DNB.cpp revision dc8ff30b6dbe28c851e99712e20c1358eca4709d
1//===-- DNB.cpp -------------------------------------------------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  Created by Greg Clayton on 3/23/07.
11//
12//===----------------------------------------------------------------------===//
13
14#include "DNB.h"
15#include <signal.h>
16#include <stdio.h>
17#include <stdlib.h>
18#include <sys/resource.h>
19#include <sys/stat.h>
20#include <sys/types.h>
21#include <sys/wait.h>
22#include <unistd.h>
23#include <sys/sysctl.h>
24#include <map>
25#include <vector>
26
27#include "MacOSX/MachProcess.h"
28#include "MacOSX/MachTask.h"
29#include "CFString.h"
30#include "DNBLog.h"
31#include "DNBDataRef.h"
32#include "DNBThreadResumeActions.h"
33#include "DNBTimer.h"
34
35typedef std::tr1::shared_ptr<MachProcess> MachProcessSP;
36typedef std::map<nub_process_t, MachProcessSP> ProcessMap;
37typedef ProcessMap::iterator ProcessMapIter;
38typedef ProcessMap::const_iterator ProcessMapConstIter;
39
40static size_t          GetAllInfos                  (std::vector<struct kinfo_proc>& proc_infos);
41static size_t          GetAllInfosMatchingName      (const char *process_name, std::vector<struct kinfo_proc>& matching_proc_infos);
42
43//----------------------------------------------------------------------
44// A Thread safe singleton to get a process map pointer.
45//
46// Returns a pointer to the existing process map, or a pointer to a
47// newly created process map if CAN_CREATE is non-zero.
48//----------------------------------------------------------------------
49static ProcessMap*
50GetProcessMap(bool can_create)
51{
52    static ProcessMap* g_process_map_ptr = NULL;
53
54    if (can_create && g_process_map_ptr == NULL)
55    {
56        static pthread_mutex_t g_process_map_mutex = PTHREAD_MUTEX_INITIALIZER;
57        PTHREAD_MUTEX_LOCKER (locker, &g_process_map_mutex);
58        if (g_process_map_ptr == NULL)
59            g_process_map_ptr = new ProcessMap;
60    }
61    return g_process_map_ptr;
62}
63
64//----------------------------------------------------------------------
65// Add PID to the shared process pointer map.
66//
67// Return non-zero value if we succeed in adding the process to the map.
68// The only time this should fail is if we run out of memory and can't
69// allocate a ProcessMap.
70//----------------------------------------------------------------------
71static nub_bool_t
72AddProcessToMap (nub_process_t pid, MachProcessSP& procSP)
73{
74    ProcessMap* process_map = GetProcessMap(true);
75    if (process_map)
76    {
77        process_map->insert(std::make_pair(pid, procSP));
78        return true;
79    }
80    return false;
81}
82
83//----------------------------------------------------------------------
84// Remove the shared pointer for PID from the process map.
85//
86// Returns the number of items removed from the process map.
87//----------------------------------------------------------------------
88static size_t
89RemoveProcessFromMap (nub_process_t pid)
90{
91    ProcessMap* process_map = GetProcessMap(false);
92    if (process_map)
93    {
94        return process_map->erase(pid);
95    }
96    return 0;
97}
98
99//----------------------------------------------------------------------
100// Get the shared pointer for PID from the existing process map.
101//
102// Returns true if we successfully find a shared pointer to a
103// MachProcess object.
104//----------------------------------------------------------------------
105static nub_bool_t
106GetProcessSP (nub_process_t pid, MachProcessSP& procSP)
107{
108    ProcessMap* process_map = GetProcessMap(false);
109    if (process_map != NULL)
110    {
111        ProcessMapIter pos = process_map->find(pid);
112        if (pos != process_map->end())
113        {
114            procSP = pos->second;
115            return true;
116        }
117    }
118    procSP.reset();
119    return false;
120}
121
122
123static void *
124waitpid_thread (void *arg)
125{
126    const pid_t pid = (pid_t)(intptr_t)arg;
127    int status;
128    while (1)
129    {
130        pid_t child_pid = waitpid(pid, &status, 0);
131        DNBLogThreadedIf(LOG_PROCESS, "waitpid_process_thread (): waitpid (pid = %i, &status, 0) => %i, status = %i, errno = %i", pid, child_pid, status, errno);
132
133        if (child_pid < 0)
134        {
135            if (errno == EINTR)
136                continue;
137            break;
138        }
139        else
140        {
141            if (WIFSTOPPED(status))
142            {
143                continue;
144            }
145            else// if (WIFEXITED(status) || WIFSIGNALED(status))
146            {
147                DNBLogThreadedIf(LOG_PROCESS, "waitpid_process_thread (): setting exit status for pid = %i to %i", child_pid, status);
148                DNBProcessSetExitStatus (child_pid, status);
149                return NULL;
150            }
151        }
152    }
153
154    // We should never exit as long as our child process is alive, so if we
155    // do something else went wrong and we should exit...
156    DNBLogThreadedIf(LOG_PROCESS, "waitpid_process_thread (): main loop exited, setting exit status to an invalid value (-1) for pid %i", pid);
157    DNBProcessSetExitStatus (pid, -1);
158    return NULL;
159}
160
161static bool
162spawn_waitpid_thread (pid_t pid)
163{
164    pthread_t thread = THREAD_NULL;
165    ::pthread_create (&thread, NULL, waitpid_thread, (void *)(intptr_t)pid);
166    if (thread != THREAD_NULL)
167    {
168        ::pthread_detach (thread);
169        return true;
170    }
171    return false;
172}
173
174nub_process_t
175DNBProcessLaunch (const char *path,
176                  char const *argv[],
177                  const char *envp[],
178                  const char *working_directory, // NULL => dont' change, non-NULL => set working directory for inferior to this
179                  const char *stdin_path,
180                  const char *stdout_path,
181                  const char *stderr_path,
182                  bool no_stdio,
183                  nub_launch_flavor_t launch_flavor,
184                  int disable_aslr,
185                  char *err_str,
186                  size_t err_len)
187{
188    DNBLogThreadedIf(LOG_PROCESS, "%s ( path='%s', argv = %p, envp = %p, working_dir=%s, stdin=%s, stdout=%s, stderr=%s, no-stdio=%i, launch_flavor = %u, disable_aslr = %d, err = %p, err_len = %zu) called...",
189                     __FUNCTION__,
190                     path,
191                     argv,
192                     envp,
193                     working_directory,
194                     stdin_path,
195                     stdout_path,
196                     stderr_path,
197                     no_stdio,
198                     launch_flavor,
199                     disable_aslr,
200                     err_str,
201                     err_len);
202
203    if (err_str && err_len > 0)
204        err_str[0] = '\0';
205    struct stat path_stat;
206    if (::stat(path, &path_stat) == -1)
207    {
208        char stat_error[256];
209        ::strerror_r (errno, stat_error, sizeof(stat_error));
210        snprintf(err_str, err_len, "%s (%s)", stat_error, path);
211        return INVALID_NUB_PROCESS;
212    }
213
214    MachProcessSP processSP (new MachProcess);
215    if (processSP.get())
216    {
217        DNBError launch_err;
218        pid_t pid = processSP->LaunchForDebug (path,
219                                               argv,
220                                               envp,
221                                               working_directory,
222                                               stdin_path,
223                                               stdout_path,
224                                               stderr_path,
225                                               no_stdio,
226                                               launch_flavor,
227                                               disable_aslr,
228                                               launch_err);
229        if (err_str)
230        {
231            *err_str = '\0';
232            if (launch_err.Fail())
233            {
234                const char *launch_err_str = launch_err.AsString();
235                if (launch_err_str)
236                {
237                    strncpy(err_str, launch_err_str, err_len-1);
238                    err_str[err_len-1] = '\0';  // Make sure the error string is terminated
239                }
240            }
241        }
242
243        DNBLogThreadedIf(LOG_PROCESS, "(DebugNub) new pid is %d...", pid);
244
245        if (pid != INVALID_NUB_PROCESS)
246        {
247            // Spawn a thread to reap our child inferior process...
248            spawn_waitpid_thread (pid);
249
250            if (processSP->Task().TaskPortForProcessID (launch_err) == TASK_NULL)
251            {
252                // We failed to get the task for our process ID which is bad.
253                if (err_str && err_len > 0)
254                {
255                    if (launch_err.AsString())
256                    {
257                        ::snprintf (err_str, err_len, "failed to get the task for process %i (%s)", pid, launch_err.AsString());
258                    }
259                    else
260                    {
261                        ::snprintf (err_str, err_len, "failed to get the task for process %i", pid);
262                    }
263                }
264            }
265            else
266            {
267                assert(AddProcessToMap(pid, processSP));
268                return pid;
269            }
270        }
271    }
272    return INVALID_NUB_PROCESS;
273}
274
275nub_process_t
276DNBProcessAttachByName (const char *name, struct timespec *timeout, char *err_str, size_t err_len)
277{
278    if (err_str && err_len > 0)
279        err_str[0] = '\0';
280    std::vector<struct kinfo_proc> matching_proc_infos;
281    size_t num_matching_proc_infos = GetAllInfosMatchingName(name, matching_proc_infos);
282    if (num_matching_proc_infos == 0)
283    {
284        DNBLogError ("error: no processes match '%s'\n", name);
285        return INVALID_NUB_PROCESS;
286    }
287    else if (num_matching_proc_infos > 1)
288    {
289        DNBLogError ("error: %zu processes match '%s':\n", num_matching_proc_infos, name);
290        size_t i;
291        for (i=0; i<num_matching_proc_infos; ++i)
292            DNBLogError ("%6u - %s\n", matching_proc_infos[i].kp_proc.p_pid, matching_proc_infos[i].kp_proc.p_comm);
293        return INVALID_NUB_PROCESS;
294    }
295
296    return DNBProcessAttach (matching_proc_infos[0].kp_proc.p_pid, timeout, err_str, err_len);
297}
298
299nub_process_t
300DNBProcessAttach (nub_process_t attach_pid, struct timespec *timeout, char *err_str, size_t err_len)
301{
302    if (err_str && err_len > 0)
303        err_str[0] = '\0';
304
305    pid_t pid = INVALID_NUB_PROCESS;
306    MachProcessSP processSP(new MachProcess);
307    if (processSP.get())
308    {
309        DNBLogThreadedIf(LOG_PROCESS, "(DebugNub) attaching to pid %d...", attach_pid);
310        pid = processSP->AttachForDebug (attach_pid, err_str,  err_len);
311
312        if (pid != INVALID_NUB_PROCESS)
313        {
314            assert(AddProcessToMap(pid, processSP));
315            spawn_waitpid_thread(pid);
316        }
317    }
318
319    while (pid != INVALID_NUB_PROCESS)
320    {
321        // Wait for process to start up and hit entry point
322        DNBLogThreadedIf (LOG_PROCESS,
323                          "%s DNBProcessWaitForEvent (%4.4x, eEventProcessRunningStateChanged | eEventProcessStoppedStateChanged, true, INFINITE)...",
324                          __FUNCTION__,
325                          pid);
326        nub_event_t set_events = DNBProcessWaitForEvents (pid,
327                                                          eEventProcessRunningStateChanged | eEventProcessStoppedStateChanged,
328                                                          true,
329                                                          timeout);
330
331        DNBLogThreadedIf (LOG_PROCESS,
332                          "%s DNBProcessWaitForEvent (%4.4x, eEventProcessRunningStateChanged | eEventProcessStoppedStateChanged, true, INFINITE) => 0x%8.8x",
333                          __FUNCTION__,
334                          pid,
335                          set_events);
336
337        if (set_events == 0)
338        {
339            if (err_str && err_len > 0)
340                snprintf(err_str, err_len, "operation timed out");
341            pid = INVALID_NUB_PROCESS;
342        }
343        else
344        {
345            if (set_events & (eEventProcessRunningStateChanged | eEventProcessStoppedStateChanged))
346            {
347                nub_state_t pid_state = DNBProcessGetState (pid);
348                DNBLogThreadedIf (LOG_PROCESS, "%s process %4.4x state changed (eEventProcessStateChanged): %s",
349                        __FUNCTION__, pid, DNBStateAsString(pid_state));
350
351                switch (pid_state)
352                {
353                    default:
354                    case eStateInvalid:
355                    case eStateUnloaded:
356                    case eStateAttaching:
357                    case eStateLaunching:
358                    case eStateSuspended:
359                        break;  // Ignore
360
361                    case eStateRunning:
362                    case eStateStepping:
363                        // Still waiting to stop at entry point...
364                        break;
365
366                    case eStateStopped:
367                    case eStateCrashed:
368                        return pid;
369
370                    case eStateDetached:
371                    case eStateExited:
372                        if (err_str && err_len > 0)
373                            snprintf(err_str, err_len, "process exited");
374                        return INVALID_NUB_PROCESS;
375                }
376            }
377
378            DNBProcessResetEvents(pid, set_events);
379        }
380    }
381
382    return INVALID_NUB_PROCESS;
383}
384
385static size_t
386GetAllInfos (std::vector<struct kinfo_proc>& proc_infos)
387{
388    size_t size;
389    int name[] = { CTL_KERN, KERN_PROC, KERN_PROC_ALL };
390    u_int namelen = sizeof(name)/sizeof(int);
391    int err;
392
393    // Try to find out how many processes are around so we can
394    // size the buffer appropriately.  sysctl's man page specifically suggests
395    // this approach, and says it returns a bit larger size than needed to
396    // handle any new processes created between then and now.
397
398    err = ::sysctl (name, namelen, NULL, &size, NULL, 0);
399
400    if ((err < 0) && (err != ENOMEM))
401    {
402        proc_infos.clear();
403        perror("sysctl (mib, miblen, NULL, &num_processes, NULL, 0)");
404        return 0;
405    }
406
407
408    // Increase the size of the buffer by a few processes in case more have
409    // been spawned
410    proc_infos.resize (size / sizeof(struct kinfo_proc));
411    size = proc_infos.size() * sizeof(struct kinfo_proc);   // Make sure we don't exceed our resize...
412    err = ::sysctl (name, namelen, &proc_infos[0], &size, NULL, 0);
413    if (err < 0)
414    {
415        proc_infos.clear();
416        return 0;
417    }
418
419    // Trim down our array to fit what we actually got back
420    proc_infos.resize(size / sizeof(struct kinfo_proc));
421    return proc_infos.size();
422}
423
424
425static size_t
426GetAllInfosMatchingName(const char *full_process_name, std::vector<struct kinfo_proc>& matching_proc_infos)
427{
428
429    matching_proc_infos.clear();
430    if (full_process_name && full_process_name[0])
431    {
432        // We only get the process name, not the full path, from the proc_info.  So just take the
433        // base name of the process name...
434        const char *process_name;
435        process_name = strrchr (full_process_name, '/');
436        if (process_name == NULL)
437          process_name = full_process_name;
438        else
439          process_name++;
440
441        std::vector<struct kinfo_proc> proc_infos;
442        const size_t num_proc_infos = GetAllInfos(proc_infos);
443        if (num_proc_infos > 0)
444        {
445            uint32_t i;
446            for (i=0; i<num_proc_infos; i++)
447            {
448                // Skip zombie processes and processes with unset status
449                if (proc_infos[i].kp_proc.p_stat == 0 || proc_infos[i].kp_proc.p_stat == SZOMB)
450                    continue;
451
452                // Check for process by name. We only check the first MAXCOMLEN
453                // chars as that is all that kp_proc.p_comm holds.
454                if (::strncasecmp(proc_infos[i].kp_proc.p_comm, process_name, MAXCOMLEN) == 0)
455                {
456                    // We found a matching process, add it to our list
457                    matching_proc_infos.push_back(proc_infos[i]);
458                }
459            }
460        }
461    }
462    // return the newly added matches.
463    return matching_proc_infos.size();
464}
465
466nub_process_t
467DNBProcessAttachWait (const char *waitfor_process_name,
468                      nub_launch_flavor_t launch_flavor,
469                      struct timespec *timeout_abstime,
470                      useconds_t waitfor_interval,
471                      char *err_str,
472                      size_t err_len,
473                      DNBShouldCancelCallback should_cancel_callback,
474                      void *callback_data)
475{
476    DNBError prepare_error;
477    std::vector<struct kinfo_proc> exclude_proc_infos;
478    size_t num_exclude_proc_infos;
479
480    // If the PrepareForAttach returns a valid token, use  MachProcess to check
481    // for the process, otherwise scan the process table.
482
483    const void *attach_token = MachProcess::PrepareForAttach (waitfor_process_name, launch_flavor, true, prepare_error);
484
485    if (prepare_error.Fail())
486    {
487        DNBLogError ("Error in PrepareForAttach: %s", prepare_error.AsString());
488        return INVALID_NUB_PROCESS;
489    }
490
491    if (attach_token == NULL)
492        num_exclude_proc_infos = GetAllInfosMatchingName (waitfor_process_name, exclude_proc_infos);
493
494    DNBLogThreadedIf (LOG_PROCESS, "Waiting for '%s' to appear...\n", waitfor_process_name);
495
496    // Loop and try to find the process by name
497    nub_process_t waitfor_pid = INVALID_NUB_PROCESS;
498
499    while (waitfor_pid == INVALID_NUB_PROCESS)
500    {
501        if (attach_token != NULL)
502        {
503            nub_process_t pid;
504            pid = MachProcess::CheckForProcess(attach_token);
505            if (pid != INVALID_NUB_PROCESS)
506            {
507                waitfor_pid = pid;
508                break;
509            }
510        }
511        else
512        {
513
514            // Get the current process list, and check for matches that
515            // aren't in our original list. If anyone wants to attach
516            // to an existing process by name, they should do it with
517            // --attach=PROCNAME. Else we will wait for the first matching
518            // process that wasn't in our exclusion list.
519            std::vector<struct kinfo_proc> proc_infos;
520            const size_t num_proc_infos = GetAllInfosMatchingName (waitfor_process_name, proc_infos);
521            for (size_t i=0; i<num_proc_infos; i++)
522            {
523                nub_process_t curr_pid = proc_infos[i].kp_proc.p_pid;
524                for (size_t j=0; j<num_exclude_proc_infos; j++)
525                {
526                    if (curr_pid == exclude_proc_infos[j].kp_proc.p_pid)
527                    {
528                        // This process was in our exclusion list, don't use it.
529                        curr_pid = INVALID_NUB_PROCESS;
530                        break;
531                    }
532                }
533
534                // If we didn't find CURR_PID in our exclusion list, then use it.
535                if (curr_pid != INVALID_NUB_PROCESS)
536                {
537                    // We found our process!
538                    waitfor_pid = curr_pid;
539                    break;
540                }
541            }
542        }
543
544        // If we haven't found our process yet, check for a timeout
545        // and then sleep for a bit until we poll again.
546        if (waitfor_pid == INVALID_NUB_PROCESS)
547        {
548            if (timeout_abstime != NULL)
549            {
550                // Check to see if we have a waitfor-duration option that
551                // has timed out?
552                if (DNBTimer::TimeOfDayLaterThan(*timeout_abstime))
553                {
554                    if (err_str && err_len > 0)
555                        snprintf(err_str, err_len, "operation timed out");
556                    DNBLogError ("error: waiting for process '%s' timed out.\n", waitfor_process_name);
557                    return INVALID_NUB_PROCESS;
558                }
559            }
560
561            // Call the should cancel callback as well...
562
563            if (should_cancel_callback != NULL
564                && should_cancel_callback (callback_data))
565            {
566                DNBLogThreadedIf (LOG_PROCESS, "DNBProcessAttachWait cancelled by should_cancel callback.");
567                waitfor_pid = INVALID_NUB_PROCESS;
568                break;
569            }
570
571            ::usleep (waitfor_interval);    // Sleep for WAITFOR_INTERVAL, then poll again
572        }
573    }
574
575    if (waitfor_pid != INVALID_NUB_PROCESS)
576    {
577        DNBLogThreadedIf (LOG_PROCESS, "Attaching to %s with pid %i...\n", waitfor_process_name, waitfor_pid);
578        waitfor_pid = DNBProcessAttach (waitfor_pid, timeout_abstime, err_str, err_len);
579    }
580
581    bool success = waitfor_pid != INVALID_NUB_PROCESS;
582    MachProcess::CleanupAfterAttach (attach_token, success, prepare_error);
583
584    return waitfor_pid;
585}
586
587nub_bool_t
588DNBProcessDetach (nub_process_t pid)
589{
590    MachProcessSP procSP;
591    if (GetProcessSP (pid, procSP))
592    {
593        return procSP->Detach();
594    }
595    return false;
596}
597
598nub_bool_t
599DNBProcessKill (nub_process_t pid)
600{
601    MachProcessSP procSP;
602    if (GetProcessSP (pid, procSP))
603    {
604        return procSP->Kill ();
605    }
606    return false;
607}
608
609nub_bool_t
610DNBProcessSignal (nub_process_t pid, int signal)
611{
612    MachProcessSP procSP;
613    if (GetProcessSP (pid, procSP))
614    {
615        return procSP->Signal (signal);
616    }
617    return false;
618}
619
620
621nub_bool_t
622DNBProcessIsAlive (nub_process_t pid)
623{
624    MachProcessSP procSP;
625    if (GetProcessSP (pid, procSP))
626    {
627        return MachTask::IsValid (procSP->Task().TaskPort());
628    }
629    return eStateInvalid;
630}
631
632//----------------------------------------------------------------------
633// Process and Thread state information
634//----------------------------------------------------------------------
635nub_state_t
636DNBProcessGetState (nub_process_t pid)
637{
638    MachProcessSP procSP;
639    if (GetProcessSP (pid, procSP))
640    {
641        return procSP->GetState();
642    }
643    return eStateInvalid;
644}
645
646//----------------------------------------------------------------------
647// Process and Thread state information
648//----------------------------------------------------------------------
649nub_bool_t
650DNBProcessGetExitStatus (nub_process_t pid, int* status)
651{
652    MachProcessSP procSP;
653    if (GetProcessSP (pid, procSP))
654    {
655        return procSP->GetExitStatus(status);
656    }
657    return false;
658}
659
660nub_bool_t
661DNBProcessSetExitStatus (nub_process_t pid, int status)
662{
663    MachProcessSP procSP;
664    if (GetProcessSP (pid, procSP))
665    {
666        procSP->SetExitStatus(status);
667        return true;
668    }
669    return false;
670}
671
672
673const char *
674DNBThreadGetName (nub_process_t pid, nub_thread_t tid)
675{
676    MachProcessSP procSP;
677    if (GetProcessSP (pid, procSP))
678        return procSP->ThreadGetName(tid);
679    return NULL;
680}
681
682
683nub_bool_t
684DNBThreadGetIdentifierInfo (nub_process_t pid, nub_thread_t tid, thread_identifier_info_data_t *ident_info)
685{
686    MachProcessSP procSP;
687    if (GetProcessSP (pid, procSP))
688        return procSP->GetThreadList().GetIdentifierInfo(tid, ident_info);
689    return false;
690}
691
692nub_state_t
693DNBThreadGetState (nub_process_t pid, nub_thread_t tid)
694{
695    MachProcessSP procSP;
696    if (GetProcessSP (pid, procSP))
697    {
698        return procSP->ThreadGetState(tid);
699    }
700    return eStateInvalid;
701}
702
703const char *
704DNBStateAsString(nub_state_t state)
705{
706    switch (state)
707    {
708    case eStateInvalid:     return "Invalid";
709    case eStateUnloaded:    return "Unloaded";
710    case eStateAttaching:   return "Attaching";
711    case eStateLaunching:   return "Launching";
712    case eStateStopped:     return "Stopped";
713    case eStateRunning:     return "Running";
714    case eStateStepping:    return "Stepping";
715    case eStateCrashed:     return "Crashed";
716    case eStateDetached:    return "Detached";
717    case eStateExited:      return "Exited";
718    case eStateSuspended:   return "Suspended";
719    }
720    return "nub_state_t ???";
721}
722
723const char *
724DNBProcessGetExecutablePath (nub_process_t pid)
725{
726    MachProcessSP procSP;
727    if (GetProcessSP (pid, procSP))
728    {
729        return procSP->Path();
730    }
731    return NULL;
732}
733
734nub_size_t
735DNBProcessGetArgumentCount (nub_process_t pid)
736{
737    MachProcessSP procSP;
738    if (GetProcessSP (pid, procSP))
739    {
740        return procSP->ArgumentCount();
741    }
742    return 0;
743}
744
745const char *
746DNBProcessGetArgumentAtIndex (nub_process_t pid, nub_size_t idx)
747{
748    MachProcessSP procSP;
749    if (GetProcessSP (pid, procSP))
750    {
751        return procSP->ArgumentAtIndex (idx);
752    }
753    return NULL;
754}
755
756
757//----------------------------------------------------------------------
758// Execution control
759//----------------------------------------------------------------------
760nub_bool_t
761DNBProcessResume (nub_process_t pid, const DNBThreadResumeAction *actions, size_t num_actions)
762{
763    DNBLogThreadedIf(LOG_PROCESS, "%s(pid = %4.4x)", __FUNCTION__, pid);
764    MachProcessSP procSP;
765    if (GetProcessSP (pid, procSP))
766    {
767        DNBThreadResumeActions thread_actions (actions, num_actions);
768
769        // Below we add a default thread plan just in case one wasn't
770        // provided so all threads always know what they were supposed to do
771        if (thread_actions.IsEmpty())
772        {
773            // No thread plans were given, so the default it to run all threads
774            thread_actions.SetDefaultThreadActionIfNeeded (eStateRunning, 0);
775        }
776        else
777        {
778            // Some thread plans were given which means anything that wasn't
779            // specified should remain stopped.
780            thread_actions.SetDefaultThreadActionIfNeeded (eStateStopped, 0);
781        }
782        return procSP->Resume (thread_actions);
783    }
784    return false;
785}
786
787nub_bool_t
788DNBProcessHalt (nub_process_t pid)
789{
790    DNBLogThreadedIf(LOG_PROCESS, "%s(pid = %4.4x)", __FUNCTION__, pid);
791    MachProcessSP procSP;
792    if (GetProcessSP (pid, procSP))
793        return procSP->Signal (SIGSTOP);
794    return false;
795}
796//
797//nub_bool_t
798//DNBThreadResume (nub_process_t pid, nub_thread_t tid, nub_bool_t step)
799//{
800//    DNBLogThreadedIf(LOG_THREAD, "%s(pid = %4.4x, tid = %4.4x, step = %u)", __FUNCTION__, pid, tid, (uint32_t)step);
801//    MachProcessSP procSP;
802//    if (GetProcessSP (pid, procSP))
803//    {
804//        return procSP->Resume(tid, step, 0);
805//    }
806//    return false;
807//}
808//
809//nub_bool_t
810//DNBThreadResumeWithSignal (nub_process_t pid, nub_thread_t tid, nub_bool_t step, int signal)
811//{
812//    DNBLogThreadedIf(LOG_THREAD, "%s(pid = %4.4x, tid = %4.4x, step = %u, signal = %i)", __FUNCTION__, pid, tid, (uint32_t)step, signal);
813//    MachProcessSP procSP;
814//    if (GetProcessSP (pid, procSP))
815//    {
816//        return procSP->Resume(tid, step, signal);
817//    }
818//    return false;
819//}
820
821nub_event_t
822DNBProcessWaitForEvents (nub_process_t pid, nub_event_t event_mask, bool wait_for_set, struct timespec* timeout)
823{
824    nub_event_t result = 0;
825    MachProcessSP procSP;
826    if (GetProcessSP (pid, procSP))
827    {
828        if (wait_for_set)
829            result = procSP->Events().WaitForSetEvents(event_mask, timeout);
830        else
831            result = procSP->Events().WaitForEventsToReset(event_mask, timeout);
832    }
833    return result;
834}
835
836void
837DNBProcessResetEvents (nub_process_t pid, nub_event_t event_mask)
838{
839    MachProcessSP procSP;
840    if (GetProcessSP (pid, procSP))
841        procSP->Events().ResetEvents(event_mask);
842}
843
844void
845DNBProcessInterruptEvents (nub_process_t pid)
846{
847    MachProcessSP procSP;
848    if (GetProcessSP (pid, procSP))
849        procSP->Events().SetEvents(eEventProcessAsyncInterrupt);
850}
851
852
853// Breakpoints
854nub_break_t
855DNBBreakpointSet (nub_process_t pid, nub_addr_t addr, nub_size_t size, nub_bool_t hardware)
856{
857    MachProcessSP procSP;
858    if (GetProcessSP (pid, procSP))
859    {
860        return procSP->CreateBreakpoint(addr, size, hardware, THREAD_NULL);
861    }
862    return INVALID_NUB_BREAK_ID;
863}
864
865nub_bool_t
866DNBBreakpointClear (nub_process_t pid, nub_break_t breakID)
867{
868    if (NUB_BREAK_ID_IS_VALID(breakID))
869    {
870        MachProcessSP procSP;
871        if (GetProcessSP (pid, procSP))
872        {
873            return procSP->DisableBreakpoint(breakID, true);
874        }
875    }
876    return false; // Failed
877}
878
879nub_ssize_t
880DNBBreakpointGetHitCount (nub_process_t pid, nub_break_t breakID)
881{
882    if (NUB_BREAK_ID_IS_VALID(breakID))
883    {
884        MachProcessSP procSP;
885        if (GetProcessSP (pid, procSP))
886        {
887            DNBBreakpoint *bp = procSP->Breakpoints().FindByID(breakID);
888            if (bp)
889                return bp->GetHitCount();
890        }
891    }
892    return 0;
893}
894
895nub_ssize_t
896DNBBreakpointGetIgnoreCount (nub_process_t pid, nub_break_t breakID)
897{
898    if (NUB_BREAK_ID_IS_VALID(breakID))
899    {
900        MachProcessSP procSP;
901        if (GetProcessSP (pid, procSP))
902        {
903            DNBBreakpoint *bp = procSP->Breakpoints().FindByID(breakID);
904            if (bp)
905                return bp->GetIgnoreCount();
906        }
907    }
908    return 0;
909}
910
911nub_bool_t
912DNBBreakpointSetIgnoreCount (nub_process_t pid, nub_break_t breakID, nub_size_t ignore_count)
913{
914    if (NUB_BREAK_ID_IS_VALID(breakID))
915    {
916        MachProcessSP procSP;
917        if (GetProcessSP (pid, procSP))
918        {
919            DNBBreakpoint *bp = procSP->Breakpoints().FindByID(breakID);
920            if (bp)
921            {
922                bp->SetIgnoreCount(ignore_count);
923                return true;
924            }
925        }
926    }
927    return false;
928}
929
930// Set the callback function for a given breakpoint. The callback function will
931// get called as soon as the breakpoint is hit. The function will be called
932// with the process ID, thread ID, breakpoint ID and the baton, and can return
933//
934nub_bool_t
935DNBBreakpointSetCallback (nub_process_t pid, nub_break_t breakID, DNBCallbackBreakpointHit callback, void *baton)
936{
937    if (NUB_BREAK_ID_IS_VALID(breakID))
938    {
939        MachProcessSP procSP;
940        if (GetProcessSP (pid, procSP))
941        {
942            DNBBreakpoint *bp = procSP->Breakpoints().FindByID(breakID);
943            if (bp)
944            {
945                bp->SetCallback(callback, baton);
946                return true;
947            }
948        }
949    }
950    return false;
951}
952
953//----------------------------------------------------------------------
954// Dump the breakpoints stats for process PID for a breakpoint by ID.
955//----------------------------------------------------------------------
956void
957DNBBreakpointPrint (nub_process_t pid, nub_break_t breakID)
958{
959    MachProcessSP procSP;
960    if (GetProcessSP (pid, procSP))
961        procSP->DumpBreakpoint(breakID);
962}
963
964//----------------------------------------------------------------------
965// Watchpoints
966//----------------------------------------------------------------------
967nub_watch_t
968DNBWatchpointSet (nub_process_t pid, nub_addr_t addr, nub_size_t size, uint32_t watch_flags, nub_bool_t hardware)
969{
970    MachProcessSP procSP;
971    if (GetProcessSP (pid, procSP))
972    {
973        return procSP->CreateWatchpoint(addr, size, watch_flags, hardware, THREAD_NULL);
974    }
975    return INVALID_NUB_WATCH_ID;
976}
977
978nub_bool_t
979DNBWatchpointClear (nub_process_t pid, nub_watch_t watchID)
980{
981    if (NUB_WATCH_ID_IS_VALID(watchID))
982    {
983        MachProcessSP procSP;
984        if (GetProcessSP (pid, procSP))
985        {
986            return procSP->DisableWatchpoint(watchID, true);
987        }
988    }
989    return false; // Failed
990}
991
992nub_ssize_t
993DNBWatchpointGetHitCount (nub_process_t pid, nub_watch_t watchID)
994{
995    if (NUB_WATCH_ID_IS_VALID(watchID))
996    {
997        MachProcessSP procSP;
998        if (GetProcessSP (pid, procSP))
999        {
1000            DNBBreakpoint *bp = procSP->Watchpoints().FindByID(watchID);
1001            if (bp)
1002                return bp->GetHitCount();
1003        }
1004    }
1005    return 0;
1006}
1007
1008nub_ssize_t
1009DNBWatchpointGetIgnoreCount (nub_process_t pid, nub_watch_t watchID)
1010{
1011    if (NUB_WATCH_ID_IS_VALID(watchID))
1012    {
1013        MachProcessSP procSP;
1014        if (GetProcessSP (pid, procSP))
1015        {
1016            DNBBreakpoint *bp = procSP->Watchpoints().FindByID(watchID);
1017            if (bp)
1018                return bp->GetIgnoreCount();
1019        }
1020    }
1021    return 0;
1022}
1023
1024nub_bool_t
1025DNBWatchpointSetIgnoreCount (nub_process_t pid, nub_watch_t watchID, nub_size_t ignore_count)
1026{
1027    if (NUB_WATCH_ID_IS_VALID(watchID))
1028    {
1029        MachProcessSP procSP;
1030        if (GetProcessSP (pid, procSP))
1031        {
1032            DNBBreakpoint *bp = procSP->Watchpoints().FindByID(watchID);
1033            if (bp)
1034            {
1035                bp->SetIgnoreCount(ignore_count);
1036                return true;
1037            }
1038        }
1039    }
1040    return false;
1041}
1042
1043// Set the callback function for a given watchpoint. The callback function will
1044// get called as soon as the watchpoint is hit. The function will be called
1045// with the process ID, thread ID, watchpoint ID and the baton, and can return
1046//
1047nub_bool_t
1048DNBWatchpointSetCallback (nub_process_t pid, nub_watch_t watchID, DNBCallbackBreakpointHit callback, void *baton)
1049{
1050    if (NUB_WATCH_ID_IS_VALID(watchID))
1051    {
1052        MachProcessSP procSP;
1053        if (GetProcessSP (pid, procSP))
1054        {
1055            DNBBreakpoint *bp = procSP->Watchpoints().FindByID(watchID);
1056            if (bp)
1057            {
1058                bp->SetCallback(callback, baton);
1059                return true;
1060            }
1061        }
1062    }
1063    return false;
1064}
1065
1066//----------------------------------------------------------------------
1067// Dump the watchpoints stats for process PID for a watchpoint by ID.
1068//----------------------------------------------------------------------
1069void
1070DNBWatchpointPrint (nub_process_t pid, nub_watch_t watchID)
1071{
1072    MachProcessSP procSP;
1073    if (GetProcessSP (pid, procSP))
1074        procSP->DumpWatchpoint(watchID);
1075}
1076
1077//----------------------------------------------------------------------
1078// Read memory in the address space of process PID. This call will take
1079// care of setting and restoring permissions and breaking up the memory
1080// read into multiple chunks as required.
1081//
1082// RETURNS: number of bytes actually read
1083//----------------------------------------------------------------------
1084nub_size_t
1085DNBProcessMemoryRead (nub_process_t pid, nub_addr_t addr, nub_size_t size, void *buf)
1086{
1087    MachProcessSP procSP;
1088    if (GetProcessSP (pid, procSP))
1089        return procSP->ReadMemory(addr, size, buf);
1090    return 0;
1091}
1092
1093//----------------------------------------------------------------------
1094// Write memory to the address space of process PID. This call will take
1095// care of setting and restoring permissions and breaking up the memory
1096// write into multiple chunks as required.
1097//
1098// RETURNS: number of bytes actually written
1099//----------------------------------------------------------------------
1100nub_size_t
1101DNBProcessMemoryWrite (nub_process_t pid, nub_addr_t addr, nub_size_t size, const void *buf)
1102{
1103    MachProcessSP procSP;
1104    if (GetProcessSP (pid, procSP))
1105        return procSP->WriteMemory(addr, size, buf);
1106    return 0;
1107}
1108
1109nub_addr_t
1110DNBProcessMemoryAllocate (nub_process_t pid, nub_size_t size, uint32_t permissions)
1111{
1112    MachProcessSP procSP;
1113    if (GetProcessSP (pid, procSP))
1114        return procSP->Task().AllocateMemory (size, permissions);
1115    return 0;
1116}
1117
1118nub_bool_t
1119DNBProcessMemoryDeallocate (nub_process_t pid, nub_addr_t addr)
1120{
1121    MachProcessSP procSP;
1122    if (GetProcessSP (pid, procSP))
1123        return procSP->Task().DeallocateMemory (addr);
1124    return 0;
1125}
1126
1127//----------------------------------------------------------------------
1128// Try to determine if a given address in the process PID is in an
1129// executable region or not.  Used for sniffing potential caller addresses
1130// when unwinding a stack and we're making guesses about where the caller
1131// frame addr might be saved.
1132//
1133// RETURNS:  1 if executable
1134//           0 if not executable
1135//          -1 if we cannot make a determination on this target
1136//
1137// Note that unmapped memory (an address that is not an allocated page in
1138// PID) will return as 0 - it is not executable memory.  -1 is intended
1139// for a platform where we can't inspect memory region attributes.
1140//----------------------------------------------------------------------
1141int
1142DNBIsAddressExecutable (nub_process_t pid, nub_addr_t addr)
1143{
1144    MachProcessSP procSP;
1145    if (GetProcessSP (pid, procSP))
1146    {
1147        if (procSP->IsAddressExecutable(addr))
1148            return 1;
1149        else
1150            return 0;
1151    }
1152    return -1;
1153}
1154
1155
1156//----------------------------------------------------------------------
1157// Formatted output that uses memory and registers from process and
1158// thread in place of arguments.
1159//----------------------------------------------------------------------
1160nub_size_t
1161DNBPrintf (nub_process_t pid, nub_thread_t tid, nub_addr_t base_addr, FILE *file, const char *format)
1162{
1163    if (file == NULL)
1164        return 0;
1165    enum printf_flags
1166    {
1167        alternate_form          = (1 << 0),
1168        zero_padding            = (1 << 1),
1169        negative_field_width    = (1 << 2),
1170        blank_space             = (1 << 3),
1171        show_sign               = (1 << 4),
1172        show_thousands_separator= (1 << 5),
1173    };
1174
1175    enum printf_length_modifiers
1176    {
1177        length_mod_h            = (1 << 0),
1178        length_mod_hh           = (1 << 1),
1179        length_mod_l            = (1 << 2),
1180        length_mod_ll           = (1 << 3),
1181        length_mod_L            = (1 << 4),
1182        length_mod_j            = (1 << 5),
1183        length_mod_t            = (1 << 6),
1184        length_mod_z            = (1 << 7),
1185        length_mod_q            = (1 << 8),
1186    };
1187
1188    nub_addr_t addr = base_addr;
1189    char *end_format = (char*)format + strlen(format);
1190    char *end = NULL;    // For strtoXXXX calls;
1191    std::basic_string<uint8_t> buf;
1192    nub_size_t total_bytes_read = 0;
1193    DNBDataRef data;
1194    const char *f;
1195    for (f = format; *f != '\0' && f < end_format; f++)
1196    {
1197        char ch = *f;
1198        switch (ch)
1199        {
1200        case '%':
1201            {
1202                f++;    // Skip the '%' character
1203                int min_field_width = 0;
1204                int precision = 0;
1205                uint32_t flags = 0;
1206                uint32_t length_modifiers = 0;
1207                uint32_t byte_size = 0;
1208                uint32_t actual_byte_size = 0;
1209                bool is_string = false;
1210                bool is_register = false;
1211                DNBRegisterValue register_value;
1212                int64_t    register_offset = 0;
1213                nub_addr_t register_addr = INVALID_NUB_ADDRESS;
1214
1215                // Create the format string to use for this conversion specification
1216                // so we can remove and mprintf specific flags and formatters.
1217                std::string fprintf_format("%");
1218
1219                // Decode any flags
1220                switch (*f)
1221                {
1222                case '#': fprintf_format += *f++; flags |= alternate_form;            break;
1223                case '0': fprintf_format += *f++; flags |= zero_padding;            break;
1224                case '-': fprintf_format += *f++; flags |= negative_field_width;    break;
1225                case ' ': fprintf_format += *f++; flags |= blank_space;                break;
1226                case '+': fprintf_format += *f++; flags |= show_sign;                break;
1227                case ',': fprintf_format += *f++; flags |= show_thousands_separator;break;
1228                case '{':
1229                case '[':
1230                    {
1231                        // We have a register name specification that can take two forms:
1232                        // ${regname} or ${regname+offset}
1233                        //        The action is to read the register value and add the signed offset
1234                        //        (if any) and use that as the value to format.
1235                        // $[regname] or $[regname+offset]
1236                        //        The action is to read the register value and add the signed offset
1237                        //        (if any) and use the result as an address to dereference. The size
1238                        //        of what is dereferenced is specified by the actual byte size that
1239                        //        follows the minimum field width and precision (see comments below).
1240                        switch (*f)
1241                        {
1242                        case '{':
1243                        case '[':
1244                            {
1245                                char open_scope_ch = *f;
1246                                f++;
1247                                const char *reg_name = f;
1248                                size_t reg_name_length = strcspn(f, "+-}]");
1249                                if (reg_name_length > 0)
1250                                {
1251                                    std::string register_name(reg_name, reg_name_length);
1252                                    f += reg_name_length;
1253                                    register_offset = strtoll(f, &end, 0);
1254                                    if (f < end)
1255                                        f = end;
1256                                    if ((open_scope_ch == '{' && *f != '}') || (open_scope_ch == '[' && *f != ']'))
1257                                    {
1258                                        fprintf(file, "error: Invalid register format string. Valid formats are %%{regname} or %%{regname+offset}, %%[regname] or %%[regname+offset]\n");
1259                                        return total_bytes_read;
1260                                    }
1261                                    else
1262                                    {
1263                                        f++;
1264                                        if (DNBThreadGetRegisterValueByName(pid, tid, REGISTER_SET_ALL, register_name.c_str(), &register_value))
1265                                        {
1266                                            // Set the address to dereference using the register value plus the offset
1267                                            switch (register_value.info.size)
1268                                            {
1269                                            default:
1270                                            case 0:
1271                                                fprintf (file, "error: unsupported register size of %u.\n", register_value.info.size);
1272                                                return total_bytes_read;
1273
1274                                            case 1:        register_addr = register_value.value.uint8  + register_offset; break;
1275                                            case 2:        register_addr = register_value.value.uint16 + register_offset; break;
1276                                            case 4:        register_addr = register_value.value.uint32 + register_offset; break;
1277                                            case 8:        register_addr = register_value.value.uint64 + register_offset; break;
1278                                            case 16:
1279                                                if (open_scope_ch == '[')
1280                                                {
1281                                                    fprintf (file, "error: register size (%u) too large for address.\n", register_value.info.size);
1282                                                    return total_bytes_read;
1283                                                }
1284                                                break;
1285                                            }
1286
1287                                            if (open_scope_ch == '{')
1288                                            {
1289                                                byte_size = register_value.info.size;
1290                                                is_register = true;    // value is in a register
1291
1292                                            }
1293                                            else
1294                                            {
1295                                                addr = register_addr;    // Use register value and offset as the address
1296                                            }
1297                                        }
1298                                        else
1299                                        {
1300                                            fprintf(file, "error: unable to read register '%s' for process %#.4x and thread %#.4x\n", register_name.c_str(), pid, tid);
1301                                            return total_bytes_read;
1302                                        }
1303                                    }
1304                                }
1305                            }
1306                            break;
1307
1308                        default:
1309                            fprintf(file, "error: %%$ must be followed by (regname + n) or [regname + n]\n");
1310                            return total_bytes_read;
1311                        }
1312                    }
1313                    break;
1314                }
1315
1316                // Check for a minimum field width
1317                if (isdigit(*f))
1318                {
1319                    min_field_width = strtoul(f, &end, 10);
1320                    if (end > f)
1321                    {
1322                        fprintf_format.append(f, end - f);
1323                        f = end;
1324                    }
1325                }
1326
1327
1328                // Check for a precision
1329                if (*f == '.')
1330                {
1331                    f++;
1332                    if (isdigit(*f))
1333                    {
1334                        fprintf_format += '.';
1335                        precision = strtoul(f, &end, 10);
1336                        if (end > f)
1337                        {
1338                            fprintf_format.append(f, end - f);
1339                            f = end;
1340                        }
1341                    }
1342                }
1343
1344
1345                // mprintf specific: read the optional actual byte size (abs)
1346                // after the standard minimum field width (mfw) and precision (prec).
1347                // Standard printf calls you can have "mfw.prec" or ".prec", but
1348                // mprintf can have "mfw.prec.abs", ".prec.abs" or "..abs". This is nice
1349                // for strings that may be in a fixed size buffer, but may not use all bytes
1350                // in that buffer for printable characters.
1351                if (*f == '.')
1352                {
1353                    f++;
1354                    actual_byte_size = strtoul(f, &end, 10);
1355                    if (end > f)
1356                    {
1357                        byte_size = actual_byte_size;
1358                        f = end;
1359                    }
1360                }
1361
1362                // Decode the length modifiers
1363                switch (*f)
1364                {
1365                case 'h':    // h and hh length modifiers
1366                    fprintf_format += *f++;
1367                    length_modifiers |= length_mod_h;
1368                    if (*f == 'h')
1369                    {
1370                        fprintf_format += *f++;
1371                        length_modifiers |= length_mod_hh;
1372                    }
1373                    break;
1374
1375                case 'l': // l and ll length modifiers
1376                    fprintf_format += *f++;
1377                    length_modifiers |= length_mod_l;
1378                    if (*f == 'h')
1379                    {
1380                        fprintf_format += *f++;
1381                        length_modifiers |= length_mod_ll;
1382                    }
1383                    break;
1384
1385                case 'L':    fprintf_format += *f++;    length_modifiers |= length_mod_L;    break;
1386                case 'j':    fprintf_format += *f++;    length_modifiers |= length_mod_j;    break;
1387                case 't':    fprintf_format += *f++;    length_modifiers |= length_mod_t;    break;
1388                case 'z':    fprintf_format += *f++;    length_modifiers |= length_mod_z;    break;
1389                case 'q':    fprintf_format += *f++;    length_modifiers |= length_mod_q;    break;
1390                }
1391
1392                // Decode the conversion specifier
1393                switch (*f)
1394                {
1395                case '_':
1396                    // mprintf specific format items
1397                    {
1398                        ++f;    // Skip the '_' character
1399                        switch (*f)
1400                        {
1401                        case 'a':    // Print the current address
1402                            ++f;
1403                            fprintf_format += "ll";
1404                            fprintf_format += *f;    // actual format to show address with folows the 'a' ("%_ax")
1405                            fprintf (file, fprintf_format.c_str(), addr);
1406                            break;
1407                        case 'o':    // offset from base address
1408                            ++f;
1409                            fprintf_format += "ll";
1410                            fprintf_format += *f;    // actual format to show address with folows the 'a' ("%_ox")
1411                            fprintf(file, fprintf_format.c_str(), addr - base_addr);
1412                            break;
1413                        default:
1414                            fprintf (file, "error: unsupported mprintf specific format character '%c'.\n", *f);
1415                            break;
1416                        }
1417                        continue;
1418                    }
1419                    break;
1420
1421                case 'D':
1422                case 'O':
1423                case 'U':
1424                    fprintf_format += *f;
1425                    if (byte_size == 0)
1426                        byte_size = sizeof(long int);
1427                    break;
1428
1429                case 'd':
1430                case 'i':
1431                case 'o':
1432                case 'u':
1433                case 'x':
1434                case 'X':
1435                    fprintf_format += *f;
1436                    if (byte_size == 0)
1437                    {
1438                        if (length_modifiers & length_mod_hh)
1439                            byte_size = sizeof(char);
1440                        else if (length_modifiers & length_mod_h)
1441                            byte_size = sizeof(short);
1442                        if (length_modifiers & length_mod_ll)
1443                            byte_size = sizeof(long long);
1444                        else if (length_modifiers & length_mod_l)
1445                            byte_size = sizeof(long);
1446                        else
1447                            byte_size = sizeof(int);
1448                    }
1449                    break;
1450
1451                case 'a':
1452                case 'A':
1453                case 'f':
1454                case 'F':
1455                case 'e':
1456                case 'E':
1457                case 'g':
1458                case 'G':
1459                    fprintf_format += *f;
1460                    if (byte_size == 0)
1461                    {
1462                        if (length_modifiers & length_mod_L)
1463                            byte_size = sizeof(long double);
1464                        else
1465                            byte_size = sizeof(double);
1466                    }
1467                    break;
1468
1469                case 'c':
1470                    if ((length_modifiers & length_mod_l) == 0)
1471                    {
1472                        fprintf_format += *f;
1473                        if (byte_size == 0)
1474                            byte_size = sizeof(char);
1475                        break;
1476                    }
1477                    // Fall through to 'C' modifier below...
1478
1479                case 'C':
1480                    fprintf_format += *f;
1481                    if (byte_size == 0)
1482                        byte_size = sizeof(wchar_t);
1483                    break;
1484
1485                case 's':
1486                    fprintf_format += *f;
1487                    if (is_register || byte_size == 0)
1488                        is_string = 1;
1489                    break;
1490
1491                case 'p':
1492                    fprintf_format += *f;
1493                    if (byte_size == 0)
1494                        byte_size = sizeof(void*);
1495                    break;
1496                }
1497
1498                if (is_string)
1499                {
1500                    std::string mem_string;
1501                    const size_t string_buf_len = 4;
1502                    char string_buf[string_buf_len+1];
1503                    char *string_buf_end = string_buf + string_buf_len;
1504                    string_buf[string_buf_len] = '\0';
1505                    nub_size_t bytes_read;
1506                    nub_addr_t str_addr = is_register ? register_addr : addr;
1507                    while ((bytes_read = DNBProcessMemoryRead(pid, str_addr, string_buf_len, &string_buf[0])) > 0)
1508                    {
1509                        // Did we get a NULL termination character yet?
1510                        if (strchr(string_buf, '\0') == string_buf_end)
1511                        {
1512                            // no NULL terminator yet, append as a std::string
1513                            mem_string.append(string_buf, string_buf_len);
1514                            str_addr += string_buf_len;
1515                        }
1516                        else
1517                        {
1518                            // yep
1519                            break;
1520                        }
1521                    }
1522                    // Append as a C-string so we don't get the extra NULL
1523                    // characters in the temp buffer (since it was resized)
1524                    mem_string += string_buf;
1525                    size_t mem_string_len = mem_string.size() + 1;
1526                    fprintf(file, fprintf_format.c_str(), mem_string.c_str());
1527                    if (mem_string_len > 0)
1528                    {
1529                        if (!is_register)
1530                        {
1531                            addr += mem_string_len;
1532                            total_bytes_read += mem_string_len;
1533                        }
1534                    }
1535                    else
1536                        return total_bytes_read;
1537                }
1538                else
1539                if (byte_size > 0)
1540                {
1541                    buf.resize(byte_size);
1542                    nub_size_t bytes_read = 0;
1543                    if (is_register)
1544                        bytes_read = register_value.info.size;
1545                    else
1546                        bytes_read = DNBProcessMemoryRead(pid, addr, buf.size(), &buf[0]);
1547                    if (bytes_read > 0)
1548                    {
1549                        if (!is_register)
1550                            total_bytes_read += bytes_read;
1551
1552                        if (bytes_read == byte_size)
1553                        {
1554                            switch (*f)
1555                            {
1556                            case 'd':
1557                            case 'i':
1558                            case 'o':
1559                            case 'u':
1560                            case 'X':
1561                            case 'x':
1562                            case 'a':
1563                            case 'A':
1564                            case 'f':
1565                            case 'F':
1566                            case 'e':
1567                            case 'E':
1568                            case 'g':
1569                            case 'G':
1570                            case 'p':
1571                            case 'c':
1572                            case 'C':
1573                                {
1574                                    if (is_register)
1575                                        data.SetData(&register_value.value.v_uint8[0], register_value.info.size);
1576                                    else
1577                                        data.SetData(&buf[0], bytes_read);
1578                                    DNBDataRef::offset_t data_offset = 0;
1579                                    if (byte_size <= 4)
1580                                    {
1581                                        uint32_t u32 = data.GetMax32(&data_offset, byte_size);
1582                                        // Show the actual byte width when displaying hex
1583                                        fprintf(file, fprintf_format.c_str(), u32);
1584                                    }
1585                                    else if (byte_size <= 8)
1586                                    {
1587                                        uint64_t u64 = data.GetMax64(&data_offset, byte_size);
1588                                        // Show the actual byte width when displaying hex
1589                                        fprintf(file, fprintf_format.c_str(), u64);
1590                                    }
1591                                    else
1592                                    {
1593                                        fprintf(file, "error: integer size not supported, must be 8 bytes or less (%u bytes).\n", byte_size);
1594                                    }
1595                                    if (!is_register)
1596                                        addr += byte_size;
1597                                }
1598                                break;
1599
1600                            case 's':
1601                                fprintf(file, fprintf_format.c_str(), buf.c_str());
1602                                addr += byte_size;
1603                                break;
1604
1605                            default:
1606                                fprintf(file, "error: unsupported conversion specifier '%c'.\n", *f);
1607                                break;
1608                            }
1609                        }
1610                    }
1611                }
1612                else
1613                    return total_bytes_read;
1614            }
1615            break;
1616
1617        case '\\':
1618            {
1619                f++;
1620                switch (*f)
1621                {
1622                case 'e': ch = '\e'; break;
1623                case 'a': ch = '\a'; break;
1624                case 'b': ch = '\b'; break;
1625                case 'f': ch = '\f'; break;
1626                case 'n': ch = '\n'; break;
1627                case 'r': ch = '\r'; break;
1628                case 't': ch = '\t'; break;
1629                case 'v': ch = '\v'; break;
1630                case '\'': ch = '\''; break;
1631                case '\\': ch = '\\'; break;
1632                case '0':
1633                case '1':
1634                case '2':
1635                case '3':
1636                case '4':
1637                case '5':
1638                case '6':
1639                case '7':
1640                    ch = strtoul(f, &end, 8);
1641                    f = end;
1642                    break;
1643                default:
1644                    ch = *f;
1645                    break;
1646                }
1647                fputc(ch, file);
1648            }
1649            break;
1650
1651        default:
1652            fputc(ch, file);
1653            break;
1654        }
1655    }
1656    return total_bytes_read;
1657}
1658
1659
1660//----------------------------------------------------------------------
1661// Get the number of threads for the specified process.
1662//----------------------------------------------------------------------
1663nub_size_t
1664DNBProcessGetNumThreads (nub_process_t pid)
1665{
1666    MachProcessSP procSP;
1667    if (GetProcessSP (pid, procSP))
1668        return procSP->GetNumThreads();
1669    return 0;
1670}
1671
1672//----------------------------------------------------------------------
1673// Get the thread ID of the current thread.
1674//----------------------------------------------------------------------
1675nub_thread_t
1676DNBProcessGetCurrentThread (nub_process_t pid)
1677{
1678    MachProcessSP procSP;
1679    if (GetProcessSP (pid, procSP))
1680        return procSP->GetCurrentThread();
1681    return 0;
1682}
1683
1684//----------------------------------------------------------------------
1685// Change the current thread.
1686//----------------------------------------------------------------------
1687nub_thread_t
1688DNBProcessSetCurrentThread (nub_process_t pid, nub_thread_t tid)
1689{
1690    MachProcessSP procSP;
1691    if (GetProcessSP (pid, procSP))
1692        return procSP->SetCurrentThread (tid);
1693    return INVALID_NUB_THREAD;
1694}
1695
1696
1697//----------------------------------------------------------------------
1698// Dump a string describing a thread's stop reason to the specified file
1699// handle
1700//----------------------------------------------------------------------
1701nub_bool_t
1702DNBThreadGetStopReason (nub_process_t pid, nub_thread_t tid, struct DNBThreadStopInfo *stop_info)
1703{
1704    MachProcessSP procSP;
1705    if (GetProcessSP (pid, procSP))
1706        return procSP->GetThreadStoppedReason (tid, stop_info);
1707    return false;
1708}
1709
1710//----------------------------------------------------------------------
1711// Return string description for the specified thread.
1712//
1713// RETURNS: NULL if the thread isn't valid, else a NULL terminated C
1714// string from a static buffer that must be copied prior to subsequent
1715// calls.
1716//----------------------------------------------------------------------
1717const char *
1718DNBThreadGetInfo (nub_process_t pid, nub_thread_t tid)
1719{
1720    MachProcessSP procSP;
1721    if (GetProcessSP (pid, procSP))
1722        return procSP->GetThreadInfo (tid);
1723    return NULL;
1724}
1725
1726//----------------------------------------------------------------------
1727// Get the thread ID given a thread index.
1728//----------------------------------------------------------------------
1729nub_thread_t
1730DNBProcessGetThreadAtIndex (nub_process_t pid, size_t thread_idx)
1731{
1732    MachProcessSP procSP;
1733    if (GetProcessSP (pid, procSP))
1734        return procSP->GetThreadAtIndex (thread_idx);
1735    return INVALID_NUB_THREAD;
1736}
1737
1738nub_addr_t
1739DNBProcessGetSharedLibraryInfoAddress (nub_process_t pid)
1740{
1741    MachProcessSP procSP;
1742    DNBError err;
1743    if (GetProcessSP (pid, procSP))
1744        return procSP->Task().GetDYLDAllImageInfosAddress (err);
1745    return INVALID_NUB_ADDRESS;
1746}
1747
1748
1749nub_bool_t
1750DNBProcessSharedLibrariesUpdated(nub_process_t pid)
1751{
1752    MachProcessSP procSP;
1753    if (GetProcessSP (pid, procSP))
1754    {
1755        procSP->SharedLibrariesUpdated ();
1756        return true;
1757    }
1758    return false;
1759}
1760
1761//----------------------------------------------------------------------
1762// Get the current shared library information for a process. Only return
1763// the shared libraries that have changed since the last shared library
1764// state changed event if only_changed is non-zero.
1765//----------------------------------------------------------------------
1766nub_size_t
1767DNBProcessGetSharedLibraryInfo (nub_process_t pid, nub_bool_t only_changed, struct DNBExecutableImageInfo **image_infos)
1768{
1769    MachProcessSP procSP;
1770    if (GetProcessSP (pid, procSP))
1771        return procSP->CopyImageInfos (image_infos, only_changed);
1772
1773    // If we have no process, then return NULL for the shared library info
1774    // and zero for shared library count
1775    *image_infos = NULL;
1776    return 0;
1777}
1778
1779//----------------------------------------------------------------------
1780// Get the register set information for a specific thread.
1781//----------------------------------------------------------------------
1782const DNBRegisterSetInfo *
1783DNBGetRegisterSetInfo (nub_size_t *num_reg_sets)
1784{
1785    return DNBArchProtocol::GetRegisterSetInfo (num_reg_sets);
1786}
1787
1788
1789//----------------------------------------------------------------------
1790// Read a register value by register set and register index.
1791//----------------------------------------------------------------------
1792nub_bool_t
1793DNBThreadGetRegisterValueByID (nub_process_t pid, nub_thread_t tid, uint32_t set, uint32_t reg, DNBRegisterValue *value)
1794{
1795    MachProcessSP procSP;
1796    ::bzero (value, sizeof(DNBRegisterValue));
1797    if (GetProcessSP (pid, procSP))
1798    {
1799        if (tid != INVALID_NUB_THREAD)
1800            return procSP->GetRegisterValue (tid, set, reg, value);
1801    }
1802    return false;
1803}
1804
1805nub_bool_t
1806DNBThreadSetRegisterValueByID (nub_process_t pid, nub_thread_t tid, uint32_t set, uint32_t reg, const DNBRegisterValue *value)
1807{
1808    if (tid != INVALID_NUB_THREAD)
1809    {
1810        MachProcessSP procSP;
1811        if (GetProcessSP (pid, procSP))
1812            return procSP->SetRegisterValue (tid, set, reg, value);
1813    }
1814    return false;
1815}
1816
1817nub_size_t
1818DNBThreadGetRegisterContext (nub_process_t pid, nub_thread_t tid, void *buf, size_t buf_len)
1819{
1820    MachProcessSP procSP;
1821    if (GetProcessSP (pid, procSP))
1822    {
1823        if (tid != INVALID_NUB_THREAD)
1824            return procSP->GetThreadList().GetRegisterContext (tid, buf, buf_len);
1825    }
1826    ::bzero (buf, buf_len);
1827    return 0;
1828
1829}
1830
1831nub_size_t
1832DNBThreadSetRegisterContext (nub_process_t pid, nub_thread_t tid, const void *buf, size_t buf_len)
1833{
1834    MachProcessSP procSP;
1835    if (GetProcessSP (pid, procSP))
1836    {
1837        if (tid != INVALID_NUB_THREAD)
1838            return procSP->GetThreadList().SetRegisterContext (tid, buf, buf_len);
1839    }
1840    return 0;
1841}
1842
1843//----------------------------------------------------------------------
1844// Read a register value by name.
1845//----------------------------------------------------------------------
1846nub_bool_t
1847DNBThreadGetRegisterValueByName (nub_process_t pid, nub_thread_t tid, uint32_t reg_set, const char *reg_name, DNBRegisterValue *value)
1848{
1849    MachProcessSP procSP;
1850    ::bzero (value, sizeof(DNBRegisterValue));
1851    if (GetProcessSP (pid, procSP))
1852    {
1853        const struct DNBRegisterSetInfo *set_info;
1854        nub_size_t num_reg_sets = 0;
1855        set_info = DNBGetRegisterSetInfo (&num_reg_sets);
1856        if (set_info)
1857        {
1858            uint32_t set = reg_set;
1859            uint32_t reg;
1860            if (set == REGISTER_SET_ALL)
1861            {
1862                for (set = 1; set < num_reg_sets; ++set)
1863                {
1864                    for (reg = 0; reg < set_info[set].num_registers; ++reg)
1865                    {
1866                        if (strcasecmp(reg_name, set_info[set].registers[reg].name) == 0)
1867                            return procSP->GetRegisterValue (tid, set, reg, value);
1868                    }
1869                }
1870            }
1871            else
1872            {
1873                for (reg = 0; reg < set_info[set].num_registers; ++reg)
1874                {
1875                    if (strcasecmp(reg_name, set_info[set].registers[reg].name) == 0)
1876                        return procSP->GetRegisterValue (tid, set, reg, value);
1877                }
1878            }
1879        }
1880    }
1881    return false;
1882}
1883
1884
1885//----------------------------------------------------------------------
1886// Read a register set and register number from the register name.
1887//----------------------------------------------------------------------
1888nub_bool_t
1889DNBGetRegisterInfoByName (const char *reg_name, DNBRegisterInfo* info)
1890{
1891    const struct DNBRegisterSetInfo *set_info;
1892    nub_size_t num_reg_sets = 0;
1893    set_info = DNBGetRegisterSetInfo (&num_reg_sets);
1894    if (set_info)
1895    {
1896        uint32_t set, reg;
1897        for (set = 1; set < num_reg_sets; ++set)
1898        {
1899            for (reg = 0; reg < set_info[set].num_registers; ++reg)
1900            {
1901                if (strcasecmp(reg_name, set_info[set].registers[reg].name) == 0)
1902                {
1903                    *info = set_info[set].registers[reg];
1904                    return true;
1905                }
1906            }
1907        }
1908
1909        for (set = 1; set < num_reg_sets; ++set)
1910        {
1911            uint32_t reg;
1912            for (reg = 0; reg < set_info[set].num_registers; ++reg)
1913            {
1914                if (set_info[set].registers[reg].alt == NULL)
1915                    continue;
1916
1917                if (strcasecmp(reg_name, set_info[set].registers[reg].alt) == 0)
1918                {
1919                    *info = set_info[set].registers[reg];
1920                    return true;
1921                }
1922            }
1923        }
1924    }
1925
1926    ::bzero (info, sizeof(DNBRegisterInfo));
1927    return false;
1928}
1929
1930
1931//----------------------------------------------------------------------
1932// Set the name to address callback function that this nub can use
1933// for any name to address lookups that are needed.
1934//----------------------------------------------------------------------
1935nub_bool_t
1936DNBProcessSetNameToAddressCallback (nub_process_t pid, DNBCallbackNameToAddress callback, void *baton)
1937{
1938    MachProcessSP procSP;
1939    if (GetProcessSP (pid, procSP))
1940    {
1941        procSP->SetNameToAddressCallback (callback, baton);
1942        return true;
1943    }
1944    return false;
1945}
1946
1947
1948//----------------------------------------------------------------------
1949// Set the name to address callback function that this nub can use
1950// for any name to address lookups that are needed.
1951//----------------------------------------------------------------------
1952nub_bool_t
1953DNBProcessSetSharedLibraryInfoCallback (nub_process_t pid, DNBCallbackCopyExecutableImageInfos callback, void  *baton)
1954{
1955    MachProcessSP procSP;
1956    if (GetProcessSP (pid, procSP))
1957    {
1958        procSP->SetSharedLibraryInfoCallback (callback, baton);
1959        return true;
1960    }
1961    return false;
1962}
1963
1964nub_addr_t
1965DNBProcessLookupAddress (nub_process_t pid, const char *name, const char *shlib)
1966{
1967    MachProcessSP procSP;
1968    if (GetProcessSP (pid, procSP))
1969    {
1970        return procSP->LookupSymbol (name, shlib);
1971    }
1972    return INVALID_NUB_ADDRESS;
1973}
1974
1975
1976nub_size_t
1977DNBProcessGetAvailableSTDOUT (nub_process_t pid, char *buf, nub_size_t buf_size)
1978{
1979    MachProcessSP procSP;
1980    if (GetProcessSP (pid, procSP))
1981        return procSP->GetAvailableSTDOUT (buf, buf_size);
1982    return 0;
1983}
1984
1985nub_size_t
1986DNBProcessGetAvailableSTDERR (nub_process_t pid, char *buf, nub_size_t buf_size)
1987{
1988    MachProcessSP procSP;
1989    if (GetProcessSP (pid, procSP))
1990        return procSP->GetAvailableSTDERR (buf, buf_size);
1991    return 0;
1992}
1993
1994nub_size_t
1995DNBProcessGetStopCount (nub_process_t pid)
1996{
1997    MachProcessSP procSP;
1998    if (GetProcessSP (pid, procSP))
1999        return procSP->StopCount();
2000    return 0;
2001}
2002
2003uint32_t
2004DNBProcessGetCPUType (nub_process_t pid)
2005{
2006    MachProcessSP procSP;
2007    if (GetProcessSP (pid, procSP))
2008        return procSP->GetCPUType ();
2009    return 0;
2010
2011}
2012
2013nub_bool_t
2014DNBResolveExecutablePath (const char *path, char *resolved_path, size_t resolved_path_size)
2015{
2016    if (path == NULL || path[0] == '\0')
2017        return false;
2018
2019    char max_path[PATH_MAX];
2020    std::string result;
2021    CFString::GlobPath(path, result);
2022
2023    if (result.empty())
2024        result = path;
2025
2026    if (realpath(path, max_path))
2027    {
2028        // Found the path relatively...
2029        ::strncpy(resolved_path, max_path, resolved_path_size);
2030        return strlen(resolved_path) + 1 < resolved_path_size;
2031    }
2032    else
2033    {
2034        // Not a relative path, check the PATH environment variable if the
2035        const char *PATH = getenv("PATH");
2036        if (PATH)
2037        {
2038            const char *curr_path_start = PATH;
2039            const char *curr_path_end;
2040            while (curr_path_start && *curr_path_start)
2041            {
2042                curr_path_end = strchr(curr_path_start, ':');
2043                if (curr_path_end == NULL)
2044                {
2045                    result.assign(curr_path_start);
2046                    curr_path_start = NULL;
2047                }
2048                else if (curr_path_end > curr_path_start)
2049                {
2050                    size_t len = curr_path_end - curr_path_start;
2051                    result.assign(curr_path_start, len);
2052                    curr_path_start += len + 1;
2053                }
2054                else
2055                    break;
2056
2057                result += '/';
2058                result += path;
2059                struct stat s;
2060                if (stat(result.c_str(), &s) == 0)
2061                {
2062                    ::strncpy(resolved_path, result.c_str(), resolved_path_size);
2063                    return result.size() + 1 < resolved_path_size;
2064                }
2065            }
2066        }
2067    }
2068    return false;
2069}
2070
2071
2072void
2073DNBInitialize()
2074{
2075    DNBLogThreadedIf (LOG_PROCESS, "DNBInitialize ()");
2076#if defined (__i386__) || defined (__x86_64__)
2077    DNBArchImplI386::Initialize();
2078    DNBArchImplX86_64::Initialize();
2079#elif defined (__arm__)
2080    DNBArchMachARM::Initialize();
2081#endif
2082}
2083
2084void
2085DNBTerminate()
2086{
2087}
2088
2089nub_bool_t
2090DNBSetArchitecture (const char *arch)
2091{
2092    if (arch && arch[0])
2093    {
2094        if (strcasecmp (arch, "i386") == 0)
2095            return DNBArchProtocol::SetArchitecture (CPU_TYPE_I386);
2096        else if (strcasecmp (arch, "x86_64") == 0)
2097            return DNBArchProtocol::SetArchitecture (CPU_TYPE_X86_64);
2098        else if (strstr (arch, "arm") == arch)
2099            return DNBArchProtocol::SetArchitecture (CPU_TYPE_ARM);
2100    }
2101    return false;
2102}
2103