DNB.cpp revision 1308a9555ad586ff03c8f97bcfe7f3212d06bc86
1//===-- DNB.cpp -------------------------------------------------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  Created by Greg Clayton on 3/23/07.
11//
12//===----------------------------------------------------------------------===//
13
14#include "DNB.h"
15#include <signal.h>
16#include <stdio.h>
17#include <stdlib.h>
18#include <sys/resource.h>
19#include <sys/stat.h>
20#include <sys/types.h>
21#include <sys/wait.h>
22#include <unistd.h>
23#include <sys/sysctl.h>
24#include <map>
25#include <vector>
26
27#include "MacOSX/MachProcess.h"
28#include "MacOSX/MachTask.h"
29#include "CFString.h"
30#include "DNBLog.h"
31#include "DNBDataRef.h"
32#include "DNBThreadResumeActions.h"
33#include "DNBTimer.h"
34
35typedef std::tr1::shared_ptr<MachProcess> MachProcessSP;
36typedef std::map<nub_process_t, MachProcessSP> ProcessMap;
37typedef ProcessMap::iterator ProcessMapIter;
38typedef ProcessMap::const_iterator ProcessMapConstIter;
39
40static size_t          GetAllInfos                  (std::vector<struct kinfo_proc>& proc_infos);
41static size_t          GetAllInfosMatchingName      (const char *process_name, std::vector<struct kinfo_proc>& matching_proc_infos);
42
43//----------------------------------------------------------------------
44// A Thread safe singleton to get a process map pointer.
45//
46// Returns a pointer to the existing process map, or a pointer to a
47// newly created process map if CAN_CREATE is non-zero.
48//----------------------------------------------------------------------
49static ProcessMap*
50GetProcessMap(bool can_create)
51{
52    static ProcessMap* g_process_map_ptr = NULL;
53
54    if (can_create && g_process_map_ptr == NULL)
55    {
56        static pthread_mutex_t g_process_map_mutex = PTHREAD_MUTEX_INITIALIZER;
57        PTHREAD_MUTEX_LOCKER (locker, &g_process_map_mutex);
58        if (g_process_map_ptr == NULL)
59            g_process_map_ptr = new ProcessMap;
60    }
61    return g_process_map_ptr;
62}
63
64//----------------------------------------------------------------------
65// Add PID to the shared process pointer map.
66//
67// Return non-zero value if we succeed in adding the process to the map.
68// The only time this should fail is if we run out of memory and can't
69// allocate a ProcessMap.
70//----------------------------------------------------------------------
71static nub_bool_t
72AddProcessToMap (nub_process_t pid, MachProcessSP& procSP)
73{
74    ProcessMap* process_map = GetProcessMap(true);
75    if (process_map)
76    {
77        process_map->insert(std::make_pair(pid, procSP));
78        return true;
79    }
80    return false;
81}
82
83//----------------------------------------------------------------------
84// Remove the shared pointer for PID from the process map.
85//
86// Returns the number of items removed from the process map.
87//----------------------------------------------------------------------
88static size_t
89RemoveProcessFromMap (nub_process_t pid)
90{
91    ProcessMap* process_map = GetProcessMap(false);
92    if (process_map)
93    {
94        return process_map->erase(pid);
95    }
96    return 0;
97}
98
99//----------------------------------------------------------------------
100// Get the shared pointer for PID from the existing process map.
101//
102// Returns true if we successfully find a shared pointer to a
103// MachProcess object.
104//----------------------------------------------------------------------
105static nub_bool_t
106GetProcessSP (nub_process_t pid, MachProcessSP& procSP)
107{
108    ProcessMap* process_map = GetProcessMap(false);
109    if (process_map != NULL)
110    {
111        ProcessMapIter pos = process_map->find(pid);
112        if (pos != process_map->end())
113        {
114            procSP = pos->second;
115            return true;
116        }
117    }
118    procSP.reset();
119    return false;
120}
121
122
123static void *
124waitpid_thread (void *arg)
125{
126    const pid_t pid = (pid_t)(intptr_t)arg;
127    int status;
128    while (1)
129    {
130        pid_t child_pid = waitpid(pid, &status, 0);
131        DNBLogThreadedIf(LOG_PROCESS, "waitpid_process_thread (): waitpid (pid = %i, &status, 0) => %i, status = %i, errno = %i", pid, child_pid, status, errno);
132
133        if (child_pid < 0)
134        {
135            if (errno == EINTR)
136                continue;
137            break;
138        }
139        else
140        {
141            if (WIFSTOPPED(status))
142            {
143                continue;
144            }
145            else// if (WIFEXITED(status) || WIFSIGNALED(status))
146            {
147                DNBLogThreadedIf(LOG_PROCESS, "waitpid_process_thread (): setting exit status for pid = %i to %i", child_pid, status);
148                DNBProcessSetExitStatus (child_pid, status);
149                return NULL;
150            }
151        }
152    }
153
154    // We should never exit as long as our child process is alive, so if we
155    // do something else went wrong and we should exit...
156    DNBLogThreadedIf(LOG_PROCESS, "waitpid_process_thread (): main loop exited, setting exit status to an invalid value (-1) for pid %i", pid);
157    DNBProcessSetExitStatus (pid, -1);
158    return NULL;
159}
160
161static bool
162spawn_waitpid_thread (pid_t pid)
163{
164    pthread_t thread = THREAD_NULL;
165    ::pthread_create (&thread, NULL, waitpid_thread, (void *)(intptr_t)pid);
166    if (thread != THREAD_NULL)
167    {
168        ::pthread_detach (thread);
169        return true;
170    }
171    return false;
172}
173
174nub_process_t
175DNBProcessLaunch (const char *path,
176                  char const *argv[],
177                  const char *envp[],
178                  const char *working_directory, // NULL => dont' change, non-NULL => set working directory for inferior to this
179                  const char *stdin_path,
180                  const char *stdout_path,
181                  const char *stderr_path,
182                  bool no_stdio,
183                  nub_launch_flavor_t launch_flavor,
184                  int disable_aslr,
185                  char *err_str,
186                  size_t err_len)
187{
188    DNBLogThreadedIf(LOG_PROCESS, "%s ( path='%s', argv = %p, envp = %p, working_dir=%s, stdin=%s, stdout=%s, stderr=%s, no-stdio=%i, launch_flavor = %u, disable_aslr = %d, err = %p, err_len = %zu) called...",
189                     __FUNCTION__,
190                     path,
191                     argv,
192                     envp,
193                     working_directory,
194                     stdin_path,
195                     stdout_path,
196                     stderr_path,
197                     no_stdio,
198                     launch_flavor,
199                     disable_aslr,
200                     err_str,
201                     err_len);
202
203    if (err_str && err_len > 0)
204        err_str[0] = '\0';
205    struct stat path_stat;
206    if (::stat(path, &path_stat) == -1)
207    {
208        char stat_error[256];
209        ::strerror_r (errno, stat_error, sizeof(stat_error));
210        snprintf(err_str, err_len, "%s (%s)", stat_error, path);
211        return INVALID_NUB_PROCESS;
212    }
213
214    MachProcessSP processSP (new MachProcess);
215    if (processSP.get())
216    {
217        DNBError launch_err;
218        pid_t pid = processSP->LaunchForDebug (path,
219                                               argv,
220                                               envp,
221                                               working_directory,
222                                               stdin_path,
223                                               stdout_path,
224                                               stderr_path,
225                                               no_stdio,
226                                               launch_flavor,
227                                               disable_aslr,
228                                               launch_err);
229        if (err_str)
230        {
231            *err_str = '\0';
232            if (launch_err.Fail())
233            {
234                const char *launch_err_str = launch_err.AsString();
235                if (launch_err_str)
236                {
237                    strncpy(err_str, launch_err_str, err_len-1);
238                    err_str[err_len-1] = '\0';  // Make sure the error string is terminated
239                }
240            }
241        }
242
243        DNBLogThreadedIf(LOG_PROCESS, "(DebugNub) new pid is %d...", pid);
244
245        if (pid != INVALID_NUB_PROCESS)
246        {
247            // Spawn a thread to reap our child inferior process...
248            spawn_waitpid_thread (pid);
249
250            if (processSP->Task().TaskPortForProcessID (launch_err) == TASK_NULL)
251            {
252                // We failed to get the task for our process ID which is bad.
253                if (err_str && err_len > 0)
254                {
255                    if (launch_err.AsString())
256                    {
257                        ::snprintf (err_str, err_len, "failed to get the task for process %i (%s)", pid, launch_err.AsString());
258                    }
259                    else
260                    {
261                        ::snprintf (err_str, err_len, "failed to get the task for process %i", pid);
262                    }
263                }
264            }
265            else
266            {
267                assert(AddProcessToMap(pid, processSP));
268                return pid;
269            }
270        }
271    }
272    return INVALID_NUB_PROCESS;
273}
274
275nub_process_t
276DNBProcessAttachByName (const char *name, struct timespec *timeout, char *err_str, size_t err_len)
277{
278    if (err_str && err_len > 0)
279        err_str[0] = '\0';
280    std::vector<struct kinfo_proc> matching_proc_infos;
281    size_t num_matching_proc_infos = GetAllInfosMatchingName(name, matching_proc_infos);
282    if (num_matching_proc_infos == 0)
283    {
284        DNBLogError ("error: no processes match '%s'\n", name);
285        return INVALID_NUB_PROCESS;
286    }
287    else if (num_matching_proc_infos > 1)
288    {
289        DNBLogError ("error: %zu processes match '%s':\n", num_matching_proc_infos, name);
290        size_t i;
291        for (i=0; i<num_matching_proc_infos; ++i)
292            DNBLogError ("%6u - %s\n", matching_proc_infos[i].kp_proc.p_pid, matching_proc_infos[i].kp_proc.p_comm);
293        return INVALID_NUB_PROCESS;
294    }
295
296    return DNBProcessAttach (matching_proc_infos[0].kp_proc.p_pid, timeout, err_str, err_len);
297}
298
299nub_process_t
300DNBProcessAttach (nub_process_t attach_pid, struct timespec *timeout, char *err_str, size_t err_len)
301{
302    if (err_str && err_len > 0)
303        err_str[0] = '\0';
304
305    pid_t pid = INVALID_NUB_PROCESS;
306    MachProcessSP processSP(new MachProcess);
307    if (processSP.get())
308    {
309        DNBLogThreadedIf(LOG_PROCESS, "(DebugNub) attaching to pid %d...", attach_pid);
310        pid = processSP->AttachForDebug (attach_pid, err_str,  err_len);
311
312        if (pid != INVALID_NUB_PROCESS)
313        {
314            assert(AddProcessToMap(pid, processSP));
315            spawn_waitpid_thread(pid);
316        }
317    }
318
319    while (pid != INVALID_NUB_PROCESS)
320    {
321        // Wait for process to start up and hit entry point
322        DNBLogThreadedIf (LOG_PROCESS,
323                          "%s DNBProcessWaitForEvent (%4.4x, eEventProcessRunningStateChanged | eEventProcessStoppedStateChanged, true, INFINITE)...",
324                          __FUNCTION__,
325                          pid);
326        nub_event_t set_events = DNBProcessWaitForEvents (pid,
327                                                          eEventProcessRunningStateChanged | eEventProcessStoppedStateChanged,
328                                                          true,
329                                                          timeout);
330
331        DNBLogThreadedIf (LOG_PROCESS,
332                          "%s DNBProcessWaitForEvent (%4.4x, eEventProcessRunningStateChanged | eEventProcessStoppedStateChanged, true, INFINITE) => 0x%8.8x",
333                          __FUNCTION__,
334                          pid,
335                          set_events);
336
337        if (set_events == 0)
338        {
339            if (err_str && err_len > 0)
340                snprintf(err_str, err_len, "operation timed out");
341            pid = INVALID_NUB_PROCESS;
342        }
343        else
344        {
345            if (set_events & (eEventProcessRunningStateChanged | eEventProcessStoppedStateChanged))
346            {
347                nub_state_t pid_state = DNBProcessGetState (pid);
348                DNBLogThreadedIf (LOG_PROCESS, "%s process %4.4x state changed (eEventProcessStateChanged): %s",
349                        __FUNCTION__, pid, DNBStateAsString(pid_state));
350
351                switch (pid_state)
352                {
353                    default:
354                    case eStateInvalid:
355                    case eStateUnloaded:
356                    case eStateAttaching:
357                    case eStateLaunching:
358                    case eStateSuspended:
359                        break;  // Ignore
360
361                    case eStateRunning:
362                    case eStateStepping:
363                        // Still waiting to stop at entry point...
364                        break;
365
366                    case eStateStopped:
367                    case eStateCrashed:
368                        return pid;
369
370                    case eStateDetached:
371                    case eStateExited:
372                        if (err_str && err_len > 0)
373                            snprintf(err_str, err_len, "process exited");
374                        return INVALID_NUB_PROCESS;
375                }
376            }
377
378            DNBProcessResetEvents(pid, set_events);
379        }
380    }
381
382    return INVALID_NUB_PROCESS;
383}
384
385static size_t
386GetAllInfos (std::vector<struct kinfo_proc>& proc_infos)
387{
388    size_t size;
389    int name[] = { CTL_KERN, KERN_PROC, KERN_PROC_ALL };
390    u_int namelen = sizeof(name)/sizeof(int);
391    int err;
392
393    // Try to find out how many processes are around so we can
394    // size the buffer appropriately.  sysctl's man page specifically suggests
395    // this approach, and says it returns a bit larger size than needed to
396    // handle any new processes created between then and now.
397
398    err = ::sysctl (name, namelen, NULL, &size, NULL, 0);
399
400    if ((err < 0) && (err != ENOMEM))
401    {
402        proc_infos.clear();
403        perror("sysctl (mib, miblen, NULL, &num_processes, NULL, 0)");
404        return 0;
405    }
406
407
408    // Increase the size of the buffer by a few processes in case more have
409    // been spawned
410    proc_infos.resize (size / sizeof(struct kinfo_proc));
411    size = proc_infos.size() * sizeof(struct kinfo_proc);   // Make sure we don't exceed our resize...
412    err = ::sysctl (name, namelen, &proc_infos[0], &size, NULL, 0);
413    if (err < 0)
414    {
415        proc_infos.clear();
416        return 0;
417    }
418
419    // Trim down our array to fit what we actually got back
420    proc_infos.resize(size / sizeof(struct kinfo_proc));
421    return proc_infos.size();
422}
423
424
425static size_t
426GetAllInfosMatchingName(const char *full_process_name, std::vector<struct kinfo_proc>& matching_proc_infos)
427{
428
429    matching_proc_infos.clear();
430    if (full_process_name && full_process_name[0])
431    {
432        // We only get the process name, not the full path, from the proc_info.  So just take the
433        // base name of the process name...
434        const char *process_name;
435        process_name = strrchr (full_process_name, '/');
436        if (process_name == NULL)
437          process_name = full_process_name;
438        else
439          process_name++;
440
441        std::vector<struct kinfo_proc> proc_infos;
442        const size_t num_proc_infos = GetAllInfos(proc_infos);
443        if (num_proc_infos > 0)
444        {
445            uint32_t i;
446            for (i=0; i<num_proc_infos; i++)
447            {
448                // Skip zombie processes and processes with unset status
449                if (proc_infos[i].kp_proc.p_stat == 0 || proc_infos[i].kp_proc.p_stat == SZOMB)
450                    continue;
451
452                // Check for process by name. We only check the first MAXCOMLEN
453                // chars as that is all that kp_proc.p_comm holds.
454                if (::strncasecmp(proc_infos[i].kp_proc.p_comm, process_name, MAXCOMLEN) == 0)
455                {
456                    // We found a matching process, add it to our list
457                    matching_proc_infos.push_back(proc_infos[i]);
458                }
459            }
460        }
461    }
462    // return the newly added matches.
463    return matching_proc_infos.size();
464}
465
466nub_process_t
467DNBProcessAttachWait (const char *waitfor_process_name,
468                      nub_launch_flavor_t launch_flavor,
469                      struct timespec *timeout_abstime,
470                      useconds_t waitfor_interval,
471                      char *err_str,
472                      size_t err_len,
473                      DNBShouldCancelCallback should_cancel_callback,
474                      void *callback_data)
475{
476    DNBError prepare_error;
477    std::vector<struct kinfo_proc> exclude_proc_infos;
478    size_t num_exclude_proc_infos;
479
480    // If the PrepareForAttach returns a valid token, use  MachProcess to check
481    // for the process, otherwise scan the process table.
482
483    const void *attach_token = MachProcess::PrepareForAttach (waitfor_process_name, launch_flavor, true, prepare_error);
484
485    if (prepare_error.Fail())
486    {
487        DNBLogError ("Error in PrepareForAttach: %s", prepare_error.AsString());
488        return INVALID_NUB_PROCESS;
489    }
490
491    if (attach_token == NULL)
492        num_exclude_proc_infos = GetAllInfosMatchingName (waitfor_process_name, exclude_proc_infos);
493
494    DNBLogThreadedIf (LOG_PROCESS, "Waiting for '%s' to appear...\n", waitfor_process_name);
495
496    // Loop and try to find the process by name
497    nub_process_t waitfor_pid = INVALID_NUB_PROCESS;
498
499    while (waitfor_pid == INVALID_NUB_PROCESS)
500    {
501        if (attach_token != NULL)
502        {
503            nub_process_t pid;
504            pid = MachProcess::CheckForProcess(attach_token);
505            if (pid != INVALID_NUB_PROCESS)
506            {
507                waitfor_pid = pid;
508                break;
509            }
510        }
511        else
512        {
513
514            // Get the current process list, and check for matches that
515            // aren't in our original list. If anyone wants to attach
516            // to an existing process by name, they should do it with
517            // --attach=PROCNAME. Else we will wait for the first matching
518            // process that wasn't in our exclusion list.
519            std::vector<struct kinfo_proc> proc_infos;
520            const size_t num_proc_infos = GetAllInfosMatchingName (waitfor_process_name, proc_infos);
521            for (size_t i=0; i<num_proc_infos; i++)
522            {
523                nub_process_t curr_pid = proc_infos[i].kp_proc.p_pid;
524                for (size_t j=0; j<num_exclude_proc_infos; j++)
525                {
526                    if (curr_pid == exclude_proc_infos[j].kp_proc.p_pid)
527                    {
528                        // This process was in our exclusion list, don't use it.
529                        curr_pid = INVALID_NUB_PROCESS;
530                        break;
531                    }
532                }
533
534                // If we didn't find CURR_PID in our exclusion list, then use it.
535                if (curr_pid != INVALID_NUB_PROCESS)
536                {
537                    // We found our process!
538                    waitfor_pid = curr_pid;
539                    break;
540                }
541            }
542        }
543
544        // If we haven't found our process yet, check for a timeout
545        // and then sleep for a bit until we poll again.
546        if (waitfor_pid == INVALID_NUB_PROCESS)
547        {
548            if (timeout_abstime != NULL)
549            {
550                // Check to see if we have a waitfor-duration option that
551                // has timed out?
552                if (DNBTimer::TimeOfDayLaterThan(*timeout_abstime))
553                {
554                    if (err_str && err_len > 0)
555                        snprintf(err_str, err_len, "operation timed out");
556                    DNBLogError ("error: waiting for process '%s' timed out.\n", waitfor_process_name);
557                    return INVALID_NUB_PROCESS;
558                }
559            }
560
561            // Call the should cancel callback as well...
562
563            if (should_cancel_callback != NULL
564                && should_cancel_callback (callback_data))
565            {
566                DNBLogThreadedIf (LOG_PROCESS, "DNBProcessAttachWait cancelled by should_cancel callback.");
567                waitfor_pid = INVALID_NUB_PROCESS;
568                break;
569            }
570
571            ::usleep (waitfor_interval);    // Sleep for WAITFOR_INTERVAL, then poll again
572        }
573    }
574
575    if (waitfor_pid != INVALID_NUB_PROCESS)
576    {
577        DNBLogThreadedIf (LOG_PROCESS, "Attaching to %s with pid %i...\n", waitfor_process_name, waitfor_pid);
578        waitfor_pid = DNBProcessAttach (waitfor_pid, timeout_abstime, err_str, err_len);
579    }
580
581    bool success = waitfor_pid != INVALID_NUB_PROCESS;
582    MachProcess::CleanupAfterAttach (attach_token, success, prepare_error);
583
584    return waitfor_pid;
585}
586
587nub_bool_t
588DNBProcessDetach (nub_process_t pid)
589{
590    MachProcessSP procSP;
591    if (GetProcessSP (pid, procSP))
592    {
593        return procSP->Detach();
594    }
595    return false;
596}
597
598nub_bool_t
599DNBProcessKill (nub_process_t pid)
600{
601    MachProcessSP procSP;
602    if (GetProcessSP (pid, procSP))
603    {
604        return procSP->Kill ();
605    }
606    return false;
607}
608
609nub_bool_t
610DNBProcessSignal (nub_process_t pid, int signal)
611{
612    MachProcessSP procSP;
613    if (GetProcessSP (pid, procSP))
614    {
615        return procSP->Signal (signal);
616    }
617    return false;
618}
619
620
621nub_bool_t
622DNBProcessIsAlive (nub_process_t pid)
623{
624    MachProcessSP procSP;
625    if (GetProcessSP (pid, procSP))
626    {
627        return MachTask::IsValid (procSP->Task().TaskPort());
628    }
629    return eStateInvalid;
630}
631
632//----------------------------------------------------------------------
633// Process and Thread state information
634//----------------------------------------------------------------------
635nub_state_t
636DNBProcessGetState (nub_process_t pid)
637{
638    MachProcessSP procSP;
639    if (GetProcessSP (pid, procSP))
640    {
641        return procSP->GetState();
642    }
643    return eStateInvalid;
644}
645
646//----------------------------------------------------------------------
647// Process and Thread state information
648//----------------------------------------------------------------------
649nub_bool_t
650DNBProcessGetExitStatus (nub_process_t pid, int* status)
651{
652    MachProcessSP procSP;
653    if (GetProcessSP (pid, procSP))
654    {
655        return procSP->GetExitStatus(status);
656    }
657    return false;
658}
659
660nub_bool_t
661DNBProcessSetExitStatus (nub_process_t pid, int status)
662{
663    MachProcessSP procSP;
664    if (GetProcessSP (pid, procSP))
665    {
666        procSP->SetExitStatus(status);
667        return true;
668    }
669    return false;
670}
671
672
673const char *
674DNBThreadGetName (nub_process_t pid, nub_thread_t tid)
675{
676    MachProcessSP procSP;
677    if (GetProcessSP (pid, procSP))
678        return procSP->ThreadGetName(tid);
679    return NULL;
680}
681
682
683nub_bool_t
684DNBThreadGetIdentifierInfo (nub_process_t pid, nub_thread_t tid, thread_identifier_info_data_t *ident_info)
685{
686    MachProcessSP procSP;
687    if (GetProcessSP (pid, procSP))
688        return procSP->GetThreadList().GetIdentifierInfo(tid, ident_info);
689    return false;
690}
691
692nub_state_t
693DNBThreadGetState (nub_process_t pid, nub_thread_t tid)
694{
695    MachProcessSP procSP;
696    if (GetProcessSP (pid, procSP))
697    {
698        return procSP->ThreadGetState(tid);
699    }
700    return eStateInvalid;
701}
702
703const char *
704DNBStateAsString(nub_state_t state)
705{
706    switch (state)
707    {
708    case eStateInvalid:     return "Invalid";
709    case eStateUnloaded:    return "Unloaded";
710    case eStateAttaching:   return "Attaching";
711    case eStateLaunching:   return "Launching";
712    case eStateStopped:     return "Stopped";
713    case eStateRunning:     return "Running";
714    case eStateStepping:    return "Stepping";
715    case eStateCrashed:     return "Crashed";
716    case eStateDetached:    return "Detached";
717    case eStateExited:      return "Exited";
718    case eStateSuspended:   return "Suspended";
719    }
720    return "nub_state_t ???";
721}
722
723const char *
724DNBProcessGetExecutablePath (nub_process_t pid)
725{
726    MachProcessSP procSP;
727    if (GetProcessSP (pid, procSP))
728    {
729        return procSP->Path();
730    }
731    return NULL;
732}
733
734nub_size_t
735DNBProcessGetArgumentCount (nub_process_t pid)
736{
737    MachProcessSP procSP;
738    if (GetProcessSP (pid, procSP))
739    {
740        return procSP->ArgumentCount();
741    }
742    return 0;
743}
744
745const char *
746DNBProcessGetArgumentAtIndex (nub_process_t pid, nub_size_t idx)
747{
748    MachProcessSP procSP;
749    if (GetProcessSP (pid, procSP))
750    {
751        return procSP->ArgumentAtIndex (idx);
752    }
753    return NULL;
754}
755
756
757//----------------------------------------------------------------------
758// Execution control
759//----------------------------------------------------------------------
760nub_bool_t
761DNBProcessResume (nub_process_t pid, const DNBThreadResumeAction *actions, size_t num_actions)
762{
763    DNBLogThreadedIf(LOG_PROCESS, "%s(pid = %4.4x)", __FUNCTION__, pid);
764    MachProcessSP procSP;
765    if (GetProcessSP (pid, procSP))
766    {
767        DNBThreadResumeActions thread_actions (actions, num_actions);
768
769        // Below we add a default thread plan just in case one wasn't
770        // provided so all threads always know what they were supposed to do
771        if (thread_actions.IsEmpty())
772        {
773            // No thread plans were given, so the default it to run all threads
774            thread_actions.SetDefaultThreadActionIfNeeded (eStateRunning, 0);
775        }
776        else
777        {
778            // Some thread plans were given which means anything that wasn't
779            // specified should remain stopped.
780            thread_actions.SetDefaultThreadActionIfNeeded (eStateStopped, 0);
781        }
782        return procSP->Resume (thread_actions);
783    }
784    return false;
785}
786
787nub_bool_t
788DNBProcessHalt (nub_process_t pid)
789{
790    DNBLogThreadedIf(LOG_PROCESS, "%s(pid = %4.4x)", __FUNCTION__, pid);
791    MachProcessSP procSP;
792    if (GetProcessSP (pid, procSP))
793        return procSP->Signal (SIGSTOP);
794    return false;
795}
796//
797//nub_bool_t
798//DNBThreadResume (nub_process_t pid, nub_thread_t tid, nub_bool_t step)
799//{
800//    DNBLogThreadedIf(LOG_THREAD, "%s(pid = %4.4x, tid = %4.4x, step = %u)", __FUNCTION__, pid, tid, (uint32_t)step);
801//    MachProcessSP procSP;
802//    if (GetProcessSP (pid, procSP))
803//    {
804//        return procSP->Resume(tid, step, 0);
805//    }
806//    return false;
807//}
808//
809//nub_bool_t
810//DNBThreadResumeWithSignal (nub_process_t pid, nub_thread_t tid, nub_bool_t step, int signal)
811//{
812//    DNBLogThreadedIf(LOG_THREAD, "%s(pid = %4.4x, tid = %4.4x, step = %u, signal = %i)", __FUNCTION__, pid, tid, (uint32_t)step, signal);
813//    MachProcessSP procSP;
814//    if (GetProcessSP (pid, procSP))
815//    {
816//        return procSP->Resume(tid, step, signal);
817//    }
818//    return false;
819//}
820
821nub_event_t
822DNBProcessWaitForEvents (nub_process_t pid, nub_event_t event_mask, bool wait_for_set, struct timespec* timeout)
823{
824    nub_event_t result = 0;
825    MachProcessSP procSP;
826    if (GetProcessSP (pid, procSP))
827    {
828        if (wait_for_set)
829            result = procSP->Events().WaitForSetEvents(event_mask, timeout);
830        else
831            result = procSP->Events().WaitForEventsToReset(event_mask, timeout);
832    }
833    return result;
834}
835
836void
837DNBProcessResetEvents (nub_process_t pid, nub_event_t event_mask)
838{
839    MachProcessSP procSP;
840    if (GetProcessSP (pid, procSP))
841        procSP->Events().ResetEvents(event_mask);
842}
843
844void
845DNBProcessInterruptEvents (nub_process_t pid)
846{
847    MachProcessSP procSP;
848    if (GetProcessSP (pid, procSP))
849        procSP->Events().SetEvents(eEventProcessAsyncInterrupt);
850}
851
852
853// Breakpoints
854nub_break_t
855DNBBreakpointSet (nub_process_t pid, nub_addr_t addr, nub_size_t size, nub_bool_t hardware)
856{
857    MachProcessSP procSP;
858    if (GetProcessSP (pid, procSP))
859    {
860        return procSP->CreateBreakpoint(addr, size, hardware, THREAD_NULL);
861    }
862    return INVALID_NUB_BREAK_ID;
863}
864
865nub_bool_t
866DNBBreakpointClear (nub_process_t pid, nub_break_t breakID)
867{
868    if (NUB_BREAK_ID_IS_VALID(breakID))
869    {
870        MachProcessSP procSP;
871        if (GetProcessSP (pid, procSP))
872        {
873            return procSP->DisableBreakpoint(breakID, true);
874        }
875    }
876    return false; // Failed
877}
878
879nub_ssize_t
880DNBBreakpointGetHitCount (nub_process_t pid, nub_break_t breakID)
881{
882    if (NUB_BREAK_ID_IS_VALID(breakID))
883    {
884        MachProcessSP procSP;
885        if (GetProcessSP (pid, procSP))
886        {
887            DNBBreakpoint *bp = procSP->Breakpoints().FindByID(breakID);
888            if (bp)
889                return bp->GetHitCount();
890        }
891    }
892    return 0;
893}
894
895nub_ssize_t
896DNBBreakpointGetIgnoreCount (nub_process_t pid, nub_break_t breakID)
897{
898    if (NUB_BREAK_ID_IS_VALID(breakID))
899    {
900        MachProcessSP procSP;
901        if (GetProcessSP (pid, procSP))
902        {
903            DNBBreakpoint *bp = procSP->Breakpoints().FindByID(breakID);
904            if (bp)
905                return bp->GetIgnoreCount();
906        }
907    }
908    return 0;
909}
910
911nub_bool_t
912DNBBreakpointSetIgnoreCount (nub_process_t pid, nub_break_t breakID, nub_size_t ignore_count)
913{
914    if (NUB_BREAK_ID_IS_VALID(breakID))
915    {
916        MachProcessSP procSP;
917        if (GetProcessSP (pid, procSP))
918        {
919            DNBBreakpoint *bp = procSP->Breakpoints().FindByID(breakID);
920            if (bp)
921            {
922                bp->SetIgnoreCount(ignore_count);
923                return true;
924            }
925        }
926    }
927    return false;
928}
929
930// Set the callback function for a given breakpoint. The callback function will
931// get called as soon as the breakpoint is hit. The function will be called
932// with the process ID, thread ID, breakpoint ID and the baton, and can return
933//
934nub_bool_t
935DNBBreakpointSetCallback (nub_process_t pid, nub_break_t breakID, DNBCallbackBreakpointHit callback, void *baton)
936{
937    if (NUB_BREAK_ID_IS_VALID(breakID))
938    {
939        MachProcessSP procSP;
940        if (GetProcessSP (pid, procSP))
941        {
942            DNBBreakpoint *bp = procSP->Breakpoints().FindByID(breakID);
943            if (bp)
944            {
945                bp->SetCallback(callback, baton);
946                return true;
947            }
948        }
949    }
950    return false;
951}
952
953//----------------------------------------------------------------------
954// Dump the breakpoints stats for process PID for a breakpoint by ID.
955//----------------------------------------------------------------------
956void
957DNBBreakpointPrint (nub_process_t pid, nub_break_t breakID)
958{
959    MachProcessSP procSP;
960    if (GetProcessSP (pid, procSP))
961        procSP->DumpBreakpoint(breakID);
962}
963
964//----------------------------------------------------------------------
965// Watchpoints
966//----------------------------------------------------------------------
967nub_watch_t
968DNBWatchpointSet (nub_process_t pid, nub_addr_t addr, nub_size_t size, uint32_t watch_flags, nub_bool_t hardware)
969{
970    MachProcessSP procSP;
971    if (GetProcessSP (pid, procSP))
972    {
973        return procSP->CreateWatchpoint(addr, size, watch_flags, hardware, THREAD_NULL);
974    }
975    return INVALID_NUB_WATCH_ID;
976}
977
978nub_bool_t
979DNBWatchpointClear (nub_process_t pid, nub_watch_t watchID)
980{
981    if (NUB_WATCH_ID_IS_VALID(watchID))
982    {
983        MachProcessSP procSP;
984        if (GetProcessSP (pid, procSP))
985        {
986            return procSP->DisableWatchpoint(watchID, true);
987        }
988    }
989    return false; // Failed
990}
991
992nub_ssize_t
993DNBWatchpointGetHitCount (nub_process_t pid, nub_watch_t watchID)
994{
995    if (NUB_WATCH_ID_IS_VALID(watchID))
996    {
997        MachProcessSP procSP;
998        if (GetProcessSP (pid, procSP))
999        {
1000            DNBBreakpoint *bp = procSP->Watchpoints().FindByID(watchID);
1001            if (bp)
1002                return bp->GetHitCount();
1003        }
1004    }
1005    return 0;
1006}
1007
1008nub_ssize_t
1009DNBWatchpointGetIgnoreCount (nub_process_t pid, nub_watch_t watchID)
1010{
1011    if (NUB_WATCH_ID_IS_VALID(watchID))
1012    {
1013        MachProcessSP procSP;
1014        if (GetProcessSP (pid, procSP))
1015        {
1016            DNBBreakpoint *bp = procSP->Watchpoints().FindByID(watchID);
1017            if (bp)
1018                return bp->GetIgnoreCount();
1019        }
1020    }
1021    return 0;
1022}
1023
1024nub_bool_t
1025DNBWatchpointSetIgnoreCount (nub_process_t pid, nub_watch_t watchID, nub_size_t ignore_count)
1026{
1027    if (NUB_WATCH_ID_IS_VALID(watchID))
1028    {
1029        MachProcessSP procSP;
1030        if (GetProcessSP (pid, procSP))
1031        {
1032            DNBBreakpoint *bp = procSP->Watchpoints().FindByID(watchID);
1033            if (bp)
1034            {
1035                bp->SetIgnoreCount(ignore_count);
1036                return true;
1037            }
1038        }
1039    }
1040    return false;
1041}
1042
1043// Set the callback function for a given watchpoint. The callback function will
1044// get called as soon as the watchpoint is hit. The function will be called
1045// with the process ID, thread ID, watchpoint ID and the baton, and can return
1046//
1047nub_bool_t
1048DNBWatchpointSetCallback (nub_process_t pid, nub_watch_t watchID, DNBCallbackBreakpointHit callback, void *baton)
1049{
1050    if (NUB_WATCH_ID_IS_VALID(watchID))
1051    {
1052        MachProcessSP procSP;
1053        if (GetProcessSP (pid, procSP))
1054        {
1055            DNBBreakpoint *bp = procSP->Watchpoints().FindByID(watchID);
1056            if (bp)
1057            {
1058                bp->SetCallback(callback, baton);
1059                return true;
1060            }
1061        }
1062    }
1063    return false;
1064}
1065
1066//----------------------------------------------------------------------
1067// Dump the watchpoints stats for process PID for a watchpoint by ID.
1068//----------------------------------------------------------------------
1069void
1070DNBWatchpointPrint (nub_process_t pid, nub_watch_t watchID)
1071{
1072    MachProcessSP procSP;
1073    if (GetProcessSP (pid, procSP))
1074        procSP->DumpWatchpoint(watchID);
1075}
1076
1077//----------------------------------------------------------------------
1078// Read memory in the address space of process PID. This call will take
1079// care of setting and restoring permissions and breaking up the memory
1080// read into multiple chunks as required.
1081//
1082// RETURNS: number of bytes actually read
1083//----------------------------------------------------------------------
1084nub_size_t
1085DNBProcessMemoryRead (nub_process_t pid, nub_addr_t addr, nub_size_t size, void *buf)
1086{
1087    MachProcessSP procSP;
1088    if (GetProcessSP (pid, procSP))
1089        return procSP->ReadMemory(addr, size, buf);
1090    return 0;
1091}
1092
1093//----------------------------------------------------------------------
1094// Write memory to the address space of process PID. This call will take
1095// care of setting and restoring permissions and breaking up the memory
1096// write into multiple chunks as required.
1097//
1098// RETURNS: number of bytes actually written
1099//----------------------------------------------------------------------
1100nub_size_t
1101DNBProcessMemoryWrite (nub_process_t pid, nub_addr_t addr, nub_size_t size, const void *buf)
1102{
1103    MachProcessSP procSP;
1104    if (GetProcessSP (pid, procSP))
1105        return procSP->WriteMemory(addr, size, buf);
1106    return 0;
1107}
1108
1109nub_addr_t
1110DNBProcessMemoryAllocate (nub_process_t pid, nub_size_t size, uint32_t permissions)
1111{
1112    MachProcessSP procSP;
1113    if (GetProcessSP (pid, procSP))
1114        return procSP->Task().AllocateMemory (size, permissions);
1115    return 0;
1116}
1117
1118nub_bool_t
1119DNBProcessMemoryDeallocate (nub_process_t pid, nub_addr_t addr)
1120{
1121    MachProcessSP procSP;
1122    if (GetProcessSP (pid, procSP))
1123        return procSP->Task().DeallocateMemory (addr);
1124    return 0;
1125}
1126
1127//----------------------------------------------------------------------
1128// Find attributes of the memory region that contains ADDR for process PID,
1129// if possible, and return a string describing those attributes.
1130//
1131// Returns 1 if we could find attributes for this region and OUTBUF can
1132// be sent to the remote debugger.
1133//
1134// Returns 0 if we couldn't find the attributes for a region of memory at
1135// that address and OUTBUF should not be sent.
1136//
1137// Returns -1 if this platform cannot look up information about memory regions
1138// or if we do not yet have a valid launched process.
1139//
1140//----------------------------------------------------------------------
1141int
1142DNBProcessMemoryRegionInfo (nub_process_t pid, nub_addr_t addr, DNBRegionInfo *region_info)
1143{
1144    MachProcessSP procSP;
1145    if (GetProcessSP (pid, procSP))
1146        return procSP->Task().GetMemoryRegionInfo (addr, region_info);
1147
1148    return -1;
1149}
1150
1151
1152//----------------------------------------------------------------------
1153// Formatted output that uses memory and registers from process and
1154// thread in place of arguments.
1155//----------------------------------------------------------------------
1156nub_size_t
1157DNBPrintf (nub_process_t pid, nub_thread_t tid, nub_addr_t base_addr, FILE *file, const char *format)
1158{
1159    if (file == NULL)
1160        return 0;
1161    enum printf_flags
1162    {
1163        alternate_form          = (1 << 0),
1164        zero_padding            = (1 << 1),
1165        negative_field_width    = (1 << 2),
1166        blank_space             = (1 << 3),
1167        show_sign               = (1 << 4),
1168        show_thousands_separator= (1 << 5),
1169    };
1170
1171    enum printf_length_modifiers
1172    {
1173        length_mod_h            = (1 << 0),
1174        length_mod_hh           = (1 << 1),
1175        length_mod_l            = (1 << 2),
1176        length_mod_ll           = (1 << 3),
1177        length_mod_L            = (1 << 4),
1178        length_mod_j            = (1 << 5),
1179        length_mod_t            = (1 << 6),
1180        length_mod_z            = (1 << 7),
1181        length_mod_q            = (1 << 8),
1182    };
1183
1184    nub_addr_t addr = base_addr;
1185    char *end_format = (char*)format + strlen(format);
1186    char *end = NULL;    // For strtoXXXX calls;
1187    std::basic_string<uint8_t> buf;
1188    nub_size_t total_bytes_read = 0;
1189    DNBDataRef data;
1190    const char *f;
1191    for (f = format; *f != '\0' && f < end_format; f++)
1192    {
1193        char ch = *f;
1194        switch (ch)
1195        {
1196        case '%':
1197            {
1198                f++;    // Skip the '%' character
1199                int min_field_width = 0;
1200                int precision = 0;
1201                uint32_t flags = 0;
1202                uint32_t length_modifiers = 0;
1203                uint32_t byte_size = 0;
1204                uint32_t actual_byte_size = 0;
1205                bool is_string = false;
1206                bool is_register = false;
1207                DNBRegisterValue register_value;
1208                int64_t    register_offset = 0;
1209                nub_addr_t register_addr = INVALID_NUB_ADDRESS;
1210
1211                // Create the format string to use for this conversion specification
1212                // so we can remove and mprintf specific flags and formatters.
1213                std::string fprintf_format("%");
1214
1215                // Decode any flags
1216                switch (*f)
1217                {
1218                case '#': fprintf_format += *f++; flags |= alternate_form;            break;
1219                case '0': fprintf_format += *f++; flags |= zero_padding;            break;
1220                case '-': fprintf_format += *f++; flags |= negative_field_width;    break;
1221                case ' ': fprintf_format += *f++; flags |= blank_space;                break;
1222                case '+': fprintf_format += *f++; flags |= show_sign;                break;
1223                case ',': fprintf_format += *f++; flags |= show_thousands_separator;break;
1224                case '{':
1225                case '[':
1226                    {
1227                        // We have a register name specification that can take two forms:
1228                        // ${regname} or ${regname+offset}
1229                        //        The action is to read the register value and add the signed offset
1230                        //        (if any) and use that as the value to format.
1231                        // $[regname] or $[regname+offset]
1232                        //        The action is to read the register value and add the signed offset
1233                        //        (if any) and use the result as an address to dereference. The size
1234                        //        of what is dereferenced is specified by the actual byte size that
1235                        //        follows the minimum field width and precision (see comments below).
1236                        switch (*f)
1237                        {
1238                        case '{':
1239                        case '[':
1240                            {
1241                                char open_scope_ch = *f;
1242                                f++;
1243                                const char *reg_name = f;
1244                                size_t reg_name_length = strcspn(f, "+-}]");
1245                                if (reg_name_length > 0)
1246                                {
1247                                    std::string register_name(reg_name, reg_name_length);
1248                                    f += reg_name_length;
1249                                    register_offset = strtoll(f, &end, 0);
1250                                    if (f < end)
1251                                        f = end;
1252                                    if ((open_scope_ch == '{' && *f != '}') || (open_scope_ch == '[' && *f != ']'))
1253                                    {
1254                                        fprintf(file, "error: Invalid register format string. Valid formats are %%{regname} or %%{regname+offset}, %%[regname] or %%[regname+offset]\n");
1255                                        return total_bytes_read;
1256                                    }
1257                                    else
1258                                    {
1259                                        f++;
1260                                        if (DNBThreadGetRegisterValueByName(pid, tid, REGISTER_SET_ALL, register_name.c_str(), &register_value))
1261                                        {
1262                                            // Set the address to dereference using the register value plus the offset
1263                                            switch (register_value.info.size)
1264                                            {
1265                                            default:
1266                                            case 0:
1267                                                fprintf (file, "error: unsupported register size of %u.\n", register_value.info.size);
1268                                                return total_bytes_read;
1269
1270                                            case 1:        register_addr = register_value.value.uint8  + register_offset; break;
1271                                            case 2:        register_addr = register_value.value.uint16 + register_offset; break;
1272                                            case 4:        register_addr = register_value.value.uint32 + register_offset; break;
1273                                            case 8:        register_addr = register_value.value.uint64 + register_offset; break;
1274                                            case 16:
1275                                                if (open_scope_ch == '[')
1276                                                {
1277                                                    fprintf (file, "error: register size (%u) too large for address.\n", register_value.info.size);
1278                                                    return total_bytes_read;
1279                                                }
1280                                                break;
1281                                            }
1282
1283                                            if (open_scope_ch == '{')
1284                                            {
1285                                                byte_size = register_value.info.size;
1286                                                is_register = true;    // value is in a register
1287
1288                                            }
1289                                            else
1290                                            {
1291                                                addr = register_addr;    // Use register value and offset as the address
1292                                            }
1293                                        }
1294                                        else
1295                                        {
1296                                            fprintf(file, "error: unable to read register '%s' for process %#.4x and thread %#.4x\n", register_name.c_str(), pid, tid);
1297                                            return total_bytes_read;
1298                                        }
1299                                    }
1300                                }
1301                            }
1302                            break;
1303
1304                        default:
1305                            fprintf(file, "error: %%$ must be followed by (regname + n) or [regname + n]\n");
1306                            return total_bytes_read;
1307                        }
1308                    }
1309                    break;
1310                }
1311
1312                // Check for a minimum field width
1313                if (isdigit(*f))
1314                {
1315                    min_field_width = strtoul(f, &end, 10);
1316                    if (end > f)
1317                    {
1318                        fprintf_format.append(f, end - f);
1319                        f = end;
1320                    }
1321                }
1322
1323
1324                // Check for a precision
1325                if (*f == '.')
1326                {
1327                    f++;
1328                    if (isdigit(*f))
1329                    {
1330                        fprintf_format += '.';
1331                        precision = strtoul(f, &end, 10);
1332                        if (end > f)
1333                        {
1334                            fprintf_format.append(f, end - f);
1335                            f = end;
1336                        }
1337                    }
1338                }
1339
1340
1341                // mprintf specific: read the optional actual byte size (abs)
1342                // after the standard minimum field width (mfw) and precision (prec).
1343                // Standard printf calls you can have "mfw.prec" or ".prec", but
1344                // mprintf can have "mfw.prec.abs", ".prec.abs" or "..abs". This is nice
1345                // for strings that may be in a fixed size buffer, but may not use all bytes
1346                // in that buffer for printable characters.
1347                if (*f == '.')
1348                {
1349                    f++;
1350                    actual_byte_size = strtoul(f, &end, 10);
1351                    if (end > f)
1352                    {
1353                        byte_size = actual_byte_size;
1354                        f = end;
1355                    }
1356                }
1357
1358                // Decode the length modifiers
1359                switch (*f)
1360                {
1361                case 'h':    // h and hh length modifiers
1362                    fprintf_format += *f++;
1363                    length_modifiers |= length_mod_h;
1364                    if (*f == 'h')
1365                    {
1366                        fprintf_format += *f++;
1367                        length_modifiers |= length_mod_hh;
1368                    }
1369                    break;
1370
1371                case 'l': // l and ll length modifiers
1372                    fprintf_format += *f++;
1373                    length_modifiers |= length_mod_l;
1374                    if (*f == 'h')
1375                    {
1376                        fprintf_format += *f++;
1377                        length_modifiers |= length_mod_ll;
1378                    }
1379                    break;
1380
1381                case 'L':    fprintf_format += *f++;    length_modifiers |= length_mod_L;    break;
1382                case 'j':    fprintf_format += *f++;    length_modifiers |= length_mod_j;    break;
1383                case 't':    fprintf_format += *f++;    length_modifiers |= length_mod_t;    break;
1384                case 'z':    fprintf_format += *f++;    length_modifiers |= length_mod_z;    break;
1385                case 'q':    fprintf_format += *f++;    length_modifiers |= length_mod_q;    break;
1386                }
1387
1388                // Decode the conversion specifier
1389                switch (*f)
1390                {
1391                case '_':
1392                    // mprintf specific format items
1393                    {
1394                        ++f;    // Skip the '_' character
1395                        switch (*f)
1396                        {
1397                        case 'a':    // Print the current address
1398                            ++f;
1399                            fprintf_format += "ll";
1400                            fprintf_format += *f;    // actual format to show address with folows the 'a' ("%_ax")
1401                            fprintf (file, fprintf_format.c_str(), addr);
1402                            break;
1403                        case 'o':    // offset from base address
1404                            ++f;
1405                            fprintf_format += "ll";
1406                            fprintf_format += *f;    // actual format to show address with folows the 'a' ("%_ox")
1407                            fprintf(file, fprintf_format.c_str(), addr - base_addr);
1408                            break;
1409                        default:
1410                            fprintf (file, "error: unsupported mprintf specific format character '%c'.\n", *f);
1411                            break;
1412                        }
1413                        continue;
1414                    }
1415                    break;
1416
1417                case 'D':
1418                case 'O':
1419                case 'U':
1420                    fprintf_format += *f;
1421                    if (byte_size == 0)
1422                        byte_size = sizeof(long int);
1423                    break;
1424
1425                case 'd':
1426                case 'i':
1427                case 'o':
1428                case 'u':
1429                case 'x':
1430                case 'X':
1431                    fprintf_format += *f;
1432                    if (byte_size == 0)
1433                    {
1434                        if (length_modifiers & length_mod_hh)
1435                            byte_size = sizeof(char);
1436                        else if (length_modifiers & length_mod_h)
1437                            byte_size = sizeof(short);
1438                        if (length_modifiers & length_mod_ll)
1439                            byte_size = sizeof(long long);
1440                        else if (length_modifiers & length_mod_l)
1441                            byte_size = sizeof(long);
1442                        else
1443                            byte_size = sizeof(int);
1444                    }
1445                    break;
1446
1447                case 'a':
1448                case 'A':
1449                case 'f':
1450                case 'F':
1451                case 'e':
1452                case 'E':
1453                case 'g':
1454                case 'G':
1455                    fprintf_format += *f;
1456                    if (byte_size == 0)
1457                    {
1458                        if (length_modifiers & length_mod_L)
1459                            byte_size = sizeof(long double);
1460                        else
1461                            byte_size = sizeof(double);
1462                    }
1463                    break;
1464
1465                case 'c':
1466                    if ((length_modifiers & length_mod_l) == 0)
1467                    {
1468                        fprintf_format += *f;
1469                        if (byte_size == 0)
1470                            byte_size = sizeof(char);
1471                        break;
1472                    }
1473                    // Fall through to 'C' modifier below...
1474
1475                case 'C':
1476                    fprintf_format += *f;
1477                    if (byte_size == 0)
1478                        byte_size = sizeof(wchar_t);
1479                    break;
1480
1481                case 's':
1482                    fprintf_format += *f;
1483                    if (is_register || byte_size == 0)
1484                        is_string = 1;
1485                    break;
1486
1487                case 'p':
1488                    fprintf_format += *f;
1489                    if (byte_size == 0)
1490                        byte_size = sizeof(void*);
1491                    break;
1492                }
1493
1494                if (is_string)
1495                {
1496                    std::string mem_string;
1497                    const size_t string_buf_len = 4;
1498                    char string_buf[string_buf_len+1];
1499                    char *string_buf_end = string_buf + string_buf_len;
1500                    string_buf[string_buf_len] = '\0';
1501                    nub_size_t bytes_read;
1502                    nub_addr_t str_addr = is_register ? register_addr : addr;
1503                    while ((bytes_read = DNBProcessMemoryRead(pid, str_addr, string_buf_len, &string_buf[0])) > 0)
1504                    {
1505                        // Did we get a NULL termination character yet?
1506                        if (strchr(string_buf, '\0') == string_buf_end)
1507                        {
1508                            // no NULL terminator yet, append as a std::string
1509                            mem_string.append(string_buf, string_buf_len);
1510                            str_addr += string_buf_len;
1511                        }
1512                        else
1513                        {
1514                            // yep
1515                            break;
1516                        }
1517                    }
1518                    // Append as a C-string so we don't get the extra NULL
1519                    // characters in the temp buffer (since it was resized)
1520                    mem_string += string_buf;
1521                    size_t mem_string_len = mem_string.size() + 1;
1522                    fprintf(file, fprintf_format.c_str(), mem_string.c_str());
1523                    if (mem_string_len > 0)
1524                    {
1525                        if (!is_register)
1526                        {
1527                            addr += mem_string_len;
1528                            total_bytes_read += mem_string_len;
1529                        }
1530                    }
1531                    else
1532                        return total_bytes_read;
1533                }
1534                else
1535                if (byte_size > 0)
1536                {
1537                    buf.resize(byte_size);
1538                    nub_size_t bytes_read = 0;
1539                    if (is_register)
1540                        bytes_read = register_value.info.size;
1541                    else
1542                        bytes_read = DNBProcessMemoryRead(pid, addr, buf.size(), &buf[0]);
1543                    if (bytes_read > 0)
1544                    {
1545                        if (!is_register)
1546                            total_bytes_read += bytes_read;
1547
1548                        if (bytes_read == byte_size)
1549                        {
1550                            switch (*f)
1551                            {
1552                            case 'd':
1553                            case 'i':
1554                            case 'o':
1555                            case 'u':
1556                            case 'X':
1557                            case 'x':
1558                            case 'a':
1559                            case 'A':
1560                            case 'f':
1561                            case 'F':
1562                            case 'e':
1563                            case 'E':
1564                            case 'g':
1565                            case 'G':
1566                            case 'p':
1567                            case 'c':
1568                            case 'C':
1569                                {
1570                                    if (is_register)
1571                                        data.SetData(&register_value.value.v_uint8[0], register_value.info.size);
1572                                    else
1573                                        data.SetData(&buf[0], bytes_read);
1574                                    DNBDataRef::offset_t data_offset = 0;
1575                                    if (byte_size <= 4)
1576                                    {
1577                                        uint32_t u32 = data.GetMax32(&data_offset, byte_size);
1578                                        // Show the actual byte width when displaying hex
1579                                        fprintf(file, fprintf_format.c_str(), u32);
1580                                    }
1581                                    else if (byte_size <= 8)
1582                                    {
1583                                        uint64_t u64 = data.GetMax64(&data_offset, byte_size);
1584                                        // Show the actual byte width when displaying hex
1585                                        fprintf(file, fprintf_format.c_str(), u64);
1586                                    }
1587                                    else
1588                                    {
1589                                        fprintf(file, "error: integer size not supported, must be 8 bytes or less (%u bytes).\n", byte_size);
1590                                    }
1591                                    if (!is_register)
1592                                        addr += byte_size;
1593                                }
1594                                break;
1595
1596                            case 's':
1597                                fprintf(file, fprintf_format.c_str(), buf.c_str());
1598                                addr += byte_size;
1599                                break;
1600
1601                            default:
1602                                fprintf(file, "error: unsupported conversion specifier '%c'.\n", *f);
1603                                break;
1604                            }
1605                        }
1606                    }
1607                }
1608                else
1609                    return total_bytes_read;
1610            }
1611            break;
1612
1613        case '\\':
1614            {
1615                f++;
1616                switch (*f)
1617                {
1618                case 'e': ch = '\e'; break;
1619                case 'a': ch = '\a'; break;
1620                case 'b': ch = '\b'; break;
1621                case 'f': ch = '\f'; break;
1622                case 'n': ch = '\n'; break;
1623                case 'r': ch = '\r'; break;
1624                case 't': ch = '\t'; break;
1625                case 'v': ch = '\v'; break;
1626                case '\'': ch = '\''; break;
1627                case '\\': ch = '\\'; break;
1628                case '0':
1629                case '1':
1630                case '2':
1631                case '3':
1632                case '4':
1633                case '5':
1634                case '6':
1635                case '7':
1636                    ch = strtoul(f, &end, 8);
1637                    f = end;
1638                    break;
1639                default:
1640                    ch = *f;
1641                    break;
1642                }
1643                fputc(ch, file);
1644            }
1645            break;
1646
1647        default:
1648            fputc(ch, file);
1649            break;
1650        }
1651    }
1652    return total_bytes_read;
1653}
1654
1655
1656//----------------------------------------------------------------------
1657// Get the number of threads for the specified process.
1658//----------------------------------------------------------------------
1659nub_size_t
1660DNBProcessGetNumThreads (nub_process_t pid)
1661{
1662    MachProcessSP procSP;
1663    if (GetProcessSP (pid, procSP))
1664        return procSP->GetNumThreads();
1665    return 0;
1666}
1667
1668//----------------------------------------------------------------------
1669// Get the thread ID of the current thread.
1670//----------------------------------------------------------------------
1671nub_thread_t
1672DNBProcessGetCurrentThread (nub_process_t pid)
1673{
1674    MachProcessSP procSP;
1675    if (GetProcessSP (pid, procSP))
1676        return procSP->GetCurrentThread();
1677    return 0;
1678}
1679
1680//----------------------------------------------------------------------
1681// Change the current thread.
1682//----------------------------------------------------------------------
1683nub_thread_t
1684DNBProcessSetCurrentThread (nub_process_t pid, nub_thread_t tid)
1685{
1686    MachProcessSP procSP;
1687    if (GetProcessSP (pid, procSP))
1688        return procSP->SetCurrentThread (tid);
1689    return INVALID_NUB_THREAD;
1690}
1691
1692
1693//----------------------------------------------------------------------
1694// Dump a string describing a thread's stop reason to the specified file
1695// handle
1696//----------------------------------------------------------------------
1697nub_bool_t
1698DNBThreadGetStopReason (nub_process_t pid, nub_thread_t tid, struct DNBThreadStopInfo *stop_info)
1699{
1700    MachProcessSP procSP;
1701    if (GetProcessSP (pid, procSP))
1702        return procSP->GetThreadStoppedReason (tid, stop_info);
1703    return false;
1704}
1705
1706//----------------------------------------------------------------------
1707// Return string description for the specified thread.
1708//
1709// RETURNS: NULL if the thread isn't valid, else a NULL terminated C
1710// string from a static buffer that must be copied prior to subsequent
1711// calls.
1712//----------------------------------------------------------------------
1713const char *
1714DNBThreadGetInfo (nub_process_t pid, nub_thread_t tid)
1715{
1716    MachProcessSP procSP;
1717    if (GetProcessSP (pid, procSP))
1718        return procSP->GetThreadInfo (tid);
1719    return NULL;
1720}
1721
1722//----------------------------------------------------------------------
1723// Get the thread ID given a thread index.
1724//----------------------------------------------------------------------
1725nub_thread_t
1726DNBProcessGetThreadAtIndex (nub_process_t pid, size_t thread_idx)
1727{
1728    MachProcessSP procSP;
1729    if (GetProcessSP (pid, procSP))
1730        return procSP->GetThreadAtIndex (thread_idx);
1731    return INVALID_NUB_THREAD;
1732}
1733
1734nub_addr_t
1735DNBProcessGetSharedLibraryInfoAddress (nub_process_t pid)
1736{
1737    MachProcessSP procSP;
1738    DNBError err;
1739    if (GetProcessSP (pid, procSP))
1740        return procSP->Task().GetDYLDAllImageInfosAddress (err);
1741    return INVALID_NUB_ADDRESS;
1742}
1743
1744
1745nub_bool_t
1746DNBProcessSharedLibrariesUpdated(nub_process_t pid)
1747{
1748    MachProcessSP procSP;
1749    if (GetProcessSP (pid, procSP))
1750    {
1751        procSP->SharedLibrariesUpdated ();
1752        return true;
1753    }
1754    return false;
1755}
1756
1757//----------------------------------------------------------------------
1758// Get the current shared library information for a process. Only return
1759// the shared libraries that have changed since the last shared library
1760// state changed event if only_changed is non-zero.
1761//----------------------------------------------------------------------
1762nub_size_t
1763DNBProcessGetSharedLibraryInfo (nub_process_t pid, nub_bool_t only_changed, struct DNBExecutableImageInfo **image_infos)
1764{
1765    MachProcessSP procSP;
1766    if (GetProcessSP (pid, procSP))
1767        return procSP->CopyImageInfos (image_infos, only_changed);
1768
1769    // If we have no process, then return NULL for the shared library info
1770    // and zero for shared library count
1771    *image_infos = NULL;
1772    return 0;
1773}
1774
1775//----------------------------------------------------------------------
1776// Get the register set information for a specific thread.
1777//----------------------------------------------------------------------
1778const DNBRegisterSetInfo *
1779DNBGetRegisterSetInfo (nub_size_t *num_reg_sets)
1780{
1781    return DNBArchProtocol::GetRegisterSetInfo (num_reg_sets);
1782}
1783
1784
1785//----------------------------------------------------------------------
1786// Read a register value by register set and register index.
1787//----------------------------------------------------------------------
1788nub_bool_t
1789DNBThreadGetRegisterValueByID (nub_process_t pid, nub_thread_t tid, uint32_t set, uint32_t reg, DNBRegisterValue *value)
1790{
1791    MachProcessSP procSP;
1792    ::bzero (value, sizeof(DNBRegisterValue));
1793    if (GetProcessSP (pid, procSP))
1794    {
1795        if (tid != INVALID_NUB_THREAD)
1796            return procSP->GetRegisterValue (tid, set, reg, value);
1797    }
1798    return false;
1799}
1800
1801nub_bool_t
1802DNBThreadSetRegisterValueByID (nub_process_t pid, nub_thread_t tid, uint32_t set, uint32_t reg, const DNBRegisterValue *value)
1803{
1804    if (tid != INVALID_NUB_THREAD)
1805    {
1806        MachProcessSP procSP;
1807        if (GetProcessSP (pid, procSP))
1808            return procSP->SetRegisterValue (tid, set, reg, value);
1809    }
1810    return false;
1811}
1812
1813nub_size_t
1814DNBThreadGetRegisterContext (nub_process_t pid, nub_thread_t tid, void *buf, size_t buf_len)
1815{
1816    MachProcessSP procSP;
1817    if (GetProcessSP (pid, procSP))
1818    {
1819        if (tid != INVALID_NUB_THREAD)
1820            return procSP->GetThreadList().GetRegisterContext (tid, buf, buf_len);
1821    }
1822    ::bzero (buf, buf_len);
1823    return 0;
1824
1825}
1826
1827nub_size_t
1828DNBThreadSetRegisterContext (nub_process_t pid, nub_thread_t tid, const void *buf, size_t buf_len)
1829{
1830    MachProcessSP procSP;
1831    if (GetProcessSP (pid, procSP))
1832    {
1833        if (tid != INVALID_NUB_THREAD)
1834            return procSP->GetThreadList().SetRegisterContext (tid, buf, buf_len);
1835    }
1836    return 0;
1837}
1838
1839//----------------------------------------------------------------------
1840// Read a register value by name.
1841//----------------------------------------------------------------------
1842nub_bool_t
1843DNBThreadGetRegisterValueByName (nub_process_t pid, nub_thread_t tid, uint32_t reg_set, const char *reg_name, DNBRegisterValue *value)
1844{
1845    MachProcessSP procSP;
1846    ::bzero (value, sizeof(DNBRegisterValue));
1847    if (GetProcessSP (pid, procSP))
1848    {
1849        const struct DNBRegisterSetInfo *set_info;
1850        nub_size_t num_reg_sets = 0;
1851        set_info = DNBGetRegisterSetInfo (&num_reg_sets);
1852        if (set_info)
1853        {
1854            uint32_t set = reg_set;
1855            uint32_t reg;
1856            if (set == REGISTER_SET_ALL)
1857            {
1858                for (set = 1; set < num_reg_sets; ++set)
1859                {
1860                    for (reg = 0; reg < set_info[set].num_registers; ++reg)
1861                    {
1862                        if (strcasecmp(reg_name, set_info[set].registers[reg].name) == 0)
1863                            return procSP->GetRegisterValue (tid, set, reg, value);
1864                    }
1865                }
1866            }
1867            else
1868            {
1869                for (reg = 0; reg < set_info[set].num_registers; ++reg)
1870                {
1871                    if (strcasecmp(reg_name, set_info[set].registers[reg].name) == 0)
1872                        return procSP->GetRegisterValue (tid, set, reg, value);
1873                }
1874            }
1875        }
1876    }
1877    return false;
1878}
1879
1880
1881//----------------------------------------------------------------------
1882// Read a register set and register number from the register name.
1883//----------------------------------------------------------------------
1884nub_bool_t
1885DNBGetRegisterInfoByName (const char *reg_name, DNBRegisterInfo* info)
1886{
1887    const struct DNBRegisterSetInfo *set_info;
1888    nub_size_t num_reg_sets = 0;
1889    set_info = DNBGetRegisterSetInfo (&num_reg_sets);
1890    if (set_info)
1891    {
1892        uint32_t set, reg;
1893        for (set = 1; set < num_reg_sets; ++set)
1894        {
1895            for (reg = 0; reg < set_info[set].num_registers; ++reg)
1896            {
1897                if (strcasecmp(reg_name, set_info[set].registers[reg].name) == 0)
1898                {
1899                    *info = set_info[set].registers[reg];
1900                    return true;
1901                }
1902            }
1903        }
1904
1905        for (set = 1; set < num_reg_sets; ++set)
1906        {
1907            uint32_t reg;
1908            for (reg = 0; reg < set_info[set].num_registers; ++reg)
1909            {
1910                if (set_info[set].registers[reg].alt == NULL)
1911                    continue;
1912
1913                if (strcasecmp(reg_name, set_info[set].registers[reg].alt) == 0)
1914                {
1915                    *info = set_info[set].registers[reg];
1916                    return true;
1917                }
1918            }
1919        }
1920    }
1921
1922    ::bzero (info, sizeof(DNBRegisterInfo));
1923    return false;
1924}
1925
1926
1927//----------------------------------------------------------------------
1928// Set the name to address callback function that this nub can use
1929// for any name to address lookups that are needed.
1930//----------------------------------------------------------------------
1931nub_bool_t
1932DNBProcessSetNameToAddressCallback (nub_process_t pid, DNBCallbackNameToAddress callback, void *baton)
1933{
1934    MachProcessSP procSP;
1935    if (GetProcessSP (pid, procSP))
1936    {
1937        procSP->SetNameToAddressCallback (callback, baton);
1938        return true;
1939    }
1940    return false;
1941}
1942
1943
1944//----------------------------------------------------------------------
1945// Set the name to address callback function that this nub can use
1946// for any name to address lookups that are needed.
1947//----------------------------------------------------------------------
1948nub_bool_t
1949DNBProcessSetSharedLibraryInfoCallback (nub_process_t pid, DNBCallbackCopyExecutableImageInfos callback, void  *baton)
1950{
1951    MachProcessSP procSP;
1952    if (GetProcessSP (pid, procSP))
1953    {
1954        procSP->SetSharedLibraryInfoCallback (callback, baton);
1955        return true;
1956    }
1957    return false;
1958}
1959
1960nub_addr_t
1961DNBProcessLookupAddress (nub_process_t pid, const char *name, const char *shlib)
1962{
1963    MachProcessSP procSP;
1964    if (GetProcessSP (pid, procSP))
1965    {
1966        return procSP->LookupSymbol (name, shlib);
1967    }
1968    return INVALID_NUB_ADDRESS;
1969}
1970
1971
1972nub_size_t
1973DNBProcessGetAvailableSTDOUT (nub_process_t pid, char *buf, nub_size_t buf_size)
1974{
1975    MachProcessSP procSP;
1976    if (GetProcessSP (pid, procSP))
1977        return procSP->GetAvailableSTDOUT (buf, buf_size);
1978    return 0;
1979}
1980
1981nub_size_t
1982DNBProcessGetAvailableSTDERR (nub_process_t pid, char *buf, nub_size_t buf_size)
1983{
1984    MachProcessSP procSP;
1985    if (GetProcessSP (pid, procSP))
1986        return procSP->GetAvailableSTDERR (buf, buf_size);
1987    return 0;
1988}
1989
1990nub_size_t
1991DNBProcessGetStopCount (nub_process_t pid)
1992{
1993    MachProcessSP procSP;
1994    if (GetProcessSP (pid, procSP))
1995        return procSP->StopCount();
1996    return 0;
1997}
1998
1999uint32_t
2000DNBProcessGetCPUType (nub_process_t pid)
2001{
2002    MachProcessSP procSP;
2003    if (GetProcessSP (pid, procSP))
2004        return procSP->GetCPUType ();
2005    return 0;
2006
2007}
2008
2009nub_bool_t
2010DNBResolveExecutablePath (const char *path, char *resolved_path, size_t resolved_path_size)
2011{
2012    if (path == NULL || path[0] == '\0')
2013        return false;
2014
2015    char max_path[PATH_MAX];
2016    std::string result;
2017    CFString::GlobPath(path, result);
2018
2019    if (result.empty())
2020        result = path;
2021
2022    if (realpath(path, max_path))
2023    {
2024        // Found the path relatively...
2025        ::strncpy(resolved_path, max_path, resolved_path_size);
2026        return strlen(resolved_path) + 1 < resolved_path_size;
2027    }
2028    else
2029    {
2030        // Not a relative path, check the PATH environment variable if the
2031        const char *PATH = getenv("PATH");
2032        if (PATH)
2033        {
2034            const char *curr_path_start = PATH;
2035            const char *curr_path_end;
2036            while (curr_path_start && *curr_path_start)
2037            {
2038                curr_path_end = strchr(curr_path_start, ':');
2039                if (curr_path_end == NULL)
2040                {
2041                    result.assign(curr_path_start);
2042                    curr_path_start = NULL;
2043                }
2044                else if (curr_path_end > curr_path_start)
2045                {
2046                    size_t len = curr_path_end - curr_path_start;
2047                    result.assign(curr_path_start, len);
2048                    curr_path_start += len + 1;
2049                }
2050                else
2051                    break;
2052
2053                result += '/';
2054                result += path;
2055                struct stat s;
2056                if (stat(result.c_str(), &s) == 0)
2057                {
2058                    ::strncpy(resolved_path, result.c_str(), resolved_path_size);
2059                    return result.size() + 1 < resolved_path_size;
2060                }
2061            }
2062        }
2063    }
2064    return false;
2065}
2066
2067
2068void
2069DNBInitialize()
2070{
2071    DNBLogThreadedIf (LOG_PROCESS, "DNBInitialize ()");
2072#if defined (__i386__) || defined (__x86_64__)
2073    DNBArchImplI386::Initialize();
2074    DNBArchImplX86_64::Initialize();
2075#elif defined (__arm__)
2076    DNBArchMachARM::Initialize();
2077#endif
2078}
2079
2080void
2081DNBTerminate()
2082{
2083}
2084
2085nub_bool_t
2086DNBSetArchitecture (const char *arch)
2087{
2088    if (arch && arch[0])
2089    {
2090        if (strcasecmp (arch, "i386") == 0)
2091            return DNBArchProtocol::SetArchitecture (CPU_TYPE_I386);
2092        else if (strcasecmp (arch, "x86_64") == 0)
2093            return DNBArchProtocol::SetArchitecture (CPU_TYPE_X86_64);
2094        else if (strstr (arch, "arm") == arch)
2095            return DNBArchProtocol::SetArchitecture (CPU_TYPE_ARM);
2096    }
2097    return false;
2098}
2099