DNB.cpp revision 72e1c782ba1e4226da37af4722af608de9f39408
1//===-- DNB.cpp -------------------------------------------------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  Created by Greg Clayton on 3/23/07.
11//
12//===----------------------------------------------------------------------===//
13
14#include "DNB.h"
15#include <signal.h>
16#include <stdio.h>
17#include <stdlib.h>
18#include <sys/resource.h>
19#include <sys/stat.h>
20#include <sys/types.h>
21#include <sys/wait.h>
22#include <unistd.h>
23#include <sys/sysctl.h>
24#include <map>
25#include <vector>
26
27#include "MacOSX/MachProcess.h"
28#include "MacOSX/MachTask.h"
29#include "CFString.h"
30#include "DNBLog.h"
31#include "DNBDataRef.h"
32#include "DNBThreadResumeActions.h"
33#include "DNBTimer.h"
34
35typedef std::tr1::shared_ptr<MachProcess> MachProcessSP;
36typedef std::map<nub_process_t, MachProcessSP> ProcessMap;
37typedef ProcessMap::iterator ProcessMapIter;
38typedef ProcessMap::const_iterator ProcessMapConstIter;
39
40static size_t          GetAllInfos                  (std::vector<struct kinfo_proc>& proc_infos);
41static size_t          GetAllInfosMatchingName      (const char *process_name, std::vector<struct kinfo_proc>& matching_proc_infos);
42
43//----------------------------------------------------------------------
44// A Thread safe singleton to get a process map pointer.
45//
46// Returns a pointer to the existing process map, or a pointer to a
47// newly created process map if CAN_CREATE is non-zero.
48//----------------------------------------------------------------------
49static ProcessMap*
50GetProcessMap(bool can_create)
51{
52    static ProcessMap* g_process_map_ptr = NULL;
53
54    if (can_create && g_process_map_ptr == NULL)
55    {
56        static pthread_mutex_t g_process_map_mutex = PTHREAD_MUTEX_INITIALIZER;
57        PTHREAD_MUTEX_LOCKER (locker, &g_process_map_mutex);
58        if (g_process_map_ptr == NULL)
59            g_process_map_ptr = new ProcessMap;
60    }
61    return g_process_map_ptr;
62}
63
64//----------------------------------------------------------------------
65// Add PID to the shared process pointer map.
66//
67// Return non-zero value if we succeed in adding the process to the map.
68// The only time this should fail is if we run out of memory and can't
69// allocate a ProcessMap.
70//----------------------------------------------------------------------
71static nub_bool_t
72AddProcessToMap (nub_process_t pid, MachProcessSP& procSP)
73{
74    ProcessMap* process_map = GetProcessMap(true);
75    if (process_map)
76    {
77        process_map->insert(std::make_pair(pid, procSP));
78        return true;
79    }
80    return false;
81}
82
83//----------------------------------------------------------------------
84// Remove the shared pointer for PID from the process map.
85//
86// Returns the number of items removed from the process map.
87//----------------------------------------------------------------------
88static size_t
89RemoveProcessFromMap (nub_process_t pid)
90{
91    ProcessMap* process_map = GetProcessMap(false);
92    if (process_map)
93    {
94        return process_map->erase(pid);
95    }
96    return 0;
97}
98
99//----------------------------------------------------------------------
100// Get the shared pointer for PID from the existing process map.
101//
102// Returns true if we successfully find a shared pointer to a
103// MachProcess object.
104//----------------------------------------------------------------------
105static nub_bool_t
106GetProcessSP (nub_process_t pid, MachProcessSP& procSP)
107{
108    ProcessMap* process_map = GetProcessMap(false);
109    if (process_map != NULL)
110    {
111        ProcessMapIter pos = process_map->find(pid);
112        if (pos != process_map->end())
113        {
114            procSP = pos->second;
115            return true;
116        }
117    }
118    procSP.reset();
119    return false;
120}
121
122
123static void *
124waitpid_thread (void *arg)
125{
126    const pid_t pid = (pid_t)(intptr_t)arg;
127    int status;
128    while (1)
129    {
130        pid_t child_pid = waitpid(pid, &status, 0);
131        DNBLogThreadedIf(LOG_PROCESS, "waitpid_process_thread (): waitpid (pid = %i, &status, 0) => %i, status = %i, errno = %i", pid, child_pid, status, errno);
132
133        if (child_pid < 0)
134        {
135            if (errno == EINTR)
136                continue;
137            break;
138        }
139        else
140        {
141            if (WIFSTOPPED(status))
142            {
143                continue;
144            }
145            else// if (WIFEXITED(status) || WIFSIGNALED(status))
146            {
147                DNBLogThreadedIf(LOG_PROCESS, "waitpid_process_thread (): setting exit status for pid = %i to %i", child_pid, status);
148                DNBProcessSetExitStatus (child_pid, status);
149                return NULL;
150            }
151        }
152    }
153
154    // We should never exit as long as our child process is alive, so if we
155    // do something else went wrong and we should exit...
156    DNBLogThreadedIf(LOG_PROCESS, "waitpid_process_thread (): main loop exited, setting exit status to an invalid value (-1) for pid %i", pid);
157    DNBProcessSetExitStatus (pid, -1);
158    return NULL;
159}
160
161static bool
162spawn_waitpid_thread (pid_t pid)
163{
164    pthread_t thread = THREAD_NULL;
165    ::pthread_create (&thread, NULL, waitpid_thread, (void *)(intptr_t)pid);
166    if (thread != THREAD_NULL)
167    {
168        ::pthread_detach (thread);
169        return true;
170    }
171    return false;
172}
173
174nub_process_t
175DNBProcessLaunch (const char *path,
176                  char const *argv[],
177                  const char *envp[],
178                  const char *working_directory, // NULL => dont' change, non-NULL => set working directory for inferior to this
179                  const char *stdin_path,
180                  const char *stdout_path,
181                  const char *stderr_path,
182                  bool no_stdio,
183                  nub_launch_flavor_t launch_flavor,
184                  int disable_aslr,
185                  char *err_str,
186                  size_t err_len)
187{
188    DNBLogThreadedIf(LOG_PROCESS, "%s ( path='%s', argv = %p, envp = %p, launch_flavor = %u, disable_aslr = %d, err = %p, err_len = %zu) called...", __FUNCTION__, path, argv, envp, launch_flavor, disable_aslr, err_str, err_len);
189
190    if (err_str && err_len > 0)
191        err_str[0] = '\0';
192    struct stat path_stat;
193    if (::stat(path, &path_stat) == -1)
194    {
195        char stat_error[256];
196        ::strerror_r (errno, stat_error, sizeof(stat_error));
197        snprintf(err_str, err_len, "%s (%s)", stat_error, path);
198        return INVALID_NUB_PROCESS;
199    }
200
201    MachProcessSP processSP (new MachProcess);
202    if (processSP.get())
203    {
204        DNBError launch_err;
205        pid_t pid = processSP->LaunchForDebug (path,
206                                               argv,
207                                               envp,
208                                               working_directory,
209                                               stdin_path,
210                                               stdout_path,
211                                               stderr_path,
212                                               no_stdio,
213                                               launch_flavor,
214                                               disable_aslr,
215                                               launch_err);
216        if (err_str)
217        {
218            *err_str = '\0';
219            if (launch_err.Fail())
220            {
221                const char *launch_err_str = launch_err.AsString();
222                if (launch_err_str)
223                {
224                    strncpy(err_str, launch_err_str, err_len-1);
225                    err_str[err_len-1] = '\0';  // Make sure the error string is terminated
226                }
227            }
228        }
229
230        DNBLogThreadedIf(LOG_PROCESS, "(DebugNub) new pid is %d...", pid);
231
232        if (pid != INVALID_NUB_PROCESS)
233        {
234            // Spawn a thread to reap our child inferior process...
235            spawn_waitpid_thread (pid);
236
237            if (processSP->Task().TaskPortForProcessID (launch_err) == TASK_NULL)
238            {
239                // We failed to get the task for our process ID which is bad.
240                if (err_str && err_len > 0)
241                {
242                    if (launch_err.AsString())
243                    {
244                        ::snprintf (err_str, err_len, "failed to get the task for process %i (%s)", pid, launch_err.AsString());
245                    }
246                    else
247                    {
248                        ::snprintf (err_str, err_len, "failed to get the task for process %i", pid);
249                    }
250                }
251            }
252            else
253            {
254                assert(AddProcessToMap(pid, processSP));
255                return pid;
256            }
257        }
258    }
259    return INVALID_NUB_PROCESS;
260}
261
262nub_process_t
263DNBProcessAttachByName (const char *name, struct timespec *timeout, char *err_str, size_t err_len)
264{
265    if (err_str && err_len > 0)
266        err_str[0] = '\0';
267    std::vector<struct kinfo_proc> matching_proc_infos;
268    size_t num_matching_proc_infos = GetAllInfosMatchingName(name, matching_proc_infos);
269    if (num_matching_proc_infos == 0)
270    {
271        DNBLogError ("error: no processes match '%s'\n", name);
272        return INVALID_NUB_PROCESS;
273    }
274    else if (num_matching_proc_infos > 1)
275    {
276        DNBLogError ("error: %u processes match '%s':\n", num_matching_proc_infos, name);
277        size_t i;
278        for (i=0; i<num_matching_proc_infos; ++i)
279            DNBLogError ("%6u - %s\n", matching_proc_infos[i].kp_proc.p_pid, matching_proc_infos[i].kp_proc.p_comm);
280        return INVALID_NUB_PROCESS;
281    }
282
283    return DNBProcessAttach (matching_proc_infos[0].kp_proc.p_pid, timeout, err_str, err_len);
284}
285
286nub_process_t
287DNBProcessAttach (nub_process_t attach_pid, struct timespec *timeout, char *err_str, size_t err_len)
288{
289    if (err_str && err_len > 0)
290        err_str[0] = '\0';
291
292    pid_t pid;
293    MachProcessSP processSP(new MachProcess);
294    if (processSP.get())
295    {
296        DNBLogThreadedIf(LOG_PROCESS, "(DebugNub) attaching to pid %d...", attach_pid);
297        pid = processSP->AttachForDebug (attach_pid, err_str,  err_len);
298
299        if (pid != INVALID_NUB_PROCESS)
300        {
301            assert(AddProcessToMap(pid, processSP));
302            spawn_waitpid_thread(pid);
303        }
304    }
305
306    while (pid != INVALID_NUB_PROCESS)
307    {
308        // Wait for process to start up and hit entry point
309        DNBLogThreadedIf (LOG_PROCESS,
310                          "%s DNBProcessWaitForEvent (%4.4x, eEventProcessRunningStateChanged | eEventProcessStoppedStateChanged, true, INFINITE)...",
311                          __FUNCTION__,
312                          pid);
313        nub_event_t set_events = DNBProcessWaitForEvents (pid,
314                                                          eEventProcessRunningStateChanged | eEventProcessStoppedStateChanged,
315                                                          true,
316                                                          timeout);
317
318        DNBLogThreadedIf (LOG_PROCESS,
319                          "%s DNBProcessWaitForEvent (%4.4x, eEventProcessRunningStateChanged | eEventProcessStoppedStateChanged, true, INFINITE) => 0x%8.8x",
320                          __FUNCTION__,
321                          pid,
322                          set_events);
323
324        if (set_events == 0)
325        {
326            if (err_str && err_len > 0)
327                snprintf(err_str, err_len, "operation timed out");
328            pid = INVALID_NUB_PROCESS;
329        }
330        else
331        {
332            if (set_events & (eEventProcessRunningStateChanged | eEventProcessStoppedStateChanged))
333            {
334                nub_state_t pid_state = DNBProcessGetState (pid);
335                DNBLogThreadedIf (LOG_PROCESS, "%s process %4.4x state changed (eEventProcessStateChanged): %s",
336                        __FUNCTION__, pid, DNBStateAsString(pid_state));
337
338                switch (pid_state)
339                {
340                    default:
341                    case eStateInvalid:
342                    case eStateUnloaded:
343                    case eStateAttaching:
344                    case eStateLaunching:
345                    case eStateSuspended:
346                        break;  // Ignore
347
348                    case eStateRunning:
349                    case eStateStepping:
350                        // Still waiting to stop at entry point...
351                        break;
352
353                    case eStateStopped:
354                    case eStateCrashed:
355                        return pid;
356
357                    case eStateDetached:
358                    case eStateExited:
359                        if (err_str && err_len > 0)
360                            snprintf(err_str, err_len, "process exited");
361                        return INVALID_NUB_PROCESS;
362                }
363            }
364
365            DNBProcessResetEvents(pid, set_events);
366        }
367    }
368
369    return INVALID_NUB_PROCESS;
370}
371
372static size_t
373GetAllInfos (std::vector<struct kinfo_proc>& proc_infos)
374{
375    size_t size;
376    int name[] = { CTL_KERN, KERN_PROC, KERN_PROC_ALL };
377    u_int namelen = sizeof(name)/sizeof(int);
378    int err;
379
380    // Try to find out how many processes are around so we can
381    // size the buffer appropriately.  sysctl's man page specifically suggests
382    // this approach, and says it returns a bit larger size than needed to
383    // handle any new processes created between then and now.
384
385    err = ::sysctl (name, namelen, NULL, &size, NULL, 0);
386
387    if ((err < 0) && (err != ENOMEM))
388    {
389        proc_infos.clear();
390        perror("sysctl (mib, miblen, NULL, &num_processes, NULL, 0)");
391        return 0;
392    }
393
394
395    // Increase the size of the buffer by a few processes in case more have
396    // been spawned
397    proc_infos.resize (size / sizeof(struct kinfo_proc));
398    size = proc_infos.size() * sizeof(struct kinfo_proc);   // Make sure we don't exceed our resize...
399    err = ::sysctl (name, namelen, &proc_infos[0], &size, NULL, 0);
400    if (err < 0)
401    {
402        proc_infos.clear();
403        return 0;
404    }
405
406    // Trim down our array to fit what we actually got back
407    proc_infos.resize(size / sizeof(struct kinfo_proc));
408    return proc_infos.size();
409}
410
411
412static size_t
413GetAllInfosMatchingName(const char *full_process_name, std::vector<struct kinfo_proc>& matching_proc_infos)
414{
415
416    matching_proc_infos.clear();
417    if (full_process_name && full_process_name[0])
418    {
419        // We only get the process name, not the full path, from the proc_info.  So just take the
420        // base name of the process name...
421        const char *process_name;
422        process_name = strrchr (full_process_name, '/');
423        if (process_name == NULL)
424          process_name = full_process_name;
425        else
426          process_name++;
427
428        std::vector<struct kinfo_proc> proc_infos;
429        const size_t num_proc_infos = GetAllInfos(proc_infos);
430        if (num_proc_infos > 0)
431        {
432            uint32_t i;
433            for (i=0; i<num_proc_infos; i++)
434            {
435                // Skip zombie processes and processes with unset status
436                if (proc_infos[i].kp_proc.p_stat == 0 || proc_infos[i].kp_proc.p_stat == SZOMB)
437                    continue;
438
439                // Check for process by name. We only check the first MAXCOMLEN
440                // chars as that is all that kp_proc.p_comm holds.
441                if (::strncasecmp(proc_infos[i].kp_proc.p_comm, process_name, MAXCOMLEN) == 0)
442                {
443                    // We found a matching process, add it to our list
444                    matching_proc_infos.push_back(proc_infos[i]);
445                }
446            }
447        }
448    }
449    // return the newly added matches.
450    return matching_proc_infos.size();
451}
452
453nub_process_t
454DNBProcessAttachWait (const char *waitfor_process_name,
455                      nub_launch_flavor_t launch_flavor,
456                      struct timespec *timeout_abstime,
457                      useconds_t waitfor_interval,
458                      char *err_str,
459                      size_t err_len,
460                      DNBShouldCancelCallback should_cancel_callback,
461                      void *callback_data)
462{
463    DNBError prepare_error;
464    std::vector<struct kinfo_proc> exclude_proc_infos;
465    size_t num_exclude_proc_infos;
466
467    // If the PrepareForAttach returns a valid token, use  MachProcess to check
468    // for the process, otherwise scan the process table.
469
470    const void *attach_token = MachProcess::PrepareForAttach (waitfor_process_name, launch_flavor, true, prepare_error);
471
472    if (prepare_error.Fail())
473    {
474        DNBLogError ("Error in PrepareForAttach: %s", prepare_error.AsString());
475        return INVALID_NUB_PROCESS;
476    }
477
478    if (attach_token == NULL)
479        num_exclude_proc_infos = GetAllInfosMatchingName (waitfor_process_name, exclude_proc_infos);
480
481    DNBLogThreadedIf (LOG_PROCESS, "Waiting for '%s' to appear...\n", waitfor_process_name);
482
483    // Loop and try to find the process by name
484    nub_process_t waitfor_pid = INVALID_NUB_PROCESS;
485
486    while (waitfor_pid == INVALID_NUB_PROCESS)
487    {
488        if (attach_token != NULL)
489        {
490            nub_process_t pid;
491            pid = MachProcess::CheckForProcess(attach_token);
492            if (pid != INVALID_NUB_PROCESS)
493            {
494                waitfor_pid = pid;
495                break;
496            }
497        }
498        else
499        {
500
501            // Get the current process list, and check for matches that
502            // aren't in our original list. If anyone wants to attach
503            // to an existing process by name, they should do it with
504            // --attach=PROCNAME. Else we will wait for the first matching
505            // process that wasn't in our exclusion list.
506            std::vector<struct kinfo_proc> proc_infos;
507            const size_t num_proc_infos = GetAllInfosMatchingName (waitfor_process_name, proc_infos);
508            for (size_t i=0; i<num_proc_infos; i++)
509            {
510                nub_process_t curr_pid = proc_infos[i].kp_proc.p_pid;
511                for (size_t j=0; j<num_exclude_proc_infos; j++)
512                {
513                    if (curr_pid == exclude_proc_infos[j].kp_proc.p_pid)
514                    {
515                        // This process was in our exclusion list, don't use it.
516                        curr_pid = INVALID_NUB_PROCESS;
517                        break;
518                    }
519                }
520
521                // If we didn't find CURR_PID in our exclusion list, then use it.
522                if (curr_pid != INVALID_NUB_PROCESS)
523                {
524                    // We found our process!
525                    waitfor_pid = curr_pid;
526                    break;
527                }
528            }
529        }
530
531        // If we haven't found our process yet, check for a timeout
532        // and then sleep for a bit until we poll again.
533        if (waitfor_pid == INVALID_NUB_PROCESS)
534        {
535            if (timeout_abstime != NULL)
536            {
537                // Check to see if we have a waitfor-duration option that
538                // has timed out?
539                if (DNBTimer::TimeOfDayLaterThan(*timeout_abstime))
540                {
541                    if (err_str && err_len > 0)
542                        snprintf(err_str, err_len, "operation timed out");
543                    DNBLogError ("error: waiting for process '%s' timed out.\n", waitfor_process_name);
544                    return INVALID_NUB_PROCESS;
545                }
546            }
547
548            // Call the should cancel callback as well...
549
550            if (should_cancel_callback != NULL
551                && should_cancel_callback (callback_data))
552            {
553                DNBLogThreadedIf (LOG_PROCESS, "DNBProcessAttachWait cancelled by should_cancel callback.");
554                waitfor_pid = INVALID_NUB_PROCESS;
555                break;
556            }
557
558            ::usleep (waitfor_interval);    // Sleep for WAITFOR_INTERVAL, then poll again
559        }
560    }
561
562    if (waitfor_pid != INVALID_NUB_PROCESS)
563    {
564        DNBLogThreadedIf (LOG_PROCESS, "Attaching to %s with pid %i...\n", waitfor_process_name, waitfor_pid);
565        waitfor_pid = DNBProcessAttach (waitfor_pid, timeout_abstime, err_str, err_len);
566    }
567
568    bool success = waitfor_pid != INVALID_NUB_PROCESS;
569    MachProcess::CleanupAfterAttach (attach_token, success, prepare_error);
570
571    return waitfor_pid;
572}
573
574nub_bool_t
575DNBProcessDetach (nub_process_t pid)
576{
577    MachProcessSP procSP;
578    if (GetProcessSP (pid, procSP))
579    {
580        return procSP->Detach();
581    }
582    return false;
583}
584
585nub_bool_t
586DNBProcessKill (nub_process_t pid)
587{
588    MachProcessSP procSP;
589    if (GetProcessSP (pid, procSP))
590    {
591        return procSP->Kill ();
592    }
593    return false;
594}
595
596nub_bool_t
597DNBProcessSignal (nub_process_t pid, int signal)
598{
599    MachProcessSP procSP;
600    if (GetProcessSP (pid, procSP))
601    {
602        return procSP->Signal (signal);
603    }
604    return false;
605}
606
607
608nub_bool_t
609DNBProcessIsAlive (nub_process_t pid)
610{
611    MachProcessSP procSP;
612    if (GetProcessSP (pid, procSP))
613    {
614        return MachTask::IsValid (procSP->Task().TaskPort());
615    }
616    return eStateInvalid;
617}
618
619//----------------------------------------------------------------------
620// Process and Thread state information
621//----------------------------------------------------------------------
622nub_state_t
623DNBProcessGetState (nub_process_t pid)
624{
625    MachProcessSP procSP;
626    if (GetProcessSP (pid, procSP))
627    {
628        return procSP->GetState();
629    }
630    return eStateInvalid;
631}
632
633//----------------------------------------------------------------------
634// Process and Thread state information
635//----------------------------------------------------------------------
636nub_bool_t
637DNBProcessGetExitStatus (nub_process_t pid, int* status)
638{
639    MachProcessSP procSP;
640    if (GetProcessSP (pid, procSP))
641    {
642        return procSP->GetExitStatus(status);
643    }
644    return false;
645}
646
647nub_bool_t
648DNBProcessSetExitStatus (nub_process_t pid, int status)
649{
650    MachProcessSP procSP;
651    if (GetProcessSP (pid, procSP))
652    {
653        procSP->SetExitStatus(status);
654        return true;
655    }
656    return false;
657}
658
659
660const char *
661DNBThreadGetName (nub_process_t pid, nub_thread_t tid)
662{
663    MachProcessSP procSP;
664    if (GetProcessSP (pid, procSP))
665        return procSP->ThreadGetName(tid);
666    return NULL;
667}
668
669
670nub_bool_t
671DNBThreadGetIdentifierInfo (nub_process_t pid, nub_thread_t tid, thread_identifier_info_data_t *ident_info)
672{
673    MachProcessSP procSP;
674    if (GetProcessSP (pid, procSP))
675        return procSP->GetThreadList().GetIdentifierInfo(tid, ident_info);
676    return false;
677}
678
679nub_state_t
680DNBThreadGetState (nub_process_t pid, nub_thread_t tid)
681{
682    MachProcessSP procSP;
683    if (GetProcessSP (pid, procSP))
684    {
685        return procSP->ThreadGetState(tid);
686    }
687    return eStateInvalid;
688}
689
690const char *
691DNBStateAsString(nub_state_t state)
692{
693    switch (state)
694    {
695    case eStateUnloaded:    return "Unloaded";
696    case eStateAttaching:   return "Attaching";
697    case eStateLaunching:   return "Launching";
698    case eStateStopped:     return "Stopped";
699    case eStateRunning:     return "Running";
700    case eStateStepping:    return "Stepping";
701    case eStateCrashed:     return "Crashed";
702    case eStateDetached:    return "Detached";
703    case eStateExited:      return "Exited";
704    case eStateSuspended:   return "Suspended";
705    }
706    return "nub_state_t ???";
707}
708
709const char *
710DNBProcessGetExecutablePath (nub_process_t pid)
711{
712    MachProcessSP procSP;
713    if (GetProcessSP (pid, procSP))
714    {
715        return procSP->Path();
716    }
717    return NULL;
718}
719
720nub_size_t
721DNBProcessGetArgumentCount (nub_process_t pid)
722{
723    MachProcessSP procSP;
724    if (GetProcessSP (pid, procSP))
725    {
726        return procSP->ArgumentCount();
727    }
728    return 0;
729}
730
731const char *
732DNBProcessGetArgumentAtIndex (nub_process_t pid, nub_size_t idx)
733{
734    MachProcessSP procSP;
735    if (GetProcessSP (pid, procSP))
736    {
737        return procSP->ArgumentAtIndex (idx);
738    }
739    return NULL;
740}
741
742
743//----------------------------------------------------------------------
744// Execution control
745//----------------------------------------------------------------------
746nub_bool_t
747DNBProcessResume (nub_process_t pid, const DNBThreadResumeAction *actions, size_t num_actions)
748{
749    DNBLogThreadedIf(LOG_PROCESS, "%s(pid = %4.4x)", __FUNCTION__, pid);
750    MachProcessSP procSP;
751    if (GetProcessSP (pid, procSP))
752    {
753        DNBThreadResumeActions thread_actions (actions, num_actions);
754
755        // Below we add a default thread plan just in case one wasn't
756        // provided so all threads always know what they were supposed to do
757        if (thread_actions.IsEmpty())
758        {
759            // No thread plans were given, so the default it to run all threads
760            thread_actions.SetDefaultThreadActionIfNeeded (eStateRunning, 0);
761        }
762        else
763        {
764            // Some thread plans were given which means anything that wasn't
765            // specified should remain stopped.
766            thread_actions.SetDefaultThreadActionIfNeeded (eStateStopped, 0);
767        }
768        return procSP->Resume (thread_actions);
769    }
770    return false;
771}
772
773nub_bool_t
774DNBProcessHalt (nub_process_t pid)
775{
776    DNBLogThreadedIf(LOG_PROCESS, "%s(pid = %4.4x)", __FUNCTION__, pid);
777    MachProcessSP procSP;
778    if (GetProcessSP (pid, procSP))
779        return procSP->Signal (SIGSTOP);
780    return false;
781}
782//
783//nub_bool_t
784//DNBThreadResume (nub_process_t pid, nub_thread_t tid, nub_bool_t step)
785//{
786//    DNBLogThreadedIf(LOG_THREAD, "%s(pid = %4.4x, tid = %4.4x, step = %u)", __FUNCTION__, pid, tid, (uint32_t)step);
787//    MachProcessSP procSP;
788//    if (GetProcessSP (pid, procSP))
789//    {
790//        return procSP->Resume(tid, step, 0);
791//    }
792//    return false;
793//}
794//
795//nub_bool_t
796//DNBThreadResumeWithSignal (nub_process_t pid, nub_thread_t tid, nub_bool_t step, int signal)
797//{
798//    DNBLogThreadedIf(LOG_THREAD, "%s(pid = %4.4x, tid = %4.4x, step = %u, signal = %i)", __FUNCTION__, pid, tid, (uint32_t)step, signal);
799//    MachProcessSP procSP;
800//    if (GetProcessSP (pid, procSP))
801//    {
802//        return procSP->Resume(tid, step, signal);
803//    }
804//    return false;
805//}
806
807nub_event_t
808DNBProcessWaitForEvents (nub_process_t pid, nub_event_t event_mask, bool wait_for_set, struct timespec* timeout)
809{
810    nub_event_t result = 0;
811    MachProcessSP procSP;
812    if (GetProcessSP (pid, procSP))
813    {
814        if (wait_for_set)
815            result = procSP->Events().WaitForSetEvents(event_mask, timeout);
816        else
817            result = procSP->Events().WaitForEventsToReset(event_mask, timeout);
818    }
819    return result;
820}
821
822void
823DNBProcessResetEvents (nub_process_t pid, nub_event_t event_mask)
824{
825    MachProcessSP procSP;
826    if (GetProcessSP (pid, procSP))
827        procSP->Events().ResetEvents(event_mask);
828}
829
830void
831DNBProcessInterruptEvents (nub_process_t pid)
832{
833    MachProcessSP procSP;
834    if (GetProcessSP (pid, procSP))
835        procSP->Events().SetEvents(eEventProcessAsyncInterrupt);
836}
837
838
839// Breakpoints
840nub_break_t
841DNBBreakpointSet (nub_process_t pid, nub_addr_t addr, nub_size_t size, nub_bool_t hardware)
842{
843    MachProcessSP procSP;
844    if (GetProcessSP (pid, procSP))
845    {
846        return procSP->CreateBreakpoint(addr, size, hardware, THREAD_NULL);
847    }
848    return INVALID_NUB_BREAK_ID;
849}
850
851nub_bool_t
852DNBBreakpointClear (nub_process_t pid, nub_break_t breakID)
853{
854    if (NUB_BREAK_ID_IS_VALID(breakID))
855    {
856        MachProcessSP procSP;
857        if (GetProcessSP (pid, procSP))
858        {
859            return procSP->DisableBreakpoint(breakID, true);
860        }
861    }
862    return false; // Failed
863}
864
865nub_ssize_t
866DNBBreakpointGetHitCount (nub_process_t pid, nub_break_t breakID)
867{
868    if (NUB_BREAK_ID_IS_VALID(breakID))
869    {
870        MachProcessSP procSP;
871        if (GetProcessSP (pid, procSP))
872        {
873            DNBBreakpoint *bp = procSP->Breakpoints().FindByID(breakID);
874            if (bp)
875                return bp->GetHitCount();
876        }
877    }
878    return 0;
879}
880
881nub_ssize_t
882DNBBreakpointGetIgnoreCount (nub_process_t pid, nub_break_t breakID)
883{
884    if (NUB_BREAK_ID_IS_VALID(breakID))
885    {
886        MachProcessSP procSP;
887        if (GetProcessSP (pid, procSP))
888        {
889            DNBBreakpoint *bp = procSP->Breakpoints().FindByID(breakID);
890            if (bp)
891                return bp->GetIgnoreCount();
892        }
893    }
894    return 0;
895}
896
897nub_bool_t
898DNBBreakpointSetIgnoreCount (nub_process_t pid, nub_break_t breakID, nub_size_t ignore_count)
899{
900    if (NUB_BREAK_ID_IS_VALID(breakID))
901    {
902        MachProcessSP procSP;
903        if (GetProcessSP (pid, procSP))
904        {
905            DNBBreakpoint *bp = procSP->Breakpoints().FindByID(breakID);
906            if (bp)
907            {
908                bp->SetIgnoreCount(ignore_count);
909                return true;
910            }
911        }
912    }
913    return false;
914}
915
916// Set the callback function for a given breakpoint. The callback function will
917// get called as soon as the breakpoint is hit. The function will be called
918// with the process ID, thread ID, breakpoint ID and the baton, and can return
919//
920nub_bool_t
921DNBBreakpointSetCallback (nub_process_t pid, nub_break_t breakID, DNBCallbackBreakpointHit callback, void *baton)
922{
923    if (NUB_BREAK_ID_IS_VALID(breakID))
924    {
925        MachProcessSP procSP;
926        if (GetProcessSP (pid, procSP))
927        {
928            DNBBreakpoint *bp = procSP->Breakpoints().FindByID(breakID);
929            if (bp)
930            {
931                bp->SetCallback(callback, baton);
932                return true;
933            }
934        }
935    }
936    return false;
937}
938
939//----------------------------------------------------------------------
940// Dump the breakpoints stats for process PID for a breakpoint by ID.
941//----------------------------------------------------------------------
942void
943DNBBreakpointPrint (nub_process_t pid, nub_break_t breakID)
944{
945    MachProcessSP procSP;
946    if (GetProcessSP (pid, procSP))
947        procSP->DumpBreakpoint(breakID);
948}
949
950//----------------------------------------------------------------------
951// Watchpoints
952//----------------------------------------------------------------------
953nub_watch_t
954DNBWatchpointSet (nub_process_t pid, nub_addr_t addr, nub_size_t size, uint32_t watch_flags, nub_bool_t hardware)
955{
956    MachProcessSP procSP;
957    if (GetProcessSP (pid, procSP))
958    {
959        return procSP->CreateWatchpoint(addr, size, watch_flags, hardware, THREAD_NULL);
960    }
961    return INVALID_NUB_BREAK_ID;
962}
963
964nub_bool_t
965DNBWatchpointClear (nub_process_t pid, nub_watch_t watchID)
966{
967    if (NUB_BREAK_ID_IS_VALID(watchID))
968    {
969        MachProcessSP procSP;
970        if (GetProcessSP (pid, procSP))
971        {
972            return procSP->DisableWatchpoint(watchID, true);
973        }
974    }
975    return false; // Failed
976}
977
978nub_ssize_t
979DNBWatchpointGetHitCount (nub_process_t pid, nub_watch_t watchID)
980{
981    if (NUB_BREAK_ID_IS_VALID(watchID))
982    {
983        MachProcessSP procSP;
984        if (GetProcessSP (pid, procSP))
985        {
986            DNBBreakpoint *bp = procSP->Watchpoints().FindByID(watchID);
987            if (bp)
988                return bp->GetHitCount();
989        }
990    }
991    return 0;
992}
993
994nub_ssize_t
995DNBWatchpointGetIgnoreCount (nub_process_t pid, nub_watch_t watchID)
996{
997    if (NUB_BREAK_ID_IS_VALID(watchID))
998    {
999        MachProcessSP procSP;
1000        if (GetProcessSP (pid, procSP))
1001        {
1002            DNBBreakpoint *bp = procSP->Watchpoints().FindByID(watchID);
1003            if (bp)
1004                return bp->GetIgnoreCount();
1005        }
1006    }
1007    return 0;
1008}
1009
1010nub_bool_t
1011DNBWatchpointSetIgnoreCount (nub_process_t pid, nub_watch_t watchID, nub_size_t ignore_count)
1012{
1013    if (NUB_BREAK_ID_IS_VALID(watchID))
1014    {
1015        MachProcessSP procSP;
1016        if (GetProcessSP (pid, procSP))
1017        {
1018            DNBBreakpoint *bp = procSP->Watchpoints().FindByID(watchID);
1019            if (bp)
1020            {
1021                bp->SetIgnoreCount(ignore_count);
1022                return true;
1023            }
1024        }
1025    }
1026    return false;
1027}
1028
1029// Set the callback function for a given watchpoint. The callback function will
1030// get called as soon as the watchpoint is hit. The function will be called
1031// with the process ID, thread ID, watchpoint ID and the baton, and can return
1032//
1033nub_bool_t
1034DNBWatchpointSetCallback (nub_process_t pid, nub_watch_t watchID, DNBCallbackBreakpointHit callback, void *baton)
1035{
1036    if (NUB_BREAK_ID_IS_VALID(watchID))
1037    {
1038        MachProcessSP procSP;
1039        if (GetProcessSP (pid, procSP))
1040        {
1041            DNBBreakpoint *bp = procSP->Watchpoints().FindByID(watchID);
1042            if (bp)
1043            {
1044                bp->SetCallback(callback, baton);
1045                return true;
1046            }
1047        }
1048    }
1049    return false;
1050}
1051
1052//----------------------------------------------------------------------
1053// Dump the watchpoints stats for process PID for a watchpoint by ID.
1054//----------------------------------------------------------------------
1055void
1056DNBWatchpointPrint (nub_process_t pid, nub_watch_t watchID)
1057{
1058    MachProcessSP procSP;
1059    if (GetProcessSP (pid, procSP))
1060        procSP->DumpWatchpoint(watchID);
1061}
1062
1063//----------------------------------------------------------------------
1064// Read memory in the address space of process PID. This call will take
1065// care of setting and restoring permissions and breaking up the memory
1066// read into multiple chunks as required.
1067//
1068// RETURNS: number of bytes actually read
1069//----------------------------------------------------------------------
1070nub_size_t
1071DNBProcessMemoryRead (nub_process_t pid, nub_addr_t addr, nub_size_t size, void *buf)
1072{
1073    MachProcessSP procSP;
1074    if (GetProcessSP (pid, procSP))
1075        return procSP->ReadMemory(addr, size, buf);
1076    return 0;
1077}
1078
1079//----------------------------------------------------------------------
1080// Write memory to the address space of process PID. This call will take
1081// care of setting and restoring permissions and breaking up the memory
1082// write into multiple chunks as required.
1083//
1084// RETURNS: number of bytes actually written
1085//----------------------------------------------------------------------
1086nub_size_t
1087DNBProcessMemoryWrite (nub_process_t pid, nub_addr_t addr, nub_size_t size, const void *buf)
1088{
1089    MachProcessSP procSP;
1090    if (GetProcessSP (pid, procSP))
1091        return procSP->WriteMemory(addr, size, buf);
1092    return 0;
1093}
1094
1095nub_addr_t
1096DNBProcessMemoryAllocate (nub_process_t pid, nub_size_t size, uint32_t permissions)
1097{
1098    MachProcessSP procSP;
1099    if (GetProcessSP (pid, procSP))
1100        return procSP->Task().AllocateMemory (size, permissions);
1101    return 0;
1102}
1103
1104nub_bool_t
1105DNBProcessMemoryDeallocate (nub_process_t pid, nub_addr_t addr)
1106{
1107    MachProcessSP procSP;
1108    if (GetProcessSP (pid, procSP))
1109        return procSP->Task().DeallocateMemory (addr);
1110    return 0;
1111}
1112
1113
1114//----------------------------------------------------------------------
1115// Formatted output that uses memory and registers from process and
1116// thread in place of arguments.
1117//----------------------------------------------------------------------
1118nub_size_t
1119DNBPrintf (nub_process_t pid, nub_thread_t tid, nub_addr_t base_addr, FILE *file, const char *format)
1120{
1121    if (file == NULL)
1122        return 0;
1123    enum printf_flags
1124    {
1125        alternate_form          = (1 << 0),
1126        zero_padding            = (1 << 1),
1127        negative_field_width    = (1 << 2),
1128        blank_space             = (1 << 3),
1129        show_sign               = (1 << 4),
1130        show_thousands_separator= (1 << 5),
1131    };
1132
1133    enum printf_length_modifiers
1134    {
1135        length_mod_h            = (1 << 0),
1136        length_mod_hh           = (1 << 1),
1137        length_mod_l            = (1 << 2),
1138        length_mod_ll           = (1 << 3),
1139        length_mod_L            = (1 << 4),
1140        length_mod_j            = (1 << 5),
1141        length_mod_t            = (1 << 6),
1142        length_mod_z            = (1 << 7),
1143        length_mod_q            = (1 << 8),
1144    };
1145
1146    nub_addr_t addr = base_addr;
1147    char *end_format = (char*)format + strlen(format);
1148    char *end = NULL;    // For strtoXXXX calls;
1149    std::basic_string<uint8_t> buf;
1150    nub_size_t total_bytes_read = 0;
1151    DNBDataRef data;
1152    const char *f;
1153    for (f = format; *f != '\0' && f < end_format; f++)
1154    {
1155        char ch = *f;
1156        switch (ch)
1157        {
1158        case '%':
1159            {
1160                f++;    // Skip the '%' character
1161                int min_field_width = 0;
1162                int precision = 0;
1163                uint32_t flags = 0;
1164                uint32_t length_modifiers = 0;
1165                uint32_t byte_size = 0;
1166                uint32_t actual_byte_size = 0;
1167                bool is_string = false;
1168                bool is_register = false;
1169                DNBRegisterValue register_value;
1170                int64_t    register_offset = 0;
1171                nub_addr_t register_addr = INVALID_NUB_ADDRESS;
1172
1173                // Create the format string to use for this conversion specification
1174                // so we can remove and mprintf specific flags and formatters.
1175                std::string fprintf_format("%");
1176
1177                // Decode any flags
1178                switch (*f)
1179                {
1180                case '#': fprintf_format += *f++; flags |= alternate_form;            break;
1181                case '0': fprintf_format += *f++; flags |= zero_padding;            break;
1182                case '-': fprintf_format += *f++; flags |= negative_field_width;    break;
1183                case ' ': fprintf_format += *f++; flags |= blank_space;                break;
1184                case '+': fprintf_format += *f++; flags |= show_sign;                break;
1185                case ',': fprintf_format += *f++; flags |= show_thousands_separator;break;
1186                case '{':
1187                case '[':
1188                    {
1189                        // We have a register name specification that can take two forms:
1190                        // ${regname} or ${regname+offset}
1191                        //        The action is to read the register value and add the signed offset
1192                        //        (if any) and use that as the value to format.
1193                        // $[regname] or $[regname+offset]
1194                        //        The action is to read the register value and add the signed offset
1195                        //        (if any) and use the result as an address to dereference. The size
1196                        //        of what is dereferenced is specified by the actual byte size that
1197                        //        follows the minimum field width and precision (see comments below).
1198                        switch (*f)
1199                        {
1200                        case '{':
1201                        case '[':
1202                            {
1203                                char open_scope_ch = *f;
1204                                f++;
1205                                const char *reg_name = f;
1206                                size_t reg_name_length = strcspn(f, "+-}]");
1207                                if (reg_name_length > 0)
1208                                {
1209                                    std::string register_name(reg_name, reg_name_length);
1210                                    f += reg_name_length;
1211                                    register_offset = strtoll(f, &end, 0);
1212                                    if (f < end)
1213                                        f = end;
1214                                    if ((open_scope_ch == '{' && *f != '}') || (open_scope_ch == '[' && *f != ']'))
1215                                    {
1216                                        fprintf(file, "error: Invalid register format string. Valid formats are %%{regname} or %%{regname+offset}, %%[regname] or %%[regname+offset]\n");
1217                                        return total_bytes_read;
1218                                    }
1219                                    else
1220                                    {
1221                                        f++;
1222                                        if (DNBThreadGetRegisterValueByName(pid, tid, REGISTER_SET_ALL, register_name.c_str(), &register_value))
1223                                        {
1224                                            // Set the address to dereference using the register value plus the offset
1225                                            switch (register_value.info.size)
1226                                            {
1227                                            default:
1228                                            case 0:
1229                                                fprintf (file, "error: unsupported register size of %u.\n", register_value.info.size);
1230                                                return total_bytes_read;
1231
1232                                            case 1:        register_addr = register_value.value.uint8  + register_offset; break;
1233                                            case 2:        register_addr = register_value.value.uint16 + register_offset; break;
1234                                            case 4:        register_addr = register_value.value.uint32 + register_offset; break;
1235                                            case 8:        register_addr = register_value.value.uint64 + register_offset; break;
1236                                            case 16:
1237                                                if (open_scope_ch == '[')
1238                                                {
1239                                                    fprintf (file, "error: register size (%u) too large for address.\n", register_value.info.size);
1240                                                    return total_bytes_read;
1241                                                }
1242                                                break;
1243                                            }
1244
1245                                            if (open_scope_ch == '{')
1246                                            {
1247                                                byte_size = register_value.info.size;
1248                                                is_register = true;    // value is in a register
1249
1250                                            }
1251                                            else
1252                                            {
1253                                                addr = register_addr;    // Use register value and offset as the address
1254                                            }
1255                                        }
1256                                        else
1257                                        {
1258                                            fprintf(file, "error: unable to read register '%s' for process %#.4x and thread %#.4x\n", register_name.c_str(), pid, tid);
1259                                            return total_bytes_read;
1260                                        }
1261                                    }
1262                                }
1263                            }
1264                            break;
1265
1266                        default:
1267                            fprintf(file, "error: %%$ must be followed by (regname + n) or [regname + n]\n");
1268                            return total_bytes_read;
1269                        }
1270                    }
1271                    break;
1272                }
1273
1274                // Check for a minimum field width
1275                if (isdigit(*f))
1276                {
1277                    min_field_width = strtoul(f, &end, 10);
1278                    if (end > f)
1279                    {
1280                        fprintf_format.append(f, end - f);
1281                        f = end;
1282                    }
1283                }
1284
1285
1286                // Check for a precision
1287                if (*f == '.')
1288                {
1289                    f++;
1290                    if (isdigit(*f))
1291                    {
1292                        fprintf_format += '.';
1293                        precision = strtoul(f, &end, 10);
1294                        if (end > f)
1295                        {
1296                            fprintf_format.append(f, end - f);
1297                            f = end;
1298                        }
1299                    }
1300                }
1301
1302
1303                // mprintf specific: read the optional actual byte size (abs)
1304                // after the standard minimum field width (mfw) and precision (prec).
1305                // Standard printf calls you can have "mfw.prec" or ".prec", but
1306                // mprintf can have "mfw.prec.abs", ".prec.abs" or "..abs". This is nice
1307                // for strings that may be in a fixed size buffer, but may not use all bytes
1308                // in that buffer for printable characters.
1309                if (*f == '.')
1310                {
1311                    f++;
1312                    actual_byte_size = strtoul(f, &end, 10);
1313                    if (end > f)
1314                    {
1315                        byte_size = actual_byte_size;
1316                        f = end;
1317                    }
1318                }
1319
1320                // Decode the length modifiers
1321                switch (*f)
1322                {
1323                case 'h':    // h and hh length modifiers
1324                    fprintf_format += *f++;
1325                    length_modifiers |= length_mod_h;
1326                    if (*f == 'h')
1327                    {
1328                        fprintf_format += *f++;
1329                        length_modifiers |= length_mod_hh;
1330                    }
1331                    break;
1332
1333                case 'l': // l and ll length modifiers
1334                    fprintf_format += *f++;
1335                    length_modifiers |= length_mod_l;
1336                    if (*f == 'h')
1337                    {
1338                        fprintf_format += *f++;
1339                        length_modifiers |= length_mod_ll;
1340                    }
1341                    break;
1342
1343                case 'L':    fprintf_format += *f++;    length_modifiers |= length_mod_L;    break;
1344                case 'j':    fprintf_format += *f++;    length_modifiers |= length_mod_j;    break;
1345                case 't':    fprintf_format += *f++;    length_modifiers |= length_mod_t;    break;
1346                case 'z':    fprintf_format += *f++;    length_modifiers |= length_mod_z;    break;
1347                case 'q':    fprintf_format += *f++;    length_modifiers |= length_mod_q;    break;
1348                }
1349
1350                // Decode the conversion specifier
1351                switch (*f)
1352                {
1353                case '_':
1354                    // mprintf specific format items
1355                    {
1356                        ++f;    // Skip the '_' character
1357                        switch (*f)
1358                        {
1359                        case 'a':    // Print the current address
1360                            ++f;
1361                            fprintf_format += "ll";
1362                            fprintf_format += *f;    // actual format to show address with folows the 'a' ("%_ax")
1363                            fprintf (file, fprintf_format.c_str(), addr);
1364                            break;
1365                        case 'o':    // offset from base address
1366                            ++f;
1367                            fprintf_format += "ll";
1368                            fprintf_format += *f;    // actual format to show address with folows the 'a' ("%_ox")
1369                            fprintf(file, fprintf_format.c_str(), addr - base_addr);
1370                            break;
1371                        default:
1372                            fprintf (file, "error: unsupported mprintf specific format character '%c'.\n", *f);
1373                            break;
1374                        }
1375                        continue;
1376                    }
1377                    break;
1378
1379                case 'D':
1380                case 'O':
1381                case 'U':
1382                    fprintf_format += *f;
1383                    if (byte_size == 0)
1384                        byte_size = sizeof(long int);
1385                    break;
1386
1387                case 'd':
1388                case 'i':
1389                case 'o':
1390                case 'u':
1391                case 'x':
1392                case 'X':
1393                    fprintf_format += *f;
1394                    if (byte_size == 0)
1395                    {
1396                        if (length_modifiers & length_mod_hh)
1397                            byte_size = sizeof(char);
1398                        else if (length_modifiers & length_mod_h)
1399                            byte_size = sizeof(short);
1400                        if (length_modifiers & length_mod_ll)
1401                            byte_size = sizeof(long long);
1402                        else if (length_modifiers & length_mod_l)
1403                            byte_size = sizeof(long);
1404                        else
1405                            byte_size = sizeof(int);
1406                    }
1407                    break;
1408
1409                case 'a':
1410                case 'A':
1411                case 'f':
1412                case 'F':
1413                case 'e':
1414                case 'E':
1415                case 'g':
1416                case 'G':
1417                    fprintf_format += *f;
1418                    if (byte_size == 0)
1419                    {
1420                        if (length_modifiers & length_mod_L)
1421                            byte_size = sizeof(long double);
1422                        else
1423                            byte_size = sizeof(double);
1424                    }
1425                    break;
1426
1427                case 'c':
1428                    if ((length_modifiers & length_mod_l) == 0)
1429                    {
1430                        fprintf_format += *f;
1431                        if (byte_size == 0)
1432                            byte_size = sizeof(char);
1433                        break;
1434                    }
1435                    // Fall through to 'C' modifier below...
1436
1437                case 'C':
1438                    fprintf_format += *f;
1439                    if (byte_size == 0)
1440                        byte_size = sizeof(wchar_t);
1441                    break;
1442
1443                case 's':
1444                    fprintf_format += *f;
1445                    if (is_register || byte_size == 0)
1446                        is_string = 1;
1447                    break;
1448
1449                case 'p':
1450                    fprintf_format += *f;
1451                    if (byte_size == 0)
1452                        byte_size = sizeof(void*);
1453                    break;
1454                }
1455
1456                if (is_string)
1457                {
1458                    std::string mem_string;
1459                    const size_t string_buf_len = 4;
1460                    char string_buf[string_buf_len+1];
1461                    char *string_buf_end = string_buf + string_buf_len;
1462                    string_buf[string_buf_len] = '\0';
1463                    nub_size_t bytes_read;
1464                    nub_addr_t str_addr = is_register ? register_addr : addr;
1465                    while ((bytes_read = DNBProcessMemoryRead(pid, str_addr, string_buf_len, &string_buf[0])) > 0)
1466                    {
1467                        // Did we get a NULL termination character yet?
1468                        if (strchr(string_buf, '\0') == string_buf_end)
1469                        {
1470                            // no NULL terminator yet, append as a std::string
1471                            mem_string.append(string_buf, string_buf_len);
1472                            str_addr += string_buf_len;
1473                        }
1474                        else
1475                        {
1476                            // yep
1477                            break;
1478                        }
1479                    }
1480                    // Append as a C-string so we don't get the extra NULL
1481                    // characters in the temp buffer (since it was resized)
1482                    mem_string += string_buf;
1483                    size_t mem_string_len = mem_string.size() + 1;
1484                    fprintf(file, fprintf_format.c_str(), mem_string.c_str());
1485                    if (mem_string_len > 0)
1486                    {
1487                        if (!is_register)
1488                        {
1489                            addr += mem_string_len;
1490                            total_bytes_read += mem_string_len;
1491                        }
1492                    }
1493                    else
1494                        return total_bytes_read;
1495                }
1496                else
1497                if (byte_size > 0)
1498                {
1499                    buf.resize(byte_size);
1500                    nub_size_t bytes_read = 0;
1501                    if (is_register)
1502                        bytes_read = register_value.info.size;
1503                    else
1504                        bytes_read = DNBProcessMemoryRead(pid, addr, buf.size(), &buf[0]);
1505                    if (bytes_read > 0)
1506                    {
1507                        if (!is_register)
1508                            total_bytes_read += bytes_read;
1509
1510                        if (bytes_read == byte_size)
1511                        {
1512                            switch (*f)
1513                            {
1514                            case 'd':
1515                            case 'i':
1516                            case 'o':
1517                            case 'u':
1518                            case 'X':
1519                            case 'x':
1520                            case 'a':
1521                            case 'A':
1522                            case 'f':
1523                            case 'F':
1524                            case 'e':
1525                            case 'E':
1526                            case 'g':
1527                            case 'G':
1528                            case 'p':
1529                            case 'c':
1530                            case 'C':
1531                                {
1532                                    if (is_register)
1533                                        data.SetData(&register_value.value.v_uint8[0], register_value.info.size);
1534                                    else
1535                                        data.SetData(&buf[0], bytes_read);
1536                                    DNBDataRef::offset_t data_offset = 0;
1537                                    if (byte_size <= 4)
1538                                    {
1539                                        uint32_t u32 = data.GetMax32(&data_offset, byte_size);
1540                                        // Show the actual byte width when displaying hex
1541                                        fprintf(file, fprintf_format.c_str(), u32);
1542                                    }
1543                                    else if (byte_size <= 8)
1544                                    {
1545                                        uint64_t u64 = data.GetMax64(&data_offset, byte_size);
1546                                        // Show the actual byte width when displaying hex
1547                                        fprintf(file, fprintf_format.c_str(), u64);
1548                                    }
1549                                    else
1550                                    {
1551                                        fprintf(file, "error: integer size not supported, must be 8 bytes or less (%u bytes).\n", byte_size);
1552                                    }
1553                                    if (!is_register)
1554                                        addr += byte_size;
1555                                }
1556                                break;
1557
1558                            case 's':
1559                                fprintf(file, fprintf_format.c_str(), buf.c_str());
1560                                addr += byte_size;
1561                                break;
1562
1563                            default:
1564                                fprintf(file, "error: unsupported conversion specifier '%c'.\n", *f);
1565                                break;
1566                            }
1567                        }
1568                    }
1569                }
1570                else
1571                    return total_bytes_read;
1572            }
1573            break;
1574
1575        case '\\':
1576            {
1577                f++;
1578                switch (*f)
1579                {
1580                case 'e': ch = '\e'; break;
1581                case 'a': ch = '\a'; break;
1582                case 'b': ch = '\b'; break;
1583                case 'f': ch = '\f'; break;
1584                case 'n': ch = '\n'; break;
1585                case 'r': ch = '\r'; break;
1586                case 't': ch = '\t'; break;
1587                case 'v': ch = '\v'; break;
1588                case '\'': ch = '\''; break;
1589                case '\\': ch = '\\'; break;
1590                case '0':
1591                case '1':
1592                case '2':
1593                case '3':
1594                case '4':
1595                case '5':
1596                case '6':
1597                case '7':
1598                    ch = strtoul(f, &end, 8);
1599                    f = end;
1600                    break;
1601                default:
1602                    ch = *f;
1603                    break;
1604                }
1605                fputc(ch, file);
1606            }
1607            break;
1608
1609        default:
1610            fputc(ch, file);
1611            break;
1612        }
1613    }
1614    return total_bytes_read;
1615}
1616
1617
1618//----------------------------------------------------------------------
1619// Get the number of threads for the specified process.
1620//----------------------------------------------------------------------
1621nub_size_t
1622DNBProcessGetNumThreads (nub_process_t pid)
1623{
1624    MachProcessSP procSP;
1625    if (GetProcessSP (pid, procSP))
1626        return procSP->GetNumThreads();
1627    return 0;
1628}
1629
1630//----------------------------------------------------------------------
1631// Get the thread ID of the current thread.
1632//----------------------------------------------------------------------
1633nub_thread_t
1634DNBProcessGetCurrentThread (nub_process_t pid)
1635{
1636    MachProcessSP procSP;
1637    if (GetProcessSP (pid, procSP))
1638        return procSP->GetCurrentThread();
1639    return 0;
1640}
1641
1642//----------------------------------------------------------------------
1643// Change the current thread.
1644//----------------------------------------------------------------------
1645nub_thread_t
1646DNBProcessSetCurrentThread (nub_process_t pid, nub_thread_t tid)
1647{
1648    MachProcessSP procSP;
1649    if (GetProcessSP (pid, procSP))
1650        return procSP->SetCurrentThread (tid);
1651    return INVALID_NUB_THREAD;
1652}
1653
1654
1655//----------------------------------------------------------------------
1656// Dump a string describing a thread's stop reason to the specified file
1657// handle
1658//----------------------------------------------------------------------
1659nub_bool_t
1660DNBThreadGetStopReason (nub_process_t pid, nub_thread_t tid, struct DNBThreadStopInfo *stop_info)
1661{
1662    MachProcessSP procSP;
1663    if (GetProcessSP (pid, procSP))
1664        return procSP->GetThreadStoppedReason (tid, stop_info);
1665    return false;
1666}
1667
1668//----------------------------------------------------------------------
1669// Return string description for the specified thread.
1670//
1671// RETURNS: NULL if the thread isn't valid, else a NULL terminated C
1672// string from a static buffer that must be copied prior to subsequent
1673// calls.
1674//----------------------------------------------------------------------
1675const char *
1676DNBThreadGetInfo (nub_process_t pid, nub_thread_t tid)
1677{
1678    MachProcessSP procSP;
1679    if (GetProcessSP (pid, procSP))
1680        return procSP->GetThreadInfo (tid);
1681    return NULL;
1682}
1683
1684//----------------------------------------------------------------------
1685// Get the thread ID given a thread index.
1686//----------------------------------------------------------------------
1687nub_thread_t
1688DNBProcessGetThreadAtIndex (nub_process_t pid, size_t thread_idx)
1689{
1690    MachProcessSP procSP;
1691    if (GetProcessSP (pid, procSP))
1692        return procSP->GetThreadAtIndex (thread_idx);
1693    return INVALID_NUB_THREAD;
1694}
1695
1696nub_addr_t
1697DNBProcessGetSharedLibraryInfoAddress (nub_process_t pid)
1698{
1699    MachProcessSP procSP;
1700    DNBError err;
1701    if (GetProcessSP (pid, procSP))
1702        return procSP->Task().GetDYLDAllImageInfosAddress (err);
1703    return INVALID_NUB_ADDRESS;
1704}
1705
1706
1707nub_bool_t
1708DNBProcessSharedLibrariesUpdated(nub_process_t pid)
1709{
1710    MachProcessSP procSP;
1711    if (GetProcessSP (pid, procSP))
1712    {
1713        procSP->SharedLibrariesUpdated ();
1714        return true;
1715    }
1716    return false;
1717}
1718
1719//----------------------------------------------------------------------
1720// Get the current shared library information for a process. Only return
1721// the shared libraries that have changed since the last shared library
1722// state changed event if only_changed is non-zero.
1723//----------------------------------------------------------------------
1724nub_size_t
1725DNBProcessGetSharedLibraryInfo (nub_process_t pid, nub_bool_t only_changed, struct DNBExecutableImageInfo **image_infos)
1726{
1727    MachProcessSP procSP;
1728    if (GetProcessSP (pid, procSP))
1729        return procSP->CopyImageInfos (image_infos, only_changed);
1730
1731    // If we have no process, then return NULL for the shared library info
1732    // and zero for shared library count
1733    *image_infos = NULL;
1734    return 0;
1735}
1736
1737//----------------------------------------------------------------------
1738// Get the register set information for a specific thread.
1739//----------------------------------------------------------------------
1740const DNBRegisterSetInfo *
1741DNBGetRegisterSetInfo (nub_size_t *num_reg_sets)
1742{
1743    return DNBArchProtocol::GetRegisterSetInfo (num_reg_sets);
1744}
1745
1746
1747//----------------------------------------------------------------------
1748// Read a register value by register set and register index.
1749//----------------------------------------------------------------------
1750nub_bool_t
1751DNBThreadGetRegisterValueByID (nub_process_t pid, nub_thread_t tid, uint32_t set, uint32_t reg, DNBRegisterValue *value)
1752{
1753    MachProcessSP procSP;
1754    ::bzero (value, sizeof(DNBRegisterValue));
1755    if (GetProcessSP (pid, procSP))
1756    {
1757        if (tid != INVALID_NUB_THREAD)
1758            return procSP->GetRegisterValue (tid, set, reg, value);
1759    }
1760    return false;
1761}
1762
1763nub_bool_t
1764DNBThreadSetRegisterValueByID (nub_process_t pid, nub_thread_t tid, uint32_t set, uint32_t reg, const DNBRegisterValue *value)
1765{
1766    if (tid != INVALID_NUB_THREAD)
1767    {
1768        MachProcessSP procSP;
1769        if (GetProcessSP (pid, procSP))
1770            return procSP->SetRegisterValue (tid, set, reg, value);
1771    }
1772    return false;
1773}
1774
1775nub_size_t
1776DNBThreadGetRegisterContext (nub_process_t pid, nub_thread_t tid, void *buf, size_t buf_len)
1777{
1778    MachProcessSP procSP;
1779    if (GetProcessSP (pid, procSP))
1780    {
1781        if (tid != INVALID_NUB_THREAD)
1782            return procSP->GetThreadList().GetRegisterContext (tid, buf, buf_len);
1783    }
1784    ::bzero (buf, buf_len);
1785    return 0;
1786
1787}
1788
1789nub_size_t
1790DNBThreadSetRegisterContext (nub_process_t pid, nub_thread_t tid, const void *buf, size_t buf_len)
1791{
1792    MachProcessSP procSP;
1793    if (GetProcessSP (pid, procSP))
1794    {
1795        if (tid != INVALID_NUB_THREAD)
1796            return procSP->GetThreadList().SetRegisterContext (tid, buf, buf_len);
1797    }
1798    return 0;
1799}
1800
1801//----------------------------------------------------------------------
1802// Read a register value by name.
1803//----------------------------------------------------------------------
1804nub_bool_t
1805DNBThreadGetRegisterValueByName (nub_process_t pid, nub_thread_t tid, uint32_t reg_set, const char *reg_name, DNBRegisterValue *value)
1806{
1807    MachProcessSP procSP;
1808    ::bzero (value, sizeof(DNBRegisterValue));
1809    if (GetProcessSP (pid, procSP))
1810    {
1811        const struct DNBRegisterSetInfo *set_info;
1812        nub_size_t num_reg_sets = 0;
1813        set_info = DNBGetRegisterSetInfo (&num_reg_sets);
1814        if (set_info)
1815        {
1816            uint32_t set = reg_set;
1817            uint32_t reg;
1818            if (set == REGISTER_SET_ALL)
1819            {
1820                for (set = 1; set < num_reg_sets; ++set)
1821                {
1822                    for (reg = 0; reg < set_info[set].num_registers; ++reg)
1823                    {
1824                        if (strcasecmp(reg_name, set_info[set].registers[reg].name) == 0)
1825                            return procSP->GetRegisterValue (tid, set, reg, value);
1826                    }
1827                }
1828            }
1829            else
1830            {
1831                for (reg = 0; reg < set_info[set].num_registers; ++reg)
1832                {
1833                    if (strcasecmp(reg_name, set_info[set].registers[reg].name) == 0)
1834                        return procSP->GetRegisterValue (tid, set, reg, value);
1835                }
1836            }
1837        }
1838    }
1839    return false;
1840}
1841
1842
1843//----------------------------------------------------------------------
1844// Read a register set and register number from the register name.
1845//----------------------------------------------------------------------
1846nub_bool_t
1847DNBGetRegisterInfoByName (const char *reg_name, DNBRegisterInfo* info)
1848{
1849    const struct DNBRegisterSetInfo *set_info;
1850    nub_size_t num_reg_sets = 0;
1851    set_info = DNBGetRegisterSetInfo (&num_reg_sets);
1852    if (set_info)
1853    {
1854        uint32_t set, reg;
1855        for (set = 1; set < num_reg_sets; ++set)
1856        {
1857            for (reg = 0; reg < set_info[set].num_registers; ++reg)
1858            {
1859                if (strcasecmp(reg_name, set_info[set].registers[reg].name) == 0)
1860                {
1861                    *info = set_info[set].registers[reg];
1862                    return true;
1863                }
1864            }
1865        }
1866
1867        for (set = 1; set < num_reg_sets; ++set)
1868        {
1869            uint32_t reg;
1870            for (reg = 0; reg < set_info[set].num_registers; ++reg)
1871            {
1872                if (set_info[set].registers[reg].alt == NULL)
1873                    continue;
1874
1875                if (strcasecmp(reg_name, set_info[set].registers[reg].alt) == 0)
1876                {
1877                    *info = set_info[set].registers[reg];
1878                    return true;
1879                }
1880            }
1881        }
1882    }
1883
1884    ::bzero (info, sizeof(DNBRegisterInfo));
1885    return false;
1886}
1887
1888
1889//----------------------------------------------------------------------
1890// Set the name to address callback function that this nub can use
1891// for any name to address lookups that are needed.
1892//----------------------------------------------------------------------
1893nub_bool_t
1894DNBProcessSetNameToAddressCallback (nub_process_t pid, DNBCallbackNameToAddress callback, void *baton)
1895{
1896    MachProcessSP procSP;
1897    if (GetProcessSP (pid, procSP))
1898    {
1899        procSP->SetNameToAddressCallback (callback, baton);
1900        return true;
1901    }
1902    return false;
1903}
1904
1905
1906//----------------------------------------------------------------------
1907// Set the name to address callback function that this nub can use
1908// for any name to address lookups that are needed.
1909//----------------------------------------------------------------------
1910nub_bool_t
1911DNBProcessSetSharedLibraryInfoCallback (nub_process_t pid, DNBCallbackCopyExecutableImageInfos callback, void  *baton)
1912{
1913    MachProcessSP procSP;
1914    if (GetProcessSP (pid, procSP))
1915    {
1916        procSP->SetSharedLibraryInfoCallback (callback, baton);
1917        return true;
1918    }
1919    return false;
1920}
1921
1922nub_addr_t
1923DNBProcessLookupAddress (nub_process_t pid, const char *name, const char *shlib)
1924{
1925    MachProcessSP procSP;
1926    if (GetProcessSP (pid, procSP))
1927    {
1928        return procSP->LookupSymbol (name, shlib);
1929    }
1930    return INVALID_NUB_ADDRESS;
1931}
1932
1933
1934nub_size_t
1935DNBProcessGetAvailableSTDOUT (nub_process_t pid, char *buf, nub_size_t buf_size)
1936{
1937    MachProcessSP procSP;
1938    if (GetProcessSP (pid, procSP))
1939        return procSP->GetAvailableSTDOUT (buf, buf_size);
1940    return 0;
1941}
1942
1943nub_size_t
1944DNBProcessGetAvailableSTDERR (nub_process_t pid, char *buf, nub_size_t buf_size)
1945{
1946    MachProcessSP procSP;
1947    if (GetProcessSP (pid, procSP))
1948        return procSP->GetAvailableSTDERR (buf, buf_size);
1949    return 0;
1950}
1951
1952nub_size_t
1953DNBProcessGetStopCount (nub_process_t pid)
1954{
1955    MachProcessSP procSP;
1956    if (GetProcessSP (pid, procSP))
1957        return procSP->StopCount();
1958    return 0;
1959}
1960
1961nub_bool_t
1962DNBResolveExecutablePath (const char *path, char *resolved_path, size_t resolved_path_size)
1963{
1964    if (path == NULL || path[0] == '\0')
1965        return false;
1966
1967    char max_path[PATH_MAX];
1968    std::string result;
1969    CFString::GlobPath(path, result);
1970
1971    if (result.empty())
1972        result = path;
1973
1974    if (realpath(path, max_path))
1975    {
1976        // Found the path relatively...
1977        ::strncpy(resolved_path, max_path, resolved_path_size);
1978        return strlen(resolved_path) + 1 < resolved_path_size;
1979    }
1980    else
1981    {
1982        // Not a relative path, check the PATH environment variable if the
1983        const char *PATH = getenv("PATH");
1984        if (PATH)
1985        {
1986            const char *curr_path_start = PATH;
1987            const char *curr_path_end;
1988            while (curr_path_start && *curr_path_start)
1989            {
1990                curr_path_end = strchr(curr_path_start, ':');
1991                if (curr_path_end == NULL)
1992                {
1993                    result.assign(curr_path_start);
1994                    curr_path_start = NULL;
1995                }
1996                else if (curr_path_end > curr_path_start)
1997                {
1998                    size_t len = curr_path_end - curr_path_start;
1999                    result.assign(curr_path_start, len);
2000                    curr_path_start += len + 1;
2001                }
2002                else
2003                    break;
2004
2005                result += '/';
2006                result += path;
2007                struct stat s;
2008                if (stat(result.c_str(), &s) == 0)
2009                {
2010                    ::strncpy(resolved_path, result.c_str(), resolved_path_size);
2011                    return result.size() + 1 < resolved_path_size;
2012                }
2013            }
2014        }
2015    }
2016    return false;
2017}
2018
2019
2020void
2021DNBInitialize()
2022{
2023    DNBLogThreadedIf (LOG_PROCESS, "DNBInitialize ()");
2024#if defined (__i386__) || defined (__x86_64__)
2025    DNBArchImplI386::Initialize();
2026    DNBArchImplX86_64::Initialize();
2027#elif defined (__arm__)
2028    DNBArchMachARM::Initialize();
2029#endif
2030}
2031
2032void
2033DNBTerminate()
2034{
2035}
2036
2037nub_bool_t
2038DNBSetArchitecture (const char *arch)
2039{
2040    if (arch && arch[0])
2041    {
2042        if (strcasecmp (arch, "i386") == 0)
2043            return DNBArchProtocol::SetArchitecture (CPU_TYPE_I386);
2044        else if (strcasecmp (arch, "x86_64") == 0)
2045            return DNBArchProtocol::SetArchitecture (CPU_TYPE_X86_64);
2046        else if (strstr (arch, "arm") == arch)
2047            return DNBArchProtocol::SetArchitecture (CPU_TYPE_ARM);
2048    }
2049    return false;
2050}
2051