_NUB_PROCESS;
543    }
544
545    if (attach_token == NULL)
546    {
547        if (ignore_existing)
548            num_exclude_proc_infos = GetAllInfosMatchingName (waitfor_process_name, exclude_proc_infos);
549        else
550            num_exclude_proc_infos = 0;
551    }
552
553    DNBLogThreadedIf (LOG_PROCESS, "Waiting for '%s' to appear...\n", waitfor_process_name);
554
555    // Loop and try to find the process by name
556    nub_process_t waitfor_pid = INVALID_NUB_PROCESS;
557
558    while (waitfor_pid == INVALID_NUB_PROCESS)
559    {
560        if (attach_token != NULL)
561        {
562            nub_process_t pid;
563            pid = MachProcess::CheckForProcess(attach_token);
564            if (pid != INVALID_NUB_PROCESS)
565            {
566                waitfor_pid = pid;
567                break;
568            }
569        }
570        else
571        {
572
573            // Get the current process list, and check for matches that
574            // aren't in our original list. If anyone wants to attach
575            // to an existing process by name, they should do it with
576            // --attach=PROCNAME. Else we will wait for the first matching
577            // process that wasn't in our exclusion list.
578            std::vector<struct kinfo_proc> proc_infos;
579            const size_t num_proc_infos = GetAllInfosMatchingName (waitfor_process_name, proc_infos);
580            for (size_t i=0; i<num_proc_infos; i++)
581            {
582                nub_process_t curr_pid = proc_infos[i].kp_proc.p_pid;
583                for (size_t j=0; j<num_exclude_proc_infos; j++)
584                {
585                    if (curr_pid == exclude_proc_infos[j].kp_proc.p_pid)
586                    {
587                        // This process was in our exclusion list, don't use it.
588                        curr_pid = INVALID_NUB_PROCESS;
589                        break;
590                    }
591                }
592
593                // If we didn't find CURR_PID in our exclusion list, then use it.
594                if (curr_pid != INVALID_NUB_PROCESS)
595                {
596                    // We found our process!
597                    waitfor_pid = curr_pid;
598                    break;
599                }
600            }
601        }
602
603        // If we haven't found our process yet, check for a timeout
604        // and then sleep for a bit until we poll again.
605        if (waitfor_pid == INVALID_NUB_PROCESS)
606        {
607            if (timeout_abstime != NULL)
608            {
609                // Check to see if we have a waitfor-duration option that
610                // has timed out?
611                if (DNBTimer::TimeOfDayLaterThan(*timeout_abstime))
612                {
613                    if (err_str && err_len > 0)
614                        snprintf(err_str, err_len, "operation timed out");
615                    DNBLogError ("error: waiting for process '%s' timed out.\n", waitfor_process_name);
616                    return INVALID_NUB_PROCESS;
617                }
618            }
619
620            // Call the should cancel callback as well...
621
622            if (should_cancel_callback != NULL
623                && should_cancel_callback (callback_data))
624            {
625                DNBLogThreadedIf (LOG_PROCESS, "DNBProcessAttachWait cancelled by should_cancel callback.");
626                waitfor_pid = INVALID_NUB_PROCESS;
627                break;
628            }
629
630            ::usleep (waitfor_interval);    // Sleep for WAITFOR_INTERVAL, then poll again
631        }
632    }
633
634    if (waitfor_pid != INVALID_NUB_PROCESS)
635    {
636        DNBLogThreadedIf (LOG_PROCESS, "Attaching to %s with pid %i...\n", waitfor_process_name, waitfor_pid);
637        waitfor_pid = DNBProcessAttach (waitfor_pid, timeout_abstime, err_str, err_len);
638    }
639
640    bool success = waitfor_pid != INVALID_NUB_PROCESS;
641    MachProcess::CleanupAfterAttach (attach_token, success, prepare_error);
642
643    return waitfor_pid;
644}
645
646nub_bool_t
647DNBProcessDetach (nub_process_t pid)
648{
649    MachProcessSP procSP;
650    if (GetProcessSP (pid, procSP))
651    {
652        return procSP->Detach();
653    }
654    return false;
655}
656
657nub_bool_t
658DNBProcessKill (nub_process_t pid)
659{
660    MachProcessSP procSP;
661    if (GetProcessSP (pid, procSP))
662    {
663        return procSP->Kill ();
664    }
665    return false;
666}
667
668nub_bool_t
669DNBProcessSignal (nub_process_t pid, int signal)
670{
671    MachProcessSP procSP;
672    if (GetProcessSP (pid, procSP))
673    {
674        return procSP->Signal (signal);
675    }
676    return false;
677}
678
679
680nub_bool_t
681DNBProcessIsAlive (nub_process_t pid)
682{
683    MachProcessSP procSP;
684    if (GetProcessSP (pid, procSP))
685    {
686        return MachTask::IsValid (procSP->Task().TaskPort());
687    }
688    return eStateInvalid;
689}
690
691//----------------------------------------------------------------------
692// Process and Thread state information
693//----------------------------------------------------------------------
694nub_state_t
695DNBProcessGetState (nub_process_t pid)
696{
697    MachProcessSP procSP;
698    if (GetProcessSP (pid, procSP))
699    {
700        return procSP->GetState();
701    }
702    return eStateInvalid;
703}
704
705//----------------------------------------------------------------------
706// Process and Thread state information
707//----------------------------------------------------------------------
708nub_bool_t
709DNBProcessGetExitStatus (nub_process_t pid, int* status)
710{
711    MachProcessSP procSP;
712    if (GetProcessSP (pid, procSP))
713    {
714        return procSP->GetExitStatus(status);
715    }
716    return false;
717}
718
719nub_bool_t
720DNBProcessSetExitStatus (nub_process_t pid, int status)
721{
722    MachProcessSP procSP;
723    if (GetProcessSP (pid, procSP))
724    {
725        procSP->SetExitStatus(status);
726        return true;
727    }
728    return false;
729}
730
731
732const char *
733DNBThreadGetName (nub_process_t pid, nub_thread_t tid)
734{
735    MachProcessSP procSP;
736    if (GetProcessSP (pid, procSP))
737        return procSP->ThreadGetName(tid);
738    return NULL;
739}
740
741
742nub_bool_t
743DNBThreadGetIdentifierInfo (nub_process_t pid, nub_thread_t tid, thread_identifier_info_data_t *ident_info)
744{
745    MachProcessSP procSP;
746    if (GetProcessSP (pid, procSP))
747        return procSP->GetThreadList().GetIdentifierInfo(tid, ident_info);
748    return false;
749}
750
751nub_state_t
752DNBThreadGetState (nub_process_t pid, nub_thread_t tid)
753{
754    MachProcessSP procSP;
755    if (GetProcessSP (pid, procSP))
756    {
757        return procSP->ThreadGetState(tid);
758    }
759    return eStateInvalid;
760}
761
762const char *
763DNBStateAsString(nub_state_t state)
764{
765    switch (state)
766    {
767    case eStateInvalid:     return "Invalid";
768    case eStateUnloaded:    return "Unloaded";
769    case eStateAttaching:   return "Attaching";
770    case eStateLaunching:   return "Launching";
771    case eStateStopped:     return "Stopped";
772    case eStateRunning:     return "Running";
773    case eStateStepping:    return "Stepping";
774    case eStateCrashed:     return "Crashed";
775    case eStateDetached:    return "Detached";
776    case eStateExited:      return "Exited";
777    case eStateSuspended:   return "Suspended";
778    }
779    return "nub_state_t ???";
780}
781
782const char *
783DNBProcessGetExecutablePath (nub_process_t pid)
784{
785    MachProcessSP procSP;
786    if (GetProcessSP (pid, procSP))
787    {
788        return procSP->Path();
789    }
790    return NULL;
791}
792
793nub_size_t
794DNBProcessGetArgumentCount (nub_process_t pid)
795{
796    MachProcessSP procSP;
797    if (GetProcessSP (pid, procSP))
798    {
799        return procSP->ArgumentCount();
800    }
801    return 0;
802}
803
804const char *
805DNBProcessGetArgumentAtIndex (nub_process_t pid, nub_size_t idx)
806{
807    MachProcessSP procSP;
808    if (GetProcessSP (pid, procSP))
809    {
810        return procSP->ArgumentAtIndex (idx);
811    }
812    return NULL;
813}
814
815
816//----------------------------------------------------------------------
817// Execution control
818//----------------------------------------------------------------------
819nub_bool_t
820DNBProcessResume (nub_process_t pid, const DNBThreadResumeAction *actions, size_t num_actions)
821{
822    DNBLogThreadedIf(LOG_PROCESS, "%s(pid = %4.4x)", __FUNCTION__, pid);
823    MachProcessSP procSP;
824    if (GetProcessSP (pid, procSP))
825    {
826        DNBThreadResumeActions thread_actions (actions, num_actions);
827
828        // Below we add a default thread plan just in case one wasn't
829        // provided so all threads always know what they were supposed to do
830        if (thread_actions.IsEmpty())
831        {
832            // No thread plans were given, so the default it to run all threads
833            thread_actions.SetDefaultThreadActionIfNeeded (eStateRunning, 0);
834        }
835        else
836        {
837            // Some thread plans were given which means anything that wasn't
838            // specified should remain stopped.
839            thread_actions.SetDefaultThreadActionIfNeeded (eStateStopped, 0);
840        }
841        return procSP->Resume (thread_actions);
842    }
843    return false;
844}
845
846nub_bool_t
847DNBProcessHalt (nub_process_t pid)
848{
849    DNBLogThreadedIf(LOG_PROCESS, "%s(pid = %4.4x)", __FUNCTION__, pid);
850    MachProcessSP procSP;
851    if (GetProcessSP (pid, procSP))
852        return procSP->Signal (SIGSTOP);
853    return false;
854}
855//
856//nub_bool_t
857//DNBThreadResume (nub_process_t pid, nub_thread_t tid, nub_bool_t step)
858//{
859//    DNBLogThreadedIf(LOG_THREAD, "%s(pid = %4.4x, tid = %4.4x, step = %u)", __FUNCTION__, pid, tid, (uint32_t)step);
860//    MachProcessSP procSP;
861//    if (GetProcessSP (pid, procSP))
862//    {
863//        return procSP->Resume(tid, step, 0);
864//    }
865//    return false;
866//}
867//
868//nub_bool_t
869//DNBThreadResumeWithSignal (nub_process_t pid, nub_thread_t tid, nub_bool_t step, int signal)
870//{
871//    DNBLogThreadedIf(LOG_THREAD, "%s(pid = %4.4x, tid = %4.4x, step = %u, signal = %i)", __FUNCTION__, pid, tid, (uint32_t)step, signal);
872//    MachProcessSP procSP;
873//    if (GetProcessSP (pid, procSP))
874//    {
875//        return procSP->Resume(tid, step, signal);
876//    }
877//    return false;
878//}
879
880nub_event_t
881DNBProcessWaitForEvents (nub_process_t pid, nub_event_t event_mask, bool wait_for_set, struct timespec* timeout)
882{
883    nub_event_t result = 0;
884    MachProcessSP procSP;
885    if (GetProcessSP (pid, procSP))
886    {
887        if (wait_for_set)
888            result = procSP->Events().WaitForSetEvents(event_mask, timeout);
889        else
890            result = procSP->Events().WaitForEventsToReset(event_mask, timeout);
891    }
892    return result;
893}
894
895void
896DNBProcessResetEvents (nub_process_t pid, nub_event_t event_mask)
897{
898    MachProcessSP procSP;
899    if (GetProcessSP (pid, procSP))
900        procSP->Events().ResetEvents(event_mask);
901}
902
903void
904DNBProcessInterruptEvents (nub_process_t pid)
905{
906    MachProcessSP procSP;
907    if (GetProcessSP (pid, procSP))
908        procSP->Events().SetEvents(eEventProcessAsyncInterrupt);
909}
910
911
912// Breakpoints
913nub_break_t
914DNBBreakpointSet (nub_process_t pid, nub_addr_t addr, nub_size_t size, nub_bool_t hardware)
915{
916    MachProcessSP procSP;
917    if (GetProcessSP (pid, procSP))
918    {
919        return procSP->CreateBreakpoint(addr, size, hardware, THREAD_NULL);
920    }
921    return INVALID_NUB_BREAK_ID;
922}
923
924nub_bool_t
925DNBBreakpointClear (nub_process_t pid, nub_break_t breakID)
926{
927    if (NUB_BREAK_ID_IS_VALID(breakID))
928    {
929        MachProcessSP procSP;
930        if (GetProcessSP (pid, procSP))
931        {
932            return procSP->DisableBreakpoint(breakID, true);
933        }
934    }
935    return false; // Failed
936}
937
938nub_ssize_t
939DNBBreakpointGetHitCount (nub_process_t pid, nub_break_t breakID)
940{
941    if (NUB_BREAK_ID_IS_VALID(breakID))
942    {
943        MachProcessSP procSP;
944        if (GetProcessSP (pid, procSP))
945        {
946            DNBBreakpoint *bp = procSP->Breakpoints().FindByID(breakID);
947            if (bp)
948                return bp->GetHitCount();
949        }
950    }
951    return 0;
952}
953
954nub_ssize_t
955DNBBreakpointGetIgnoreCount (nub_process_t pid, nub_break_t breakID)
956{
957    if (NUB_BREAK_ID_IS_VALID(breakID))
958    {
959        MachProcessSP procSP;
960        if (GetProcessSP (pid, procSP))
961        {
962            DNBBreakpoint *bp = procSP->Breakpoints().FindByID(breakID);
963            if (bp)
964                return bp->GetIgnoreCount();
965        }
966    }
967    return 0;
968}
969
970nub_bool_t
971DNBBreakpointSetIgnoreCount (nub_process_t pid, nub_break_t breakID, nub_size_t ignore_count)
972{
973    if (NUB_BREAK_ID_IS_VALID(breakID))
974    {
975        MachProcessSP procSP;
976        if (GetProcessSP (pid, procSP))
977        {
978            DNBBreakpoint *bp = procSP->Breakpoints().FindByID(breakID);
979            if (bp)
980            {
981                bp->SetIgnoreCount(ignore_count);
982                return true;
983            }
984        }
985    }
986    return false;
987}
988
989// Set the callback function for a given breakpoint. The callback function will
990// get called as soon as the breakpoint is hit. The function will be called
991// with the process ID, thread ID, breakpoint ID and the baton, and can return
992//
993nub_bool_t
994DNBBreakpointSetCallback (nub_process_t pid, nub_break_t breakID, DNBCallbackBreakpointHit callback, void *baton)
995{
996    if (NUB_BREAK_ID_IS_VALID(breakID))
997    {
998        MachProcessSP procSP;
999        if (GetProcessSP (pid, procSP))
1000        {
1001            DNBBreakpoint *bp = procSP->Breakpoints().FindByID(breakID);
1002            if (bp)
1003            {
1004                bp->SetCallback(callback, baton);
1005                return true;
1006            }
1007        }
1008    }
1009    return false;
1010}
1011
1012//----------------------------------------------------------------------
1013// Dump the breakpoints stats for process PID for a breakpoint by ID.
1014//----------------------------------------------------------------------
1015void
1016DNBBreakpointPrint (nub_process_t pid, nub_break_t breakID)
1017{
1018    MachProcessSP procSP;
1019    if (GetProcessSP (pid, procSP))
1020        procSP->DumpBreakpoint(breakID);
1021}
1022
1023//----------------------------------------------------------------------
1024// Watchpoints
1025//----------------------------------------------------------------------
1026nub_watch_t
1027DNBWatchpointSet (nub_process_t pid, nub_addr_t addr, nub_size_t size, uint32_t watch_flags, nub_bool_t hardware)
1028{
1029    MachProcessSP procSP;
1030    if (GetProcessSP (pid, procSP))
1031    {
1032        return procSP->CreateWatchpoint(addr, size, watch_flags, hardware, THREAD_NULL);
1033    }
1034    return INVALID_NUB_WATCH_ID;
1035}
1036
1037nub_bool_t
1038DNBWatchpointClear (nub_process_t pid, nub_watch_t watchID)
1039{
1040    if (NUB_WATCH_ID_IS_VALID(watchID))
1041    {
1042        MachProcessSP procSP;
1043        if (GetProcessSP (pid, procSP))
1044        {
1045            return procSP->DisableWatchpoint(watchID, true);
1046        }
1047    }
1048    return false; // Failed
1049}
1050
1051nub_ssize_t
1052DNBWatchpointGetHitCount (nub_process_t pid, nub_watch_t watchID)
1053{
1054    if (NUB_WATCH_ID_IS_VALID(watchID))
1055    {
1056        MachProcessSP procSP;
1057        if (GetProcessSP (pid, procSP))
1058        {
1059            DNBBreakpoint *bp = procSP->Watchpoints().FindByID(watchID);
1060            if (bp)
1061                return bp->GetHitCount();
1062        }
1063    }
1064    return 0;
1065}
1066
1067nub_ssize_t
1068DNBWatchpointGetIgnoreCount (nub_process_t pid, nub_watch_t watchID)
1069{
1070    if (NUB_WATCH_ID_IS_VALID(watchID))
1071    {
1072        MachProcessSP procSP;
1073        if (GetProcessSP (pid, procSP))
1074        {
1075            DNBBreakpoint *bp = procSP->Watchpoints().FindByID(watchID);
1076            if (bp)
1077                return bp->GetIgnoreCount();
1078        }
1079    }
1080    return 0;
1081}
1082
1083nub_bool_t
1084DNBWatchpointSetIgnoreCount (nub_process_t pid, nub_watch_t watchID, nub_size_t ignore_count)
1085{
1086    if (NUB_WATCH_ID_IS_VALID(watchID))
1087    {
1088        MachProcessSP procSP;
1089        if (GetProcessSP (pid, procSP))
1090        {
1091            DNBBreakpoint *bp = procSP->Watchpoints().FindByID(watchID);
1092            if (bp)
1093            {
1094                bp->SetIgnoreCount(ignore_count);
1095                return true;
1096            }
1097        }
1098    }
1099    return false;
1100}
1101
1102// Set the callback function for a given watchpoint. The callback function will
1103// get called as soon as the watchpoint is hit. The function will be called
1104// with the process ID, thread ID, watchpoint ID and the baton, and can return
1105//
1106nub_bool_t
1107DNBWatchpointSetCallback (nub_process_t pid, nub_watch_t watchID, DNBCallbackBreakpointHit callback, void *baton)
1108{
1109    if (NUB_WATCH_ID_IS_VALID(watchID))
1110    {
1111        MachProcessSP procSP;
1112        if (GetProcessSP (pid, procSP))
1113        {
1114            DNBBreakpoint *bp = procSP->Watchpoints().FindByID(watchID);
1115            if (bp)
1116            {
1117                bp->SetCallback(callback, baton);
1118                return true;
1119            }
1120        }
1121    }
1122    return false;
1123}
1124
1125//----------------------------------------------------------------------
1126// Dump the watchpoints stats for process PID for a watchpoint by ID.
1127//----------------------------------------------------------------------
1128void
1129DNBWatchpointPrint (nub_process_t pid, nub_watch_t watchID)
1130{
1131    MachProcessSP procSP;
1132    if (GetProcessSP (pid, procSP))
1133        procSP->DumpWatchpoint(watchID);
1134}
1135
1136//----------------------------------------------------------------------
1137// Return the number of supported hardware watchpoints.
1138//----------------------------------------------------------------------
1139uint32_t
1140DNBWatchpointGetNumSupportedHWP (nub_process_t pid)
1141{
1142    MachProcessSP procSP;
1143    if (GetProcessSP (pid, procSP))
1144        return procSP->GetNumSupportedHardwareWatchpoints();
1145    return 0;
1146}
1147
1148//----------------------------------------------------------------------
1149// Read memory in the address space of process PID. This call will take
1150// care of setting and restoring permissions and breaking up the memory
1151// read into multiple chunks as required.
1152//
1153// RETURNS: number of bytes actually read
1154//----------------------------------------------------------------------
1155nub_size_t
1156DNBProcessMemoryRead (nub_process_t pid, nub_addr_t addr, nub_size_t size, void *buf)
1157{
1158    MachProcessSP procSP;
1159    if (GetProcessSP (pid, procSP))
1160        return procSP->ReadMemory(addr, size, buf);
1161    return 0;
1162}
1163
1164//----------------------------------------------------------------------
1165// Write memory to the address space of process PID. This call will take
1166// care of setting and restoring permissions and breaking up the memory
1167// write into multiple chunks as required.
1168//
1169// RETURNS: number of bytes actually written
1170//----------------------------------------------------------------------
1171nub_size_t
1172DNBProcessMemoryWrite (nub_process_t pid, nub_addr_t addr, nub_size_t size, const void *buf)
1173{
1174    MachProcessSP procSP;
1175    if (GetProcessSP (pid, procSP))
1176        return procSP->WriteMemory(addr, size, buf);
1177    return 0;
1178}
1179
1180nub_addr_t
1181DNBProcessMemoryAllocate (nub_process_t pid, nub_size_t size, uint32_t permissions)
1182{
1183    MachProcessSP procSP;
1184    if (GetProcessSP (pid, procSP))
1185        return procSP->Task().AllocateMemory (size, permissions);
1186    return 0;
1187}
1188
1189nub_bool_t
1190DNBProcessMemoryDeallocate (nub_process_t pid, nub_addr_t addr)
1191{
1192    MachProcessSP procSP;
1193    if (GetProcessSP (pid, procSP))
1194        return procSP->Task().DeallocateMemory (addr);
1195    return 0;
1196}
1197
1198//----------------------------------------------------------------------
1199// Find attributes of the memory region that contains ADDR for process PID,
1200// if possible, and return a string describing those attributes.
1201//
1202// Returns 1 if we could find attributes for this region and OUTBUF can
1203// be sent to the remote debugger.
1204//
1205// Returns 0 if we couldn't find the attributes for a region of memory at
1206// that address and OUTBUF should not be sent.
1207//
1208// Returns -1 if this platform cannot look up information about memory regions
1209// or if we do not yet have a valid launched process.
1210//
1211//----------------------------------------------------------------------
1212int
1213DNBProcessMemoryRegionInfo (nub_process_t pid, nub_addr_t addr, DNBRegionInfo *region_info)
1214{
1215    MachProcessSP procSP;
1216    if (GetProcessSP (pid, procSP))
1217        return procSP->Task().GetMemoryRegionInfo (addr, region_info);
1218
1219    return -1;
1220}
1221
1222std::string
1223DNBProcessGetProfileData (nub_process_t pid, DNBProfileDataScanType scanType)
1224{
1225    MachProcessSP procSP;
1226    if (GetProcessSP (pid, procSP))
1227        return procSP->Task().GetProfileData(scanType);
1228
1229    return std::string("");
1230}
1231
1232nub_bool_t
1233DNBProcessSetEnableAsyncProfiling (nub_process_t pid, nub_bool_t enable, uint64_t interval_usec, DNBProfileDataScanType scan_type)
1234{
1235    MachProcessSP procSP;
1236    if (GetProcessSP (pid, procSP))
1237    {
1238        procSP->SetEnableAsyncProfiling(enable, interval_usec, scan_type);
1239        return true;
1240    }
1241
1242    return false;
1243}
1244
1245//----------------------------------------------------------------------
1246// Formatted output that uses memory and registers from process and
1247// thread in place of arguments.
1248//----------------------------------------------------------------------
1249nub_size_t
1250DNBPrintf (nub_process_t pid, nub_thread_t tid, nub_addr_t base_addr, FILE *file, const char *format)
1251{
1252    if (file == NULL)
1253        return 0;
1254    enum printf_flags
1255    {
1256        alternate_form          = (1 << 0),
1257        zero_padding            = (1 << 1),
1258        negative_field_width    = (1 << 2),
1259        blank_space             = (1 << 3),
1260        show_sign               = (1 << 4),
1261        show_thousands_separator= (1 << 5),
1262    };
1263
1264    enum printf_length_modifiers
1265    {
1266        length_mod_h            = (1 << 0),
1267        length_mod_hh           = (1 << 1),
1268        length_mod_l            = (1 << 2),
1269        length_mod_ll           = (1 << 3),
1270        length_mod_L            = (1 << 4),
1271        length_mod_j            = (1 << 5),
1272        length_mod_t            = (1 << 6),
1273        length_mod_z            = (1 << 7),
1274        length_mod_q            = (1 << 8),
1275    };
1276
1277    nub_addr_t addr = base_addr;
1278    char *end_format = (char*)format + strlen(format);
1279    char *end = NULL;    // For strtoXXXX calls;
1280    std::basic_string<uint8_t> buf;
1281    nub_size_t total_bytes_read = 0;
1282    DNBDataRef data;
1283    const char *f;
1284    for (f = format; *f != '\0' && f < end_format; f++)
1285    {
1286        char ch = *f;
1287        switch (ch)
1288        {
1289        case '%':
1290            {
1291                f++;    // Skip the '%' character
1292//                int min_field_width = 0;
1293//                int precision = 0;
1294                //uint32_t flags = 0;
1295                uint32_t length_modifiers = 0;
1296                uint32_t byte_size = 0;
1297                uint32_t actual_byte_size = 0;
1298                bool is_string = false;
1299                bool is_register = false;
1300                DNBRegisterValue register_value;
1301                int64_t    register_offset = 0;
1302                nub_addr_t register_addr = INVALID_NUB_ADDRESS;
1303
1304                // Create the format string to use for this conversion specification
1305                // so we can remove and mprintf specific flags and formatters.
1306                std::string fprintf_format("%");
1307
1308                // Decode any flags
1309                switch (*f)
1310                {
1311                case '#': fprintf_format += *f++; break; //flags |= alternate_form;          break;
1312                case '0': fprintf_format += *f++; break; //flags |= zero_padding;            break;
1313                case '-': fprintf_format += *f++; break; //flags |= negative_field_width;    break;
1314                case ' ': fprintf_format += *f++; break; //flags |= blank_space;             break;
1315                case '+': fprintf_format += *f++; break; //flags |= show_sign;               break;
1316                case ',': fprintf_format += *f++; break; //flags |= show_thousands_separator;break;
1317                case '{':
1318                case '[':
1319                    {
1320                        // We have a register name specification that can take two forms:
1321                        // ${regname} or ${regname+offset}
1322                        //        The action is to read the register value and add the signed offset
1323                        //        (if any) and use that as the value to format.
1324                        // $[regname] or $[regname+offset]
1325                        //        The action is to read the register value and add the signed offset
1326                        //        (if any) and use the result as an address to dereference. The size
1327                        //        of what is dereferenced is specified by the actual byte size that
1328                        //        follows the minimum field width and precision (see comments below).
1329                        switch (*f)
1330                        {
1331                        case '{':
1332                        case '[':
1333                            {
1334                                char open_scope_ch = *f;
1335                                f++;
1336                                const char *reg_name = f;
1337                                size_t reg_name_length = strcspn(f, "+-}]");
1338                                if (reg_name_length > 0)
1339                                {
1340                                    std::string register_name(reg_name, reg_name_length);
1341                                    f += reg_name_length;
1342                                    register_offset = strtoll(f, &end, 0);
1343                                    if (f < end)
1344                                        f = end;
1345                                    if ((open_scope_ch == '{' && *f != '}') || (open_scope_ch == '[' && *f != ']'))
1346                                    {
1347                                        fprintf(file, "error: Invalid register format string. Valid formats are %%{regname} or %%{regname+offset}, %%[regname] or %%[regname+offset]\n");
1348                                        return total_bytes_read;
1349                                    }
1350                                    else
1351                                    {
1352                                        f++;
1353                                        if (DNBThreadGetRegisterValueByName(pid, tid, REGISTER_SET_ALL, register_name.c_str(), &register_value))
1354                                        {
1355                                            // Set the address to dereference using the register value plus the offset
1356                                            switch (register_value.info.size)
1357                                            {
1358                                            default:
1359                                            case 0:
1360                                                fprintf (file, "error: unsupported register size of %u.\n", register_value.info.size);
1361                                                return total_bytes_read;
1362
1363                                            case 1:        register_addr = register_value.value.uint8  + register_offset; break;
1364                                            case 2:        register_addr = register_value.value.uint16 + register_offset; break;
1365                                            case 4:        register_addr = register_value.value.uint32 + register_offset; break;
1366                                            case 8:        register_addr = register_value.value.uint64 + register_offset; break;
1367                                            case 16:
1368                                                if (open_scope_ch == '[')
1369                                                {
1370                                                    fprintf (file, "error: register size (%u) too large for address.\n", register_value.info.size);
1371                                                    return total_bytes_read;
1372                                                }
1373                                                break;
1374                                            }
1375
1376                                            if (open_scope_ch == '{')
1377                                            {
1378                                                byte_size = register_value.info.size;
1379                                                is_register = true;    // value is in a register
1380
1381                                            }
1382                                            else
1383                                            {
1384                                                addr = register_addr;    // Use register value and offset as the address
1385                                            }
1386                                        }
1387                                        else
1388                                        {
1389                                            fprintf(file, "error: unable to read register '%s' for process %#.4x and thread %#.8" PRIx64 "\n", register_name.c_str(), pid, tid);
1390                                            return total_bytes_read;
1391                                        }
1392                                    }
1393                                }
1394                            }
1395                            break;
1396
1397                        default:
1398                            fprintf(file, "error: %%$ must be followed by (regname + n) or [regname + n]\n");
1399                            return total_bytes_read;
1400                        }
1401                    }
1402                    break;
1403                }
1404
1405                // Check for a minimum field width
1406                if (isdigit(*f))
1407                {
1408                    //min_field_width = strtoul(f, &end, 10);
1409                    strtoul(f, &end, 10);
1410                    if (end > f)
1411                    {
1412                        fprintf_format.append(f, end - f);
1413                        f = end;
1414                    }
1415                }
1416
1417
1418                // Check for a precision
1419                if (*f == '.')
1420                {
1421                    f++;
1422                    if (isdigit(*f))
1423                    {
1424                        fprintf_format += '.';
1425                        //precision = strtoul(f, &end, 10);
1426                        strtoul(f, &end, 10);
1427                        if (end > f)
1428                        {
1429                            fprintf_format.append(f, end - f);
1430                            f = end;
1431                        }
1432                    }
1433                }
1434
1435
1436                // mprintf specific: read the optional actual byte size (abs)
1437                // after the standard minimum field width (mfw) and precision (prec).
1438                // Standard printf calls you can have "mfw.prec" or ".prec", but
1439                // mprintf can have "mfw.prec.abs", ".prec.abs" or "..abs". This is nice
1440                // for strings that may be in a fixed size buffer, but may not use all bytes
1441                // in that buffer for printable characters.
1442                if (*f == '.')
1443                {
1444                    f++;
1445                    actual_byte_size = strtoul(f, &end, 10);
1446                    if (end > f)
1447                    {
1448                        byte_size = actual_byte_size;
1449                        f = end;
1450                    }
1451                }
1452
1453                // Decode the length modifiers
1454                switch (*f)
1455                {
1456                case 'h':    // h and hh length modifiers
1457                    fprintf_format += *f++;
1458                    length_modifiers |= length_mod_h;
1459                    if (*f == 'h')
1460                    {
1461                        fprintf_format += *f++;
1462                        length_modifiers |= length_mod_hh;
1463                    }
1464                    break;
1465
1466                case 'l': // l and ll length modifiers
1467                    fprintf_format += *f++;
1468                    length_modifiers |= length_mod_l;
1469                    if (*f == 'h')
1470                    {
1471                        fprintf_format += *f++;
1472                        length_modifiers |= length_mod_ll;
1473                    }
1474                    break;
1475
1476                case 'L':    fprintf_format += *f++;    length_modifiers |= length_mod_L;    break;
1477                case 'j':    fprintf_format += *f++;    length_modifiers |= length_mod_j;    break;
1478                case 't':    fprintf_format += *f++;    length_modifiers |= length_mod_t;    break;
1479                case 'z':    fprintf_format += *f++;    length_modifiers |= length_mod_z;    break;
1480                case 'q':    fprintf_format += *f++;    length_modifiers |= length_mod_q;    break;
1481                }
1482
1483                // Decode the conversion specifier
1484                switch (*f)
1485                {
1486                case '_':
1487                    // mprintf specific format items
1488                    {
1489                        ++f;    // Skip the '_' character
1490                        switch (*f)
1491                        {
1492                        case 'a':    // Print the current address
1493                            ++f;
1494                            fprintf_format += "ll";
1495                            fprintf_format += *f;    // actual format to show address with folows the 'a' ("%_ax")
1496                            fprintf (file, fprintf_format.c_str(), addr);
1497                            break;
1498                        case 'o':    // offset from base address
1499                            ++f;
1500                            fprintf_format += "ll";
1501                            fprintf_format += *f;    // actual format to show address with folows the 'a' ("%_ox")
1502                            fprintf(file, fprintf_format.c_str(), addr - base_addr);
1503                            break;
1504                        default:
1505                            fprintf (file, "error: unsupported mprintf specific format character '%c'.\n", *f);
1506                            break;
1507                        }
1508                        continue;
1509                    }
1510                    break;
1511
1512                case 'D':
1513                case 'O':
1514                case 'U':
1515                    fprintf_format += *f;
1516                    if (byte_size == 0)
1517                        byte_size = sizeof(long int);
1518                    break;
1519
1520                case 'd':
1521                case 'i':
1522                case 'o':
1523                case 'u':
1524                case 'x':
1525                case 'X':
1526                    fprintf_format += *f;
1527                    if (byte_size == 0)
1528                    {
1529                        if (length_modifiers & length_mod_hh)
1530                            byte_size = sizeof(char);
1531                        else if (length_modifiers & length_mod_h)
1532                            byte_size = sizeof(short);
1533                        else if (length_modifiers & length_mod_ll)
1534                            byte_size = sizeof(long long);
1535                        else if (length_modifiers & length_mod_l)
1536                            byte_size = sizeof(long);
1537                        else
1538                            byte_size = sizeof(int);
1539                    }
1540                    break;
1541
1542                case 'a':
1543                case 'A':
1544                case 'f':
1545                case 'F':
1546                case 'e':
1547                case 'E':
1548                case 'g':
1549                case 'G':
1550                    fprintf_format += *f;
1551                    if (byte_size == 0)
1552                    {
1553                        if (length_modifiers & length_mod_L)
1554                            byte_size = sizeof(long double);
1555                        else
1556                            byte_size = sizeof(double);
1557                    }
1558                    break;
1559
1560                case 'c':
1561                    if ((length_modifiers & length_mod_l) == 0)
1562                    {
1563                        fprintf_format += *f;
1564                        if (byte_size == 0)
1565                            byte_size = sizeof(char);
1566                        break;
1567                    }
1568                    // Fall through to 'C' modifier below...
1569
1570                case 'C':
1571                    fprintf_format += *f;
1572                    if (byte_size == 0)
1573                        byte_size = sizeof(wchar_t);
1574                    break;
1575
1576                case 's':
1577                    fprintf_format += *f;
1578                    if (is_register || byte_size == 0)
1579                        is_string = 1;
1580                    break;
1581
1582                case 'p':
1583                    fprintf_format += *f;
1584                    if (byte_size == 0)
1585                        byte_size = sizeof(void*);
1586                    break;
1587                }
1588
1589                if (is_string)
1590                {
1591                    std::string mem_string;
1592                    const size_t string_buf_len = 4;
1593                    char string_buf[string_buf_len+1];
1594                    char *string_buf_end = string_buf + string_buf_len;
1595                    string_buf[string_buf_len] = '\0';
1596                    nub_size_t bytes_read;
1597                    nub_addr_t str_addr = is_register ? register_addr : addr;
1598                    while ((bytes_read = DNBProcessMemoryRead(pid, str_addr, string_buf_len, &string_buf[0])) > 0)
1599                    {
1600                        // Did we get a NULL termination character yet?
1601                        if (strchr(string_buf, '\0') == string_buf_end)
1602                        {
1603                            // no NULL terminator yet, append as a std::string
1604                            mem_string.append(string_buf, string_buf_len);
1605                            str_addr += string_buf_len;
1606                        }
1607                        else
1608                        {
1609                            // yep
1610                            break;
1611                        }
1612                    }
1613                    // Append as a C-string so we don't get the extra NULL
1614                    // characters in the temp buffer (since it was resized)
1615                    mem_string += string_buf;
1616                    size_t mem_string_len = mem_string.size() + 1;
1617                    fprintf(file, fprintf_format.c_str(), mem_string.c_str());
1618                    if (mem_string_len > 0)
1619                    {
1620                        if (!is_register)
1621                        {
1622                            addr += mem_string_len;
1623                            total_bytes_read += mem_string_len;
1624                        }
1625                    }
1626                    else
1627                        return total_bytes_read;
1628                }
1629                else
1630                if (byte_size > 0)
1631                {
1632                    buf.resize(byte_size);
1633                    nub_size_t bytes_read = 0;
1634                    if (is_register)
1635                        bytes_read = register_value.info.size;
1636                    else
1637                        bytes_read = DNBProcessMemoryRead(pid, addr, buf.size(), &buf[0]);
1638                    if (bytes_read > 0)
1639                    {
1640                        if (!is_register)
1641                            total_bytes_read += bytes_read;
1642
1643                        if (bytes_read == byte_size)
1644                        {
1645                            switch (*f)
1646                            {
1647                            case 'd':
1648                            case 'i':
1649                            case 'o':
1650                            case 'u':
1651                            case 'X':
1652                            case 'x':
1653                            case 'a':
1654                            case 'A':
1655                            case 'f':
1656                            case 'F':
1657                            case 'e':
1658                            case 'E':
1659                            case 'g':
1660                            case 'G':
1661                            case 'p':
1662                            case 'c':
1663                            case 'C':
1664                                {
1665                                    if (is_register)
1666                                        data.SetData(&register_value.value.v_uint8[0], register_value.info.size);
1667                                    else
1668                                        data.SetData(&buf[0], bytes_read);
1669                                    DNBDataRef::offset_t data_offset = 0;
1670                                    if (byte_size <= 4)
1671                                    {
1672                                        uint32_t u32 = data.GetMax32(&data_offset, byte_size);
1673                                        // Show the actual byte width when displaying hex
1674                                        fprintf(file, fprintf_format.c_str(), u32);
1675                                    }
1676                                    else if (byte_size <= 8)
1677                                    {
1678                                        uint64_t u64 = data.GetMax64(&data_offset, byte_size);
1679                                        // Show the actual byte width when displaying hex
1680                                        fprintf(file, fprintf_format.c_str(), u64);
1681                                    }
1682                                    else
1683                                    {
1684                                        fprintf(file, "error: integer size not supported, must be 8 bytes or less (%u bytes).\n", byte_size);
1685                                    }
1686                                    if (!is_register)
1687                                        addr += byte_size;
1688                                }
1689                                break;
1690
1691                            case 's':
1692                                fprintf(file, fprintf_format.c_str(), buf.c_str());
1693                                addr += byte_size;
1694                                break;
1695
1696                            default:
1697                                fprintf(file, "error: unsupported conversion specifier '%c'.\n", *f);
1698                                break;
1699                            }
1700                        }
1701                    }
1702                }
1703                else
1704                    return total_bytes_read;
1705            }
1706            break;
1707
1708        case '\\':
1709            {
1710                f++;
1711                switch (*f)
1712                {
1713                case 'e': ch = '\e'; break;
1714                case 'a': ch = '\a'; break;
1715                case 'b': ch = '\b'; break;
1716                case 'f': ch = '\f'; break;
1717                case 'n': ch = '\n'; break;
1718                case 'r': ch = '\r'; break;
1719                case 't': ch = '\t'; break;
1720                case 'v': ch = '\v'; break;
1721                case '\'': ch = '\''; break;
1722                case '\\': ch = '\\'; break;
1723                case '0':
1724                case '1':
1725                case '2':
1726                case '3':
1727                case '4':
1728                case '5':
1729                case '6':
1730                case '7':
1731                    ch = strtoul(f, &end, 8);
1732                    f = end;
1733                    break;
1734                default:
1735                    ch = *f;
1736                    break;
1737                }
1738                fputc(ch, file);
1739            }
1740            break;
1741
1742        default:
1743            fputc(ch, file);
1744            break;
1745        }
1746    }
1747    return total_bytes_read;
1748}
1749
1750
1751//----------------------------------------------------------------------
1752// Get the number of threads for the specified process.
1753//----------------------------------------------------------------------
1754nub_size_t
1755DNBProcessGetNumThreads (nub_process_t pid)
1756{
1757    MachProcessSP procSP;
1758    if (GetProcessSP (pid, procSP))
1759        return procSP->GetNumThreads();
1760    return 0;
1761}
1762
1763//----------------------------------------------------------------------
1764// Get the thread ID of the current thread.
1765//----------------------------------------------------------------------
1766nub_thread_t
1767DNBProcessGetCurrentThread (nub_process_t pid)
1768{
1769    MachProcessSP procSP;
1770    if (GetProcessSP (pid, procSP))
1771        return procSP->GetCurrentThread();
1772    return 0;
1773}
1774
1775//----------------------------------------------------------------------
1776// Get the mach port number of the current thread.
1777//----------------------------------------------------------------------
1778nub_thread_t
1779DNBProcessGetCurrentThreadMachPort (nub_process_t pid)
1780{
1781    MachProcessSP procSP;
1782    if (GetProcessSP (pid, procSP))
1783        return procSP->GetCurrentThreadMachPort();
1784    return 0;
1785}
1786
1787//----------------------------------------------------------------------
1788// Change the current thread.
1789//----------------------------------------------------------------------
1790nub_thread_t
1791DNBProcessSetCurrentThread (nub_process_t pid, nub_thread_t tid)
1792{
1793    MachProcessSP procSP;
1794    if (GetProcessSP (pid, procSP))
1795        return procSP->SetCurrentThread (tid);
1796    return INVALID_NUB_THREAD;
1797}
1798
1799
1800//----------------------------------------------------------------------
1801// Dump a string describing a thread's stop reason to the specified file
1802// handle
1803//----------------------------------------------------------------------
1804nub_bool_t
1805DNBThreadGetStopReason (nub_process_t pid, nub_thread_t tid, struct DNBThreadStopInfo *stop_info)
1806{
1807    MachProcessSP procSP;
1808    if (GetProcessSP (pid, procSP))
1809        return procSP->GetThreadStoppedReason (tid, stop_info);
1810    return false;
1811}
1812
1813//----------------------------------------------------------------------
1814// Return string description for the specified thread.
1815//
1816// RETURNS: NULL if the thread isn't valid, else a NULL terminated C
1817// string from a static buffer that must be copied prior to subsequent
1818// calls.
1819//----------------------------------------------------------------------
1820const char *
1821DNBThreadGetInfo (nub_process_t pid, nub_thread_t tid)
1822{
1823    MachProcessSP procSP;
1824    if (GetProcessSP (pid, procSP))
1825        return procSP->GetThreadInfo (tid);
1826    return NULL;
1827}
1828
1829//----------------------------------------------------------------------
1830// Get the thread ID given a thread index.
1831//----------------------------------------------------------------------
1832nub_thread_t
1833DNBProcessGetThreadAtIndex (nub_process_t pid, size_t thread_idx)
1834{
1835    MachProcessSP procSP;
1836    if (GetProcessSP (pid, procSP))
1837        return procSP->GetThreadAtIndex (thread_idx);
1838    return INVALID_NUB_THREAD;
1839}
1840
1841//----------------------------------------------------------------------
1842// Do whatever is needed to sync the thread's register state with it's kernel values.
1843//----------------------------------------------------------------------
1844nub_bool_t
1845DNBProcessSyncThreadState (nub_process_t pid, nub_thread_t tid)
1846{
1847    MachProcessSP procSP;
1848    if (GetProcessSP (pid, procSP))
1849        return procSP->SyncThreadState (tid);
1850    return false;
1851
1852}
1853
1854nub_addr_t
1855DNBProcessGetSharedLibraryInfoAddress (nub_process_t pid)
1856{
1857    MachProcessSP procSP;
1858    DNBError err;
1859    if (GetProcessSP (pid, procSP))
1860        return procSP->Task().GetDYLDAllImageInfosAddress (err);
1861    return INVALID_NUB_ADDRESS;
1862}
1863
1864
1865nub_bool_t
1866DNBProcessSharedLibrariesUpdated(nub_process_t pid)
1867{
1868    MachProcessSP procSP;
1869    if (GetProcessSP (pid, procSP))
1870    {
1871        procSP->SharedLibrariesUpdated ();
1872        return true;
1873    }
1874    return false;
1875}
1876
1877//----------------------------------------------------------------------
1878// Get the current shared library information for a process. Only return
1879// the shared libraries that have changed since the last shared library
1880// state changed event if only_changed is non-zero.
1881//----------------------------------------------------------------------
1882nub_size_t
1883DNBProcessGetSharedLibraryInfo (nub_process_t pid, nub_bool_t only_changed, struct DNBExecutableImageInfo **image_infos)
1884{
1885    MachProcessSP procSP;
1886    if (GetProcessSP (pid, procSP))
1887        return procSP->CopyImageInfos (image_infos, only_changed);
1888
1889    // If we have no process, then return NULL for the shared library info
1890    // and zero for shared library count
1891    *image_infos = NULL;
1892    return 0;
1893}
1894
1895//----------------------------------------------------------------------
1896// Get the register set information for a specific thread.
1897//----------------------------------------------------------------------
1898const DNBRegisterSetInfo *
1899DNBGetRegisterSetInfo (nub_size_t *num_reg_sets)
1900{
1901    return DNBArchProtocol::GetRegisterSetInfo (num_reg_sets);
1902}
1903
1904
1905//----------------------------------------------------------------------
1906// Read a register value by register set and register index.
1907//----------------------------------------------------------------------
1908nub_bool_t
1909DNBThreadGetRegisterValueByID (nub_process_t pid, nub_thread_t tid, uint32_t set, uint32_t reg, DNBRegisterValue *value)
1910{
1911    MachProcessSP procSP;
1912    ::bzero (value, sizeof(DNBRegisterValue));
1913    if (GetProcessSP (pid, procSP))
1914    {
1915        if (tid != INVALID_NUB_THREAD)
1916            return procSP->GetRegisterValue (tid, set, reg, value);
1917    }
1918    return false;
1919}
1920
1921nub_bool_t
1922DNBThreadSetRegisterValueByID (nub_process_t pid, nub_thread_t tid, uint32_t set, uint32_t reg, const DNBRegisterValue *value)
1923{
1924    if (tid != INVALID_NUB_THREAD)
1925    {
1926        MachProcessSP procSP;
1927        if (GetProcessSP (pid, procSP))
1928            return procSP->SetRegisterValue (tid, set, reg, value);
1929    }
1930    return false;
1931}
1932
1933nub_size_t
1934DNBThreadGetRegisterContext (nub_process_t pid, nub_thread_t tid, void *buf, size_t buf_len)
1935{
1936    MachProcessSP procSP;
1937    if (GetProcessSP (pid, procSP))
1938    {
1939        if (tid != INVALID_NUB_THREAD)
1940            return procSP->GetThreadList().GetRegisterContext (tid, buf, buf_len);
1941    }
1942    ::bzero (buf, buf_len);
1943    return 0;
1944
1945}
1946
1947nub_size_t
1948DNBThreadSetRegisterContext (nub_process_t pid, nub_thread_t tid, const void *buf, size_t buf_len)
1949{
1950    MachProcessSP procSP;
1951    if (GetProcessSP (pid, procSP))
1952    {
1953        if (tid != INVALID_NUB_THREAD)
1954            return procSP->GetThreadList().SetRegisterContext (tid, buf, buf_len);
1955    }
1956    return 0;
1957}
1958
1959//----------------------------------------------------------------------
1960// Read a register value by name.
1961//----------------------------------------------------------------------
1962nub_bool_t
1963DNBThreadGetRegisterValueByName (nub_process_t pid, nub_thread_t tid, uint32_t reg_set, const char *reg_name, DNBRegisterValue *value)
1964{
1965    MachProcessSP procSP;
1966    ::bzero (value, sizeof(DNBRegisterValue));
1967    if (GetProcessSP (pid, procSP))
1968    {
1969        const struct DNBRegisterSetInfo *set_info;
1970        nub_size_t num_reg_sets = 0;
1971        set_info = DNBGetRegisterSetInfo (&num_reg_sets);
1972        if (set_info)
1973        {
1974            uint32_t set = reg_set;
1975            uint32_t reg;
1976            if (set == REGISTER_SET_ALL)
1977            {
1978                for (set = 1; set < num_reg_sets; ++set)
1979                {
1980                    for (reg = 0; reg < set_info[set].num_registers; ++reg)
1981                    {
1982                        if (strcasecmp(reg_name, set_info[set].registers[reg].name) == 0)
1983                            return procSP->GetRegisterValue (tid, set, reg, value);
1984                    }
1985                }
1986            }
1987            else
1988            {
1989                for (reg = 0; reg < set_info[set].num_registers; ++reg)
1990                {
1991                    if (strcasecmp(reg_name, set_info[set].registers[reg].name) == 0)
1992                        return procSP->GetRegisterValue (tid, set, reg, value);
1993                }
1994            }
1995        }
1996    }
1997    return false;
1998}
1999
2000
2001//----------------------------------------------------------------------
2002// Read a register set and register number from the register name.
2003//----------------------------------------------------------------------
2004nub_bool_t
2005DNBGetRegisterInfoByName (const char *reg_name, DNBRegisterInfo* info)
2006{
2007    const struct DNBRegisterSetInfo *set_info;
2008    nub_size_t num_reg_sets = 0;
2009    set_info = DNBGetRegisterSetInfo (&num_reg_sets);
2010    if (set_info)
2011    {
2012        uint32_t set, reg;
2013        for (set = 1; set < num_reg_sets; ++set)
2014        {
2015            for (reg = 0; reg < set_info[set].num_registers; ++reg)
2016            {
2017                if (strcasecmp(reg_name, set_info[set].registers[reg].name) == 0)
2018                {
2019                    *info = set_info[set].registers[reg];
2020                    return true;
2021                }
2022            }
2023        }
2024
2025        for (set = 1; set < num_reg_sets; ++set)
2026        {
2027            uint32_t reg;
2028            for (reg = 0; reg < set_info[set].num_registers; ++reg)
2029            {
2030                if (set_info[set].registers[reg].alt == NULL)
2031                    continue;
2032
2033                if (strcasecmp(reg_name, set_info[set].registers[reg].alt) == 0)
2034                {
2035                    *info = set_info[set].registers[reg];
2036                    return true;
2037                }
2038            }
2039        }
2040    }
2041
2042    ::bzero (info, sizeof(DNBRegisterInfo));
2043    return false;
2044}
2045
2046
2047//----------------------------------------------------------------------
2048// Set the name to address callback function that this nub can use
2049// for any name to address lookups that are needed.
2050//----------------------------------------------------------------------
2051nub_bool_t
2052DNBProcessSetNameToAddressCallback (nub_process_t pid, DNBCallbackNameToAddress callback, void *baton)
2053{
2054    MachProcessSP procSP;
2055    if (GetProcessSP (pid, procSP))
2056    {
2057        procSP->SetNameToAddressCallback (callback, baton);
2058        return true;
2059    }
2060    return false;
2061}
2062
2063
2064//----------------------------------------------------------------------
2065// Set the name to address callback function that this nub can use
2066// for any name to address lookups that are needed.
2067//----------------------------------------------------------------------
2068nub_bool_t
2069DNBProcessSetSharedLibraryInfoCallback (nub_process_t pid, DNBCallbackCopyExecutableImageInfos callback, void  *baton)
2070{
2071    MachProcessSP procSP;
2072    if (GetProcessSP (pid, procSP))
2073    {
2074        procSP->SetSharedLibraryInfoCallback (callback, baton);
2075        return true;
2076    }
2077    return false;
2078}
2079
2080nub_addr_t
2081DNBProcessLookupAddress (nub_process_t pid, const char *name, const char *shlib)
2082{
2083    MachProcessSP procSP;
2084    if (GetProcessSP (pid, procSP))
2085    {
2086        return procSP->LookupSymbol (name, shlib);
2087    }
2088    return INVALID_NUB_ADDRESS;
2089}
2090
2091
2092nub_size_t
2093DNBProcessGetAvailableSTDOUT (nub_process_t pid, char *buf, nub_size_t buf_size)
2094{
2095    MachProcessSP procSP;
2096    if (GetProcessSP (pid, procSP))
2097        return procSP->GetAvailableSTDOUT (buf, buf_size);
2098    return 0;
2099}
2100
2101nub_size_t
2102DNBProcessGetAvailableSTDERR (nub_process_t pid, char *buf, nub_size_t buf_size)
2103{
2104    MachProcessSP procSP;
2105    if (GetProcessSP (pid, procSP))
2106        return procSP->GetAvailableSTDERR (buf, buf_size);
2107    return 0;
2108}
2109
2110nub_size_t
2111DNBProcessGetAvailableProfileData (nub_process_t pid, char *buf, nub_size_t buf_size)
2112{
2113    MachProcessSP procSP;
2114    if (GetProcessSP (pid, procSP))
2115        return procSP->GetAsyncProfileData (buf, buf_size);
2116    return 0;
2117}
2118
2119nub_size_t
2120DNBProcessGetStopCount (nub_process_t pid)
2121{
2122    MachProcessSP procSP;
2123    if (GetProcessSP (pid, procSP))
2124        return procSP->StopCount();
2125    return 0;
2126}
2127
2128uint32_t
2129DNBProcessGetCPUType (nub_process_t pid)
2130{
2131    MachProcessSP procSP;
2132    if (GetProcessSP (pid, procSP))
2133        return procSP->GetCPUType ();
2134    return 0;
2135
2136}
2137
2138nub_bool_t
2139DNBResolveExecutablePath (const char *path, char *resolved_path, size_t resolved_path_size)
2140{
2141    if (path == NULL || path[0] == '\0')
2142        return false;
2143
2144    char max_path[PATH_MAX];
2145    std::string result;
2146    CFString::GlobPath(path, result);
2147
2148    if (result.empty())
2149        result = path;
2150
2151    struct stat path_stat;
2152    if (::stat(path, &path_stat) == 0)
2153    {
2154        if ((path_stat.st_mode & S_IFMT) == S_IFDIR)
2155        {
2156            CFBundle bundle (path);
2157            CFReleaser<CFURLRef> url(bundle.CopyExecutableURL ());
2158            if (url.get())
2159            {
2160                if (::CFURLGetFileSystemRepresentation (url.get(), true, (UInt8*)resolved_path, resolved_path_size))
2161                    return true;
2162            }
2163        }
2164    }
2165
2166    if (realpath(path, max_path))
2167    {
2168        // Found the path relatively...
2169        ::strncpy(resolved_path, max_path, resolved_path_size);
2170        return strlen(resolved_path) + 1 < resolved_path_size;
2171    }
2172    else
2173    {
2174        // Not a relative path, check the PATH environment variable if the
2175        const char *PATH = getenv("PATH");
2176        if (PATH)
2177        {
2178            const char *curr_path_start = PATH;
2179            const char *curr_path_end;
2180            while (curr_path_start && *curr_path_start)
2181            {
2182                curr_path_end = strchr(curr_path_start, ':');
2183                if (curr_path_end == NULL)
2184                {
2185                    result.assign(curr_path_start);
2186                    curr_path_start = NULL;
2187                }
2188                else if (curr_path_end > curr_path_start)
2189                {
2190                    size_t len = curr_path_end - curr_path_start;
2191                    result.assign(curr_path_start, len);
2192                    curr_path_start += len + 1;
2193                }
2194                else
2195                    break;
2196
2197                result += '/';
2198                result += path;
2199                struct stat s;
2200                if (stat(result.c_str(), &s) == 0)
2201                {
2202                    ::strncpy(resolved_path, result.c_str(), resolved_path_size);
2203                    return result.size() + 1 < resolved_path_size;
2204                }
2205            }
2206        }
2207    }
2208    return false;
2209}
2210
2211
2212void
2213DNBInitialize()
2214{
2215    DNBLogThreadedIf (LOG_PROCESS, "DNBInitialize ()");
2216#if defined (__i386__) || defined (__x86_64__)
2217    DNBArchImplI386::Initialize();
2218    DNBArchImplX86_64::Initialize();
2219#elif defined (__arm__)
2220    DNBArchMachARM::Initialize();
2221#endif
2222}
2223
2224void
2225DNBTerminate()
2226{
2227}
2228
2229nub_bool_t
2230DNBSetArchitecture (const char *arch)
2231{
2232    if (arch && arch[0])
2233    {
2234        if (strcasecmp (arch, "i386") == 0)
2235            return DNBArchProtocol::SetArchitecture (CPU_TYPE_I386);
2236        else if (strcasecmp (arch, "x86_64") == 0)
2237            return DNBArchProtocol::SetArchitecture (CPU_TYPE_X86_64);
2238        else if (strstr (arch, "arm") == arch)
2239            return DNBArchProtocol::SetArchitecture (CPU_TYPE_ARM);
2240    }
2241    return false;
2242}
2243