DNBArchImpl.cpp revision 59752d199bb19ffde140b67da147b0afa67f2e88
1//===-- DNBArchImpl.cpp -----------------------------------------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  Created by Greg Clayton on 6/25/07.
11//
12//===----------------------------------------------------------------------===//
13
14#if defined (__arm__)
15
16#include "MacOSX/arm/DNBArchImpl.h"
17#include "MacOSX/MachProcess.h"
18#include "MacOSX/MachThread.h"
19#include "DNBBreakpoint.h"
20#include "DNBLog.h"
21#include "DNBRegisterInfo.h"
22#include "DNB.h"
23#include "ARM_GCC_Registers.h"
24#include "ARM_DWARF_Registers.h"
25
26#include <sys/sysctl.h>
27
28// BCR address match type
29#define BCR_M_IMVA_MATCH        ((uint32_t)(0u << 21))
30#define BCR_M_CONTEXT_ID_MATCH  ((uint32_t)(1u << 21))
31#define BCR_M_IMVA_MISMATCH     ((uint32_t)(2u << 21))
32#define BCR_M_RESERVED          ((uint32_t)(3u << 21))
33
34// Link a BVR/BCR or WVR/WCR pair to another
35#define E_ENABLE_LINKING        ((uint32_t)(1u << 20))
36
37// Byte Address Select
38#define BAS_IMVA_PLUS_0         ((uint32_t)(1u << 5))
39#define BAS_IMVA_PLUS_1         ((uint32_t)(1u << 6))
40#define BAS_IMVA_PLUS_2         ((uint32_t)(1u << 7))
41#define BAS_IMVA_PLUS_3         ((uint32_t)(1u << 8))
42#define BAS_IMVA_0_1            ((uint32_t)(3u << 5))
43#define BAS_IMVA_2_3            ((uint32_t)(3u << 7))
44#define BAS_IMVA_ALL            ((uint32_t)(0xfu << 5))
45
46// Break only in priveleged or user mode
47#define S_RSVD                  ((uint32_t)(0u << 1))
48#define S_PRIV                  ((uint32_t)(1u << 1))
49#define S_USER                  ((uint32_t)(2u << 1))
50#define S_PRIV_USER             ((S_PRIV) | (S_USER))
51
52#define BCR_ENABLE              ((uint32_t)(1u))
53#define WCR_ENABLE              ((uint32_t)(1u))
54
55// Watchpoint load/store
56#define WCR_LOAD                ((uint32_t)(1u << 3))
57#define WCR_STORE               ((uint32_t)(1u << 4))
58
59// Definitions for the Debug Status and Control Register fields:
60// [5:2] => Method of debug entry
61//#define WATCHPOINT_OCCURRED     ((uint32_t)(2u))
62// I'm seeing this, instead.
63#define WATCHPOINT_OCCURRED     ((uint32_t)(10u))
64
65static const uint8_t g_arm_breakpoint_opcode[] = { 0xFE, 0xDE, 0xFF, 0xE7 };
66static const uint8_t g_thumb_breakpooint_opcode[] = { 0xFE, 0xDE };
67
68// ARM constants used during decoding
69#define REG_RD          0
70#define LDM_REGLIST     1
71#define PC_REG          15
72#define PC_REGLIST_BIT  0x8000
73
74// ARM conditions
75#define COND_EQ     0x0
76#define COND_NE     0x1
77#define COND_CS     0x2
78#define COND_HS     0x2
79#define COND_CC     0x3
80#define COND_LO     0x3
81#define COND_MI     0x4
82#define COND_PL     0x5
83#define COND_VS     0x6
84#define COND_VC     0x7
85#define COND_HI     0x8
86#define COND_LS     0x9
87#define COND_GE     0xA
88#define COND_LT     0xB
89#define COND_GT     0xC
90#define COND_LE     0xD
91#define COND_AL     0xE
92#define COND_UNCOND 0xF
93
94#define MASK_CPSR_T (1u << 5)
95#define MASK_CPSR_J (1u << 24)
96
97#define MNEMONIC_STRING_SIZE 32
98#define OPERAND_STRING_SIZE 128
99
100
101void
102DNBArchMachARM::Initialize()
103{
104    DNBArchPluginInfo arch_plugin_info =
105    {
106        CPU_TYPE_ARM,
107        DNBArchMachARM::Create,
108        DNBArchMachARM::GetRegisterSetInfo,
109        DNBArchMachARM::SoftwareBreakpointOpcode
110    };
111
112    // Register this arch plug-in with the main protocol class
113    DNBArchProtocol::RegisterArchPlugin (arch_plugin_info);
114}
115
116
117DNBArchProtocol *
118DNBArchMachARM::Create (MachThread *thread)
119{
120    DNBArchMachARM *obj = new DNBArchMachARM (thread);
121
122    // When new thread comes along, it tries to inherit from the global debug state, if it is valid.
123    if (Valid_Global_Debug_State)
124    {
125        obj->m_state.dbg = Global_Debug_State;
126        kern_return_t kret = obj->SetDBGState();
127        DNBLogThreadedIf(LOG_WATCHPOINTS,
128                         "DNBArchMachARM::Create() Inherit and SetDBGState() => 0x%8.8x.", kret);
129    }
130    return obj;
131}
132
133const uint8_t * const
134DNBArchMachARM::SoftwareBreakpointOpcode (nub_size_t byte_size)
135{
136    switch (byte_size)
137    {
138    case 2: return g_thumb_breakpooint_opcode;
139    case 4: return g_arm_breakpoint_opcode;
140    }
141    return NULL;
142}
143
144uint32_t
145DNBArchMachARM::GetCPUType()
146{
147    return CPU_TYPE_ARM;
148}
149
150uint64_t
151DNBArchMachARM::GetPC(uint64_t failValue)
152{
153    // Get program counter
154    if (GetGPRState(false) == KERN_SUCCESS)
155        return m_state.context.gpr.__pc;
156    return failValue;
157}
158
159kern_return_t
160DNBArchMachARM::SetPC(uint64_t value)
161{
162    // Get program counter
163    kern_return_t err = GetGPRState(false);
164    if (err == KERN_SUCCESS)
165    {
166        m_state.context.gpr.__pc = value;
167        err = SetGPRState();
168    }
169    return err == KERN_SUCCESS;
170}
171
172uint64_t
173DNBArchMachARM::GetSP(uint64_t failValue)
174{
175    // Get stack pointer
176    if (GetGPRState(false) == KERN_SUCCESS)
177        return m_state.context.gpr.__sp;
178    return failValue;
179}
180
181kern_return_t
182DNBArchMachARM::GetGPRState(bool force)
183{
184    int set = e_regSetGPR;
185    // Check if we have valid cached registers
186    if (!force && m_state.GetError(set, Read) == KERN_SUCCESS)
187        return KERN_SUCCESS;
188
189    // Read the registers from our thread
190    mach_msg_type_number_t count = ARM_THREAD_STATE_COUNT;
191    kern_return_t kret = ::thread_get_state(m_thread->MachPortNumber(), ARM_THREAD_STATE, (thread_state_t)&m_state.context.gpr, &count);
192    uint32_t *r = &m_state.context.gpr.__r[0];
193    DNBLogThreadedIf(LOG_THREAD, "thread_get_state(0x%4.4x, %u, &gpr, %u) => 0x%8.8x (count = %u) regs r0=%8.8x r1=%8.8x r2=%8.8x r3=%8.8x r4=%8.8x r5=%8.8x r6=%8.8x r7=%8.8x r8=%8.8x r9=%8.8x r10=%8.8x r11=%8.8x s12=%8.8x sp=%8.8x lr=%8.8x pc=%8.8x cpsr=%8.8x",
194                     m_thread->MachPortNumber(),
195                     ARM_THREAD_STATE,
196                     ARM_THREAD_STATE_COUNT,
197                     kret,
198                     count,
199                     r[0],
200                     r[1],
201                     r[2],
202                     r[3],
203                     r[4],
204                     r[5],
205                     r[6],
206                     r[7],
207                     r[8],
208                     r[9],
209                     r[10],
210                     r[11],
211                     r[12],
212                     r[13],
213                     r[14],
214                     r[15],
215                     r[16]);
216    m_state.SetError(set, Read, kret);
217    return kret;
218}
219
220kern_return_t
221DNBArchMachARM::GetVFPState(bool force)
222{
223    int set = e_regSetVFP;
224    // Check if we have valid cached registers
225    if (!force && m_state.GetError(set, Read) == KERN_SUCCESS)
226        return KERN_SUCCESS;
227
228    // Read the registers from our thread
229    mach_msg_type_number_t count = ARM_VFP_STATE_COUNT;
230    kern_return_t kret = ::thread_get_state(m_thread->MachPortNumber(), ARM_VFP_STATE, (thread_state_t)&m_state.context.vfp, &count);
231    if (DNBLogEnabledForAny (LOG_THREAD))
232    {
233        uint32_t *r = &m_state.context.vfp.__r[0];
234        DNBLogThreaded ("thread_get_state(0x%4.4x, %u, &gpr, %u) => 0x%8.8x (count => %u)",
235                        m_thread->MachPortNumber(),
236                        ARM_THREAD_STATE,
237                        ARM_THREAD_STATE_COUNT,
238                        kret,
239                        count);
240        DNBLogThreaded("   s0=%8.8x  s1=%8.8x  s2=%8.8x  s3=%8.8x  s4=%8.8x  s5=%8.8x  s6=%8.8x  s7=%8.8x",r[ 0],r[ 1],r[ 2],r[ 3],r[ 4],r[ 5],r[ 6],r[ 7]);
241        DNBLogThreaded("   s8=%8.8x  s9=%8.8x s10=%8.8x s11=%8.8x s12=%8.8x s13=%8.8x s14=%8.8x s15=%8.8x",r[ 8],r[ 9],r[10],r[11],r[12],r[13],r[14],r[15]);
242        DNBLogThreaded("  s16=%8.8x s17=%8.8x s18=%8.8x s19=%8.8x s20=%8.8x s21=%8.8x s22=%8.8x s23=%8.8x",r[16],r[17],r[18],r[19],r[20],r[21],r[22],r[23]);
243        DNBLogThreaded("  s24=%8.8x s25=%8.8x s26=%8.8x s27=%8.8x s28=%8.8x s29=%8.8x s30=%8.8x s31=%8.8x",r[24],r[25],r[26],r[27],r[28],r[29],r[30],r[31]);
244        DNBLogThreaded("  s32=%8.8x s33=%8.8x s34=%8.8x s35=%8.8x s36=%8.8x s37=%8.8x s38=%8.8x s39=%8.8x",r[32],r[33],r[34],r[35],r[36],r[37],r[38],r[39]);
245        DNBLogThreaded("  s40=%8.8x s41=%8.8x s42=%8.8x s43=%8.8x s44=%8.8x s45=%8.8x s46=%8.8x s47=%8.8x",r[40],r[41],r[42],r[43],r[44],r[45],r[46],r[47]);
246        DNBLogThreaded("  s48=%8.8x s49=%8.8x s50=%8.8x s51=%8.8x s52=%8.8x s53=%8.8x s54=%8.8x s55=%8.8x",r[48],r[49],r[50],r[51],r[52],r[53],r[54],r[55]);
247        DNBLogThreaded("  s56=%8.8x s57=%8.8x s58=%8.8x s59=%8.8x s60=%8.8x s61=%8.8x s62=%8.8x s63=%8.8x fpscr=%8.8x",r[56],r[57],r[58],r[59],r[60],r[61],r[62],r[63],r[64]);
248    }
249    m_state.SetError(set, Read, kret);
250    return kret;
251}
252
253kern_return_t
254DNBArchMachARM::GetEXCState(bool force)
255{
256    int set = e_regSetEXC;
257    // Check if we have valid cached registers
258    if (!force && m_state.GetError(set, Read) == KERN_SUCCESS)
259        return KERN_SUCCESS;
260
261    // Read the registers from our thread
262    mach_msg_type_number_t count = ARM_EXCEPTION_STATE_COUNT;
263    kern_return_t kret = ::thread_get_state(m_thread->MachPortNumber(), ARM_EXCEPTION_STATE, (thread_state_t)&m_state.context.exc, &count);
264    m_state.SetError(set, Read, kret);
265    return kret;
266}
267
268static void
269DumpDBGState(const DNBArchMachARM::DBG& dbg)
270{
271    uint32_t i = 0;
272    for (i=0; i<16; i++) {
273        DNBLogThreadedIf(LOG_STEP, "BVR%-2u/BCR%-2u = { 0x%8.8x, 0x%8.8x } WVR%-2u/WCR%-2u = { 0x%8.8x, 0x%8.8x }",
274            i, i, dbg.__bvr[i], dbg.__bcr[i],
275            i, i, dbg.__wvr[i], dbg.__wcr[i]);
276    }
277}
278
279kern_return_t
280DNBArchMachARM::GetDBGState(bool force)
281{
282    int set = e_regSetDBG;
283
284    // Check if we have valid cached registers
285    if (!force && m_state.GetError(set, Read) == KERN_SUCCESS)
286        return KERN_SUCCESS;
287
288    // Read the registers from our thread
289    mach_msg_type_number_t count = ARM_DEBUG_STATE_COUNT;
290    kern_return_t kret = ::thread_get_state(m_thread->MachPortNumber(), ARM_DEBUG_STATE, (thread_state_t)&m_state.dbg, &count);
291    m_state.SetError(set, Read, kret);
292    return kret;
293}
294
295kern_return_t
296DNBArchMachARM::SetGPRState()
297{
298    int set = e_regSetGPR;
299    kern_return_t kret = ::thread_set_state(m_thread->MachPortNumber(), ARM_THREAD_STATE, (thread_state_t)&m_state.context.gpr, ARM_THREAD_STATE_COUNT);
300    m_state.SetError(set, Write, kret);         // Set the current write error for this register set
301    m_state.InvalidateRegisterSetState(set);    // Invalidate the current register state in case registers are read back differently
302    return kret;                                // Return the error code
303}
304
305kern_return_t
306DNBArchMachARM::SetVFPState()
307{
308    int set = e_regSetVFP;
309    kern_return_t kret = ::thread_set_state (m_thread->MachPortNumber(), ARM_VFP_STATE, (thread_state_t)&m_state.context.vfp, ARM_VFP_STATE_COUNT);
310    m_state.SetError(set, Write, kret);         // Set the current write error for this register set
311    m_state.InvalidateRegisterSetState(set);    // Invalidate the current register state in case registers are read back differently
312    return kret;                                // Return the error code
313}
314
315kern_return_t
316DNBArchMachARM::SetEXCState()
317{
318    int set = e_regSetEXC;
319    kern_return_t kret = ::thread_set_state (m_thread->MachPortNumber(), ARM_EXCEPTION_STATE, (thread_state_t)&m_state.context.exc, ARM_EXCEPTION_STATE_COUNT);
320    m_state.SetError(set, Write, kret);         // Set the current write error for this register set
321    m_state.InvalidateRegisterSetState(set);    // Invalidate the current register state in case registers are read back differently
322    return kret;                                // Return the error code
323}
324
325kern_return_t
326DNBArchMachARM::SetDBGState()
327{
328    int set = e_regSetDBG;
329    kern_return_t kret = ::thread_set_state (m_thread->MachPortNumber(), ARM_DEBUG_STATE, (thread_state_t)&m_state.dbg, ARM_DEBUG_STATE_COUNT);
330    m_state.SetError(set, Write, kret);         // Set the current write error for this register set
331    m_state.InvalidateRegisterSetState(set);    // Invalidate the current register state in case registers are read back differently
332    return kret;                                // Return the error code
333}
334
335void
336DNBArchMachARM::ThreadWillResume()
337{
338    // Do we need to step this thread? If so, let the mach thread tell us so.
339    if (m_thread->IsStepping())
340    {
341        // This is the primary thread, let the arch do anything it needs
342        if (NumSupportedHardwareBreakpoints() > 0)
343        {
344            if (EnableHardwareSingleStep(true) != KERN_SUCCESS)
345            {
346                DNBLogThreaded("DNBArchMachARM::ThreadWillResume() failed to enable hardware single step");
347            }
348        }
349    }
350
351    // Disable the triggered watchpoint temporarily before we resume.
352    // Plus, we try to enable hardware single step to execute past the instruction which triggered our watchpoint.
353    if (m_watchpoint_did_occur)
354    {
355        if (m_watchpoint_hw_index >= 0)
356        {
357            kern_return_t kret = GetDBGState(false);
358            if (kret == KERN_SUCCESS && !IsWatchpointEnabled(m_state.dbg, m_watchpoint_hw_index)) {
359                // The watchpoint might have been disabled by the user.  We don't need to do anything at all
360                // to enable hardware single stepping.
361                m_watchpoint_did_occur = false;
362                m_watchpoint_hw_index = -1;
363                return;
364            }
365
366            DisableHardwareWatchpoint0(m_watchpoint_hw_index, true);
367            DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM::ThreadWillResume() DisableHardwareWatchpoint(%d) called",
368                             m_watchpoint_hw_index);
369
370            // Enable hardware single step to move past the watchpoint-triggering instruction.
371            m_watchpoint_resume_single_step_enabled = (EnableHardwareSingleStep(true) == KERN_SUCCESS);
372
373            // If we are not able to enable single step to move past the watchpoint-triggering instruction,
374            // at least we should reset the two watchpoint member variables so that the next time around
375            // this callback function is invoked, the enclosing logical branch is skipped.
376            if (!m_watchpoint_resume_single_step_enabled) {
377                // Reset the two watchpoint member variables.
378                m_watchpoint_did_occur = false;
379                m_watchpoint_hw_index = -1;
380                DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM::ThreadWillResume() failed to enable single step");
381            }
382            else
383                DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM::ThreadWillResume() succeeded to enable single step");
384        }
385    }
386}
387
388bool
389DNBArchMachARM::ThreadDidStop()
390{
391    bool success = true;
392
393    m_state.InvalidateRegisterSetState (e_regSetALL);
394
395    if (m_watchpoint_resume_single_step_enabled)
396    {
397        // Great!  We now disable the hardware single step as well as re-enable the hardware watchpoint.
398        // See also ThreadWillResume().
399        if (EnableHardwareSingleStep(false) == KERN_SUCCESS)
400        {
401            if (m_watchpoint_did_occur && m_watchpoint_hw_index >= 0)
402            {
403                EnableHardwareWatchpoint0(m_watchpoint_hw_index, true);
404                m_watchpoint_resume_single_step_enabled = false;
405                m_watchpoint_did_occur = false;
406                m_watchpoint_hw_index = -1;
407            }
408            else
409            {
410                DNBLogError("internal error detected: m_watchpoint_resume_step_enabled is true but (m_watchpoint_did_occur && m_watchpoint_hw_index >= 0) does not hold!");
411            }
412        }
413        else
414        {
415            DNBLogError("internal error detected: m_watchpoint_resume_step_enabled is true but unable to disable single step!");
416        }
417    }
418
419    // Are we stepping a single instruction?
420    if (GetGPRState(true) == KERN_SUCCESS)
421    {
422        // We are single stepping, was this the primary thread?
423        if (m_thread->IsStepping())
424        {
425            success = EnableHardwareSingleStep(false) == KERN_SUCCESS;
426        }
427        else
428        {
429            // The MachThread will automatically restore the suspend count
430            // in ThreadDidStop(), so we don't need to do anything here if
431            // we weren't the primary thread the last time
432        }
433    }
434    return success;
435}
436
437bool
438DNBArchMachARM::NotifyException(MachException::Data& exc)
439{
440    switch (exc.exc_type)
441    {
442        default:
443            break;
444        case EXC_BREAKPOINT:
445            if (exc.exc_data.size() == 2 && exc.exc_data[0] == EXC_ARM_DA_DEBUG)
446            {
447                // exc_code = EXC_ARM_DA_DEBUG
448                //
449                // Check whether this corresponds to a watchpoint hit event.
450                // If yes, retrieve the exc_sub_code as the data break address.
451                if (!HasWatchpointOccurred())
452                    break;
453
454                // The data break address is passed as exc_data[1].
455                nub_addr_t addr = exc.exc_data[1];
456                // Find the hardware index with the side effect of possibly massaging the
457                // addr to return the starting address as seen from the debugger side.
458                uint32_t hw_index = GetHardwareWatchpointHit(addr);
459                if (hw_index != INVALID_NUB_HW_INDEX)
460                {
461                    m_watchpoint_did_occur = true;
462                    m_watchpoint_hw_index = hw_index;
463                    exc.exc_data[1] = addr;
464                    // Piggyback the hw_index in the exc.data.
465                    exc.exc_data.push_back(hw_index);
466                }
467
468                return true;
469            }
470            break;
471    }
472    return false;
473}
474
475bool
476DNBArchMachARM::StepNotComplete ()
477{
478    if (m_hw_single_chained_step_addr != INVALID_NUB_ADDRESS)
479    {
480        kern_return_t kret = KERN_INVALID_ARGUMENT;
481        kret = GetGPRState(false);
482        if (kret == KERN_SUCCESS)
483        {
484            if (m_state.context.gpr.__pc == m_hw_single_chained_step_addr)
485            {
486                DNBLogThreadedIf(LOG_STEP, "Need to step some more at 0x%8.8x", m_hw_single_chained_step_addr);
487                return true;
488            }
489        }
490    }
491
492    m_hw_single_chained_step_addr = INVALID_NUB_ADDRESS;
493    return false;
494}
495
496
497// Set the single step bit in the processor status register.
498kern_return_t
499DNBArchMachARM::EnableHardwareSingleStep (bool enable)
500{
501    DNBError err;
502    DNBLogThreadedIf(LOG_STEP, "%s( enable = %d )", __FUNCTION__, enable);
503
504    err = GetGPRState(false);
505
506    if (err.Fail())
507    {
508        err.LogThreaded("%s: failed to read the GPR registers", __FUNCTION__);
509        return err.Error();
510    }
511
512    err = GetDBGState(false);
513
514    if (err.Fail())
515    {
516        err.LogThreaded("%s: failed to read the DBG registers", __FUNCTION__);
517        return err.Error();
518    }
519
520    const uint32_t i = 0;
521    if (enable)
522    {
523        m_hw_single_chained_step_addr = INVALID_NUB_ADDRESS;
524
525        // Save our previous state
526        m_dbg_save = m_state.dbg;
527        // Set a breakpoint that will stop when the PC doesn't match the current one!
528        m_state.dbg.__bvr[i] = m_state.context.gpr.__pc & 0xFFFFFFFCu;      // Set the current PC as the breakpoint address
529        m_state.dbg.__bcr[i] = BCR_M_IMVA_MISMATCH |    // Stop on address mismatch
530                               S_USER |                 // Stop only in user mode
531                               BCR_ENABLE;              // Enable this breakpoint
532        if (m_state.context.gpr.__cpsr & 0x20)
533        {
534            // Thumb breakpoint
535            if (m_state.context.gpr.__pc & 2)
536                m_state.dbg.__bcr[i] |= BAS_IMVA_2_3;
537            else
538                m_state.dbg.__bcr[i] |= BAS_IMVA_0_1;
539
540            uint16_t opcode;
541            if (sizeof(opcode) == m_thread->Process()->Task().ReadMemory(m_state.context.gpr.__pc, sizeof(opcode), &opcode))
542            {
543                if (((opcode & 0xE000) == 0xE000) && opcode & 0x1800)
544                {
545                    // 32 bit thumb opcode...
546                    if (m_state.context.gpr.__pc & 2)
547                    {
548                        // We can't take care of a 32 bit thumb instruction single step
549                        // with just IVA mismatching. We will need to chain an extra
550                        // hardware single step in order to complete this single step...
551                        m_hw_single_chained_step_addr = m_state.context.gpr.__pc + 2;
552                    }
553                    else
554                    {
555                        // Extend the number of bits to ignore for the mismatch
556                        m_state.dbg.__bcr[i] |= BAS_IMVA_ALL;
557                    }
558                }
559            }
560        }
561        else
562        {
563            // ARM breakpoint
564            m_state.dbg.__bcr[i] |= BAS_IMVA_ALL; // Stop when any address bits change
565        }
566
567        DNBLogThreadedIf(LOG_STEP, "%s: BVR%u=0x%8.8x  BCR%u=0x%8.8x", __FUNCTION__, i, m_state.dbg.__bvr[i], i, m_state.dbg.__bcr[i]);
568
569        for (uint32_t j=i+1; j<16; ++j)
570        {
571            // Disable all others
572            m_state.dbg.__bvr[j] = 0;
573            m_state.dbg.__bcr[j] = 0;
574        }
575    }
576    else
577    {
578        // Just restore the state we had before we did single stepping
579        m_state.dbg = m_dbg_save;
580    }
581
582    return SetDBGState();
583}
584
585// return 1 if bit "BIT" is set in "value"
586static inline uint32_t bit(uint32_t value, uint32_t bit)
587{
588    return (value >> bit) & 1u;
589}
590
591// return the bitfield "value[msbit:lsbit]".
592static inline uint32_t bits(uint32_t value, uint32_t msbit, uint32_t lsbit)
593{
594    assert(msbit >= lsbit);
595    uint32_t shift_left = sizeof(value) * 8 - 1 - msbit;
596    value <<= shift_left;           // shift anything above the msbit off of the unsigned edge
597    value >>= (shift_left + lsbit); // shift it back again down to the lsbit (including undoing any shift from above)
598    return value;                   // return our result
599}
600
601bool
602DNBArchMachARM::ConditionPassed(uint8_t condition, uint32_t cpsr)
603{
604    uint32_t cpsr_n = bit(cpsr, 31); // Negative condition code flag
605    uint32_t cpsr_z = bit(cpsr, 30); // Zero condition code flag
606    uint32_t cpsr_c = bit(cpsr, 29); // Carry condition code flag
607    uint32_t cpsr_v = bit(cpsr, 28); // Overflow condition code flag
608
609    switch (condition) {
610        case COND_EQ: // (0x0)
611            if (cpsr_z == 1) return true;
612            break;
613        case COND_NE: // (0x1)
614            if (cpsr_z == 0) return true;
615            break;
616        case COND_CS: // (0x2)
617            if (cpsr_c == 1) return true;
618            break;
619        case COND_CC: // (0x3)
620            if (cpsr_c == 0) return true;
621            break;
622        case COND_MI: // (0x4)
623            if (cpsr_n == 1) return true;
624            break;
625        case COND_PL: // (0x5)
626            if (cpsr_n == 0) return true;
627            break;
628        case COND_VS: // (0x6)
629            if (cpsr_v == 1) return true;
630            break;
631        case COND_VC: // (0x7)
632            if (cpsr_v == 0) return true;
633            break;
634        case COND_HI: // (0x8)
635            if ((cpsr_c == 1) && (cpsr_z == 0)) return true;
636            break;
637        case COND_LS: // (0x9)
638            if ((cpsr_c == 0) || (cpsr_z == 1)) return true;
639            break;
640        case COND_GE: // (0xA)
641            if (cpsr_n == cpsr_v) return true;
642            break;
643        case COND_LT: // (0xB)
644            if (cpsr_n != cpsr_v) return true;
645            break;
646        case COND_GT: // (0xC)
647            if ((cpsr_z == 0) && (cpsr_n == cpsr_v)) return true;
648            break;
649        case COND_LE: // (0xD)
650            if ((cpsr_z == 1) || (cpsr_n != cpsr_v)) return true;
651            break;
652        default:
653            return true;
654            break;
655    }
656
657    return false;
658}
659
660uint32_t
661DNBArchMachARM::NumSupportedHardwareBreakpoints()
662{
663    // Set the init value to something that will let us know that we need to
664    // autodetect how many breakpoints are supported dynamically...
665    static uint32_t g_num_supported_hw_breakpoints = UINT_MAX;
666    if (g_num_supported_hw_breakpoints == UINT_MAX)
667    {
668        // Set this to zero in case we can't tell if there are any HW breakpoints
669        g_num_supported_hw_breakpoints = 0;
670
671        size_t len;
672        uint32_t n = 0;
673        len = sizeof (n);
674        if (::sysctlbyname("hw.optional.breakpoint", &n, &len, NULL, 0) == 0)
675        {
676            g_num_supported_hw_breakpoints = n;
677            DNBLogThreadedIf(LOG_THREAD, "hw.optional.breakpoint=%u", n);
678        }
679        else
680        {
681            // Read the DBGDIDR to get the number of available hardware breakpoints
682            // However, in some of our current armv7 processors, hardware
683            // breakpoints/watchpoints were not properly connected. So detect those
684            // cases using a field in a sysctl. For now we are using "hw.cpusubtype"
685            // field to distinguish CPU architectures. This is a hack until we can
686            // get <rdar://problem/6372672> fixed, at which point we will switch to
687            // using a different sysctl string that will tell us how many BRPs
688            // are available to us directly without having to read DBGDIDR.
689            uint32_t register_DBGDIDR;
690
691            asm("mrc p14, 0, %0, c0, c0, 0" : "=r" (register_DBGDIDR));
692            uint32_t numBRPs = bits(register_DBGDIDR, 27, 24);
693            // Zero is reserved for the BRP count, so don't increment it if it is zero
694            if (numBRPs > 0)
695                numBRPs++;
696            DNBLogThreadedIf(LOG_THREAD, "DBGDIDR=0x%8.8x (number BRP pairs = %u)", register_DBGDIDR, numBRPs);
697
698            if (numBRPs > 0)
699            {
700                uint32_t cpusubtype;
701                len = sizeof(cpusubtype);
702                // TODO: remove this hack and change to using hw.optional.xx when implmented
703                if (::sysctlbyname("hw.cpusubtype", &cpusubtype, &len, NULL, 0) == 0)
704                {
705                    DNBLogThreadedIf(LOG_THREAD, "hw.cpusubtype=%d", cpusubtype);
706                    if (cpusubtype == CPU_SUBTYPE_ARM_V7)
707                        DNBLogThreadedIf(LOG_THREAD, "Hardware breakpoints disabled for armv7 (rdar://problem/6372672)");
708                    else
709                        g_num_supported_hw_breakpoints = numBRPs;
710                }
711            }
712        }
713    }
714    return g_num_supported_hw_breakpoints;
715}
716
717
718uint32_t
719DNBArchMachARM::NumSupportedHardwareWatchpoints()
720{
721    // Set the init value to something that will let us know that we need to
722    // autodetect how many watchpoints are supported dynamically...
723    static uint32_t g_num_supported_hw_watchpoints = UINT_MAX;
724    if (g_num_supported_hw_watchpoints == UINT_MAX)
725    {
726        // Set this to zero in case we can't tell if there are any HW breakpoints
727        g_num_supported_hw_watchpoints = 0;
728
729
730        size_t len;
731        uint32_t n = 0;
732        len = sizeof (n);
733        if (::sysctlbyname("hw.optional.watchpoint", &n, &len, NULL, 0) == 0)
734        {
735            g_num_supported_hw_watchpoints = n;
736            DNBLogThreadedIf(LOG_THREAD, "hw.optional.watchpoint=%u", n);
737        }
738        else
739        {
740            // Read the DBGDIDR to get the number of available hardware breakpoints
741            // However, in some of our current armv7 processors, hardware
742            // breakpoints/watchpoints were not properly connected. So detect those
743            // cases using a field in a sysctl. For now we are using "hw.cpusubtype"
744            // field to distinguish CPU architectures. This is a hack until we can
745            // get <rdar://problem/6372672> fixed, at which point we will switch to
746            // using a different sysctl string that will tell us how many WRPs
747            // are available to us directly without having to read DBGDIDR.
748
749            uint32_t register_DBGDIDR;
750            asm("mrc p14, 0, %0, c0, c0, 0" : "=r" (register_DBGDIDR));
751            uint32_t numWRPs = bits(register_DBGDIDR, 31, 28) + 1;
752            DNBLogThreadedIf(LOG_THREAD, "DBGDIDR=0x%8.8x (number WRP pairs = %u)", register_DBGDIDR, numWRPs);
753
754            if (numWRPs > 0)
755            {
756                uint32_t cpusubtype;
757                size_t len;
758                len = sizeof(cpusubtype);
759                // TODO: remove this hack and change to using hw.optional.xx when implmented
760                if (::sysctlbyname("hw.cpusubtype", &cpusubtype, &len, NULL, 0) == 0)
761                {
762                    DNBLogThreadedIf(LOG_THREAD, "hw.cpusubtype=0x%d", cpusubtype);
763
764                    if (cpusubtype == CPU_SUBTYPE_ARM_V7)
765                        DNBLogThreadedIf(LOG_THREAD, "Hardware watchpoints disabled for armv7 (rdar://problem/6372672)");
766                    else
767                        g_num_supported_hw_watchpoints = numWRPs;
768                }
769            }
770        }
771    }
772    return g_num_supported_hw_watchpoints;
773}
774
775
776uint32_t
777DNBArchMachARM::EnableHardwareBreakpoint (nub_addr_t addr, nub_size_t size)
778{
779    // Make sure our address isn't bogus
780    if (addr & 1)
781        return INVALID_NUB_HW_INDEX;
782
783    kern_return_t kret = GetDBGState(false);
784
785    if (kret == KERN_SUCCESS)
786    {
787        const uint32_t num_hw_breakpoints = NumSupportedHardwareBreakpoints();
788        uint32_t i;
789        for (i=0; i<num_hw_breakpoints; ++i)
790        {
791            if ((m_state.dbg.__bcr[i] & BCR_ENABLE) == 0)
792                break; // We found an available hw breakpoint slot (in i)
793        }
794
795        // See if we found an available hw breakpoint slot above
796        if (i < num_hw_breakpoints)
797        {
798            // Make sure bits 1:0 are clear in our address
799            m_state.dbg.__bvr[i] = addr & ~((nub_addr_t)3);
800
801            if (size == 2 || addr & 2)
802            {
803                uint32_t byte_addr_select = (addr & 2) ? BAS_IMVA_2_3 : BAS_IMVA_0_1;
804
805                // We have a thumb breakpoint
806                // We have an ARM breakpoint
807                m_state.dbg.__bcr[i] =  BCR_M_IMVA_MATCH |  // Stop on address mismatch
808                                        byte_addr_select |  // Set the correct byte address select so we only trigger on the correct opcode
809                                        S_USER |            // Which modes should this breakpoint stop in?
810                                        BCR_ENABLE;         // Enable this hardware breakpoint
811                DNBLogThreadedIf (LOG_BREAKPOINTS, "DNBArchMachARM::EnableHardwareBreakpoint( addr = 0x%8.8llx, size = %llu ) - BVR%u/BCR%u = 0x%8.8x / 0x%8.8x (Thumb)",
812                                  (uint64_t)addr,
813                                  (uint64_t)size,
814                                  i,
815                                  i,
816                                  m_state.dbg.__bvr[i],
817                                  m_state.dbg.__bcr[i]);
818            }
819            else if (size == 4)
820            {
821                // We have an ARM breakpoint
822                m_state.dbg.__bcr[i] =  BCR_M_IMVA_MATCH |  // Stop on address mismatch
823                                        BAS_IMVA_ALL |      // Stop on any of the four bytes following the IMVA
824                                        S_USER |            // Which modes should this breakpoint stop in?
825                                        BCR_ENABLE;         // Enable this hardware breakpoint
826                DNBLogThreadedIf (LOG_BREAKPOINTS, "DNBArchMachARM::EnableHardwareBreakpoint( addr = 0x%8.8llx, size = %llu ) - BVR%u/BCR%u = 0x%8.8x / 0x%8.8x (ARM)",
827                                  (uint64_t)addr,
828                                  (uint64_t)size,
829                                  i,
830                                  i,
831                                  m_state.dbg.__bvr[i],
832                                  m_state.dbg.__bcr[i]);
833            }
834
835            kret = SetDBGState();
836            DNBLogThreadedIf(LOG_BREAKPOINTS, "DNBArchMachARM::EnableHardwareBreakpoint() SetDBGState() => 0x%8.8x.", kret);
837
838            if (kret == KERN_SUCCESS)
839                return i;
840        }
841        else
842        {
843            DNBLogThreadedIf (LOG_BREAKPOINTS, "DNBArchMachARM::EnableHardwareBreakpoint(addr = 0x%8.8llx, size = %llu) => all hardware breakpoint resources are being used.", (uint64_t)addr, (uint64_t)size);
844        }
845    }
846
847    return INVALID_NUB_HW_INDEX;
848}
849
850bool
851DNBArchMachARM::DisableHardwareBreakpoint (uint32_t hw_index)
852{
853    kern_return_t kret = GetDBGState(false);
854
855    const uint32_t num_hw_points = NumSupportedHardwareBreakpoints();
856    if (kret == KERN_SUCCESS)
857    {
858        if (hw_index < num_hw_points)
859        {
860            m_state.dbg.__bcr[hw_index] = 0;
861            DNBLogThreadedIf(LOG_BREAKPOINTS, "DNBArchMachARM::SetHardwareBreakpoint( %u ) - BVR%u = 0x%8.8x  BCR%u = 0x%8.8x",
862                    hw_index,
863                    hw_index,
864                    m_state.dbg.__bvr[hw_index],
865                    hw_index,
866                    m_state.dbg.__bcr[hw_index]);
867
868            kret = SetDBGState();
869
870            if (kret == KERN_SUCCESS)
871                return true;
872        }
873    }
874    return false;
875}
876
877// This stores the lo->hi mappings.  It's safe to initialize to all 0's
878// since hi > lo and therefore LoHi[i] cannot be 0.
879static uint32_t LoHi[16] = { 0 };
880
881uint32_t
882DNBArchMachARM::EnableHardwareWatchpoint (nub_addr_t addr, nub_size_t size, bool read, bool write)
883{
884    DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM::EnableHardwareWatchpoint(addr = 0x%8.8llx, size = %llu, read = %u, write = %u)", (uint64_t)addr, (uint64_t)size, read, write);
885
886    const uint32_t num_hw_watchpoints = NumSupportedHardwareWatchpoints();
887
888    // Can't watch zero bytes
889    if (size == 0)
890        return INVALID_NUB_HW_INDEX;
891
892    // We must watch for either read or write
893    if (read == false && write == false)
894        return INVALID_NUB_HW_INDEX;
895
896    // Divide-and-conquer for size == 8.
897    if (size == 8)
898    {
899        uint32_t lo = EnableHardwareWatchpoint(addr, 4, read, write);
900        if (lo == INVALID_NUB_HW_INDEX)
901            return INVALID_NUB_HW_INDEX;
902        uint32_t hi = EnableHardwareWatchpoint(addr+4, 4, read, write);
903        if (hi == INVALID_NUB_HW_INDEX)
904        {
905            DisableHardwareWatchpoint(lo);
906            return INVALID_NUB_HW_INDEX;
907        }
908        // Tag this lo->hi mapping in our database.
909        LoHi[lo] = hi;
910        return lo;
911    }
912
913    // Otherwise, can't watch more than 4 bytes per WVR/WCR pair
914    if (size > 4)
915        return INVALID_NUB_HW_INDEX;
916
917    // We can only watch up to four bytes that follow a 4 byte aligned address
918    // per watchpoint register pair. Since we can only watch until the next 4
919    // byte boundary, we need to make sure we can properly encode this.
920
921    // addr_word_offset = addr % 4, i.e, is in set([0, 1, 2, 3])
922    //
923    //     +---+---+---+---+
924    //     | 0 | 1 | 2 | 3 |
925    //     +---+---+---+---+
926    //     ^
927    //     |
928    // word address (4-byte aligned) = addr & 0xFFFFFFFC => goes into WVR
929    //
930    // examples:
931    // 1. addr_word_offset = 1, size = 1 to watch a uint_8 => byte_mask = (0b0001 << 1) = 0b0010
932    // 2. addr_word_offset = 2, size = 2 to watch a uint_16 => byte_mask = (0b0011 << 2) = 0b1100
933    //
934    // where byte_mask goes into WCR[8:5]
935
936    uint32_t addr_word_offset = addr % 4;
937    DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM::EnableHardwareWatchpoint() - addr_word_offset = 0x%8.8x", addr_word_offset);
938
939    uint32_t byte_mask = ((1u << size) - 1u) << addr_word_offset;
940    DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM::EnableHardwareWatchpoint() - byte_mask = 0x%8.8x", byte_mask);
941    if (byte_mask > 0xfu)
942        return INVALID_NUB_HW_INDEX;
943
944    // Read the debug state
945    kern_return_t kret = GetDBGState(false);
946
947    if (kret == KERN_SUCCESS)
948    {
949        // Check to make sure we have the needed hardware support
950        uint32_t i = 0;
951
952        for (i=0; i<num_hw_watchpoints; ++i)
953        {
954            if ((m_state.dbg.__wcr[i] & WCR_ENABLE) == 0)
955                break; // We found an available hw watchpoint slot (in i)
956        }
957
958        // See if we found an available hw watchpoint slot above
959        if (i < num_hw_watchpoints)
960        {
961            //DumpDBGState(m_state.dbg);
962
963            // Make the byte_mask into a valid Byte Address Select mask
964            uint32_t byte_address_select = byte_mask << 5;
965            // Make sure bits 1:0 are clear in our address
966            m_state.dbg.__wvr[i] = addr & ~((nub_addr_t)3);     // DVA (Data Virtual Address)
967            m_state.dbg.__wcr[i] =  byte_address_select |       // Which bytes that follow the DVA that we will watch
968                                    S_USER |                    // Stop only in user mode
969                                    (read ? WCR_LOAD : 0) |     // Stop on read access?
970                                    (write ? WCR_STORE : 0) |   // Stop on write access?
971                                    WCR_ENABLE;                 // Enable this watchpoint;
972
973            DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM::EnableHardwareWatchpoint() adding watchpoint on address 0x%llx with control register value 0x%x", (uint64_t) m_state.dbg.__wvr[i], (uint32_t) m_state.dbg.__wcr[i]);
974
975            kret = SetDBGState();
976            //DumpDBGState(m_state.dbg);
977
978            DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM::EnableHardwareWatchpoint() SetDBGState() => 0x%8.8x.", kret);
979
980            if (kret == KERN_SUCCESS)
981                return i;
982        }
983        else
984        {
985            DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM::EnableHardwareWatchpoint(): All hardware resources (%u) are in use.", num_hw_watchpoints);
986        }
987    }
988    return INVALID_NUB_HW_INDEX;
989}
990
991bool
992DNBArchMachARM::EnableHardwareWatchpoint0 (uint32_t hw_index, bool Delegate)
993{
994    kern_return_t kret = GetDBGState(false);
995    if (kret != KERN_SUCCESS)
996        return false;
997
998    const uint32_t num_hw_points = NumSupportedHardwareWatchpoints();
999    if (hw_index >= num_hw_points)
1000        return false;
1001
1002    if (Delegate && LoHi[hw_index]) {
1003        // Enable lo and hi watchpoint hardware indexes.
1004        return EnableHardwareWatchpoint0(hw_index, false) &&
1005            EnableHardwareWatchpoint0(LoHi[hw_index], false);
1006    }
1007
1008    m_state.dbg.__wcr[hw_index] |= (nub_addr_t)WCR_ENABLE;
1009    DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM::EnableHardwareWatchpoint( %u ) - WVR%u = 0x%8.8x  WCR%u = 0x%8.8x",
1010                     hw_index,
1011                     hw_index,
1012                     m_state.dbg.__wvr[hw_index],
1013                     hw_index,
1014                     m_state.dbg.__wcr[hw_index]);
1015
1016    kret = SetDBGState();
1017
1018    return (kret == KERN_SUCCESS);
1019}
1020
1021bool
1022DNBArchMachARM::DisableHardwareWatchpoint (uint32_t hw_index)
1023{
1024    return DisableHardwareWatchpoint0(hw_index, true);
1025}
1026bool
1027DNBArchMachARM::DisableHardwareWatchpoint0 (uint32_t hw_index, bool Delegate)
1028{
1029    kern_return_t kret = GetDBGState(false);
1030    if (kret != KERN_SUCCESS)
1031        return false;
1032
1033    const uint32_t num_hw_points = NumSupportedHardwareWatchpoints();
1034    if (hw_index >= num_hw_points)
1035        return false;
1036
1037    if (Delegate && LoHi[hw_index]) {
1038        // Disable lo and hi watchpoint hardware indexes.
1039        return DisableHardwareWatchpoint0(hw_index, false) &&
1040            DisableHardwareWatchpoint0(LoHi[hw_index], false);
1041    }
1042
1043    m_state.dbg.__wcr[hw_index] &= ~((nub_addr_t)WCR_ENABLE);
1044    DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM::DisableHardwareWatchpoint( %u ) - WVR%u = 0x%8.8x  WCR%u = 0x%8.8x",
1045                     hw_index,
1046                     hw_index,
1047                     m_state.dbg.__wvr[hw_index],
1048                     hw_index,
1049                     m_state.dbg.__wcr[hw_index]);
1050
1051    kret = SetDBGState();
1052
1053    return (kret == KERN_SUCCESS);
1054}
1055
1056// {0} -> __bvr[16], {0} -> __bcr[16], {0} --> __wvr[16], {0} -> __wcr{16}
1057DNBArchMachARM::DBG DNBArchMachARM::Global_Debug_State = {{0},{0},{0},{0}};
1058bool DNBArchMachARM::Valid_Global_Debug_State = false;
1059
1060// Use this callback from MachThread, which in turn was called from MachThreadList, to update
1061// the global view of the hardware watchpoint state, so that when new thread comes along, they
1062// get to inherit the existing hardware watchpoint state.
1063void
1064DNBArchMachARM::HardwareWatchpointStateChanged ()
1065{
1066    Global_Debug_State = m_state.dbg;
1067    Valid_Global_Debug_State = true;
1068}
1069
1070// Returns -1 if the trailing bit patterns are not one of:
1071// { 0b???1, 0b??10, 0b?100, 0b1000 }.
1072static inline
1073int32_t
1074LowestBitSet(uint32_t val)
1075{
1076    for (unsigned i = 0; i < 4; ++i) {
1077        if (bit(val, i))
1078            return i;
1079    }
1080    return -1;
1081}
1082
1083// Iterate through the debug registers; return the index of the first watchpoint whose address matches.
1084// As a side effect, the starting address as understood by the debugger is returned which could be
1085// different from 'addr' passed as an in/out argument.
1086uint32_t
1087DNBArchMachARM::GetHardwareWatchpointHit(nub_addr_t &addr)
1088{
1089    // Read the debug state
1090    kern_return_t kret = GetDBGState(true);
1091    //DumpDBGState(m_state.dbg);
1092    DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM::GetHardwareWatchpointHit() GetDBGState() => 0x%8.8x.", kret);
1093    DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM::GetHardwareWatchpointHit() addr = 0x%llx", (uint64_t)addr);
1094
1095    // This is the watchpoint value to match against, i.e., word address.
1096    nub_addr_t wp_val = addr & ~((nub_addr_t)3);
1097    if (kret == KERN_SUCCESS)
1098    {
1099        DBG &debug_state = m_state.dbg;
1100        uint32_t i, num = NumSupportedHardwareWatchpoints();
1101        for (i = 0; i < num; ++i)
1102        {
1103            nub_addr_t wp_addr = GetWatchAddress(debug_state, i);
1104            DNBLogThreadedIf(LOG_WATCHPOINTS,
1105                             "DNBArchMachARM::GetHardwareWatchpointHit() slot: %u (addr = 0x%llx).",
1106                             i, (uint64_t)wp_addr);
1107            if (wp_val == wp_addr) {
1108                uint32_t byte_mask = bits(debug_state.__wcr[i], 8, 5);
1109
1110                // Sanity check the byte_mask, first.
1111                if (LowestBitSet(byte_mask) < 0)
1112                    continue;
1113
1114                // Compute the starting address (from the point of view of the debugger).
1115                addr = wp_addr + LowestBitSet(byte_mask);
1116                return i;
1117            }
1118        }
1119    }
1120    return INVALID_NUB_HW_INDEX;
1121}
1122
1123// ThreadWillResume() calls this to clear bits[5:2] (Method of entry bits) of
1124// the Debug Status and Control Register (DSCR).
1125//
1126// b0010 = a watchpoint occurred
1127// b0000 is the reset value
1128void
1129DNBArchMachARM::ClearWatchpointOccurred()
1130{
1131    uint32_t register_DBGDSCR;
1132    asm("mrc p14, 0, %0, c0, c1, 0" : "=r" (register_DBGDSCR));
1133    if (bits(register_DBGDSCR, 5, 2) == WATCHPOINT_OCCURRED)
1134    {
1135        uint32_t mask = ~(0xF << 2);
1136        register_DBGDSCR &= mask;
1137        asm("mcr p14, 0, %0, c0, c1, 0" : "=r" (register_DBGDSCR));
1138    }
1139    return;
1140}
1141
1142// NotifyException() calls this to double check that a watchpoint has occurred
1143// by inspecting the bits[5:2] field of the Debug Status and Control Register
1144// (DSCR).
1145//
1146// b0010 = a watchpoint occurred
1147bool
1148DNBArchMachARM::HasWatchpointOccurred()
1149{
1150    uint32_t register_DBGDSCR;
1151    asm("mrc p14, 0, %0, c0, c1, 0" : "=r" (register_DBGDSCR));
1152    return (bits(register_DBGDSCR, 5, 2) == WATCHPOINT_OCCURRED);
1153}
1154
1155bool
1156DNBArchMachARM::IsWatchpointEnabled(const DBG &debug_state, uint32_t hw_index)
1157{
1158    // Watchpoint Control Registers, bitfield definitions
1159    // ...
1160    // Bits    Value    Description
1161    // [0]     0        Watchpoint disabled
1162    //         1        Watchpoint enabled.
1163    return (debug_state.__wcr[hw_index] & 1u);
1164}
1165
1166nub_addr_t
1167DNBArchMachARM::GetWatchAddress(const DBG &debug_state, uint32_t hw_index)
1168{
1169    // Watchpoint Value Registers, bitfield definitions
1170    // Bits        Description
1171    // [31:2]      Watchpoint value (word address, i.e., 4-byte aligned)
1172    // [1:0]       RAZ/SBZP
1173    return bits(debug_state.__wvr[hw_index], 31, 0);
1174}
1175
1176//----------------------------------------------------------------------
1177// Register information defintions for 32 bit ARMV7.
1178//----------------------------------------------------------------------
1179enum gpr_regnums
1180{
1181    gpr_r0 = 0,
1182    gpr_r1,
1183    gpr_r2,
1184    gpr_r3,
1185    gpr_r4,
1186    gpr_r5,
1187    gpr_r6,
1188    gpr_r7,
1189    gpr_r8,
1190    gpr_r9,
1191    gpr_r10,
1192    gpr_r11,
1193    gpr_r12,
1194    gpr_sp,
1195    gpr_lr,
1196    gpr_pc,
1197    gpr_cpsr
1198};
1199
1200enum
1201{
1202    vfp_s0 = 17, // match the g_gdb_register_map_arm table in RNBRemote.cpp
1203    vfp_s1,
1204    vfp_s2,
1205    vfp_s3,
1206    vfp_s4,
1207    vfp_s5,
1208    vfp_s6,
1209    vfp_s7,
1210    vfp_s8,
1211    vfp_s9,
1212    vfp_s10,
1213    vfp_s11,
1214    vfp_s12,
1215    vfp_s13,
1216    vfp_s14,
1217    vfp_s15,
1218    vfp_s16,
1219    vfp_s17,
1220    vfp_s18,
1221    vfp_s19,
1222    vfp_s20,
1223    vfp_s21,
1224    vfp_s22,
1225    vfp_s23,
1226    vfp_s24,
1227    vfp_s25,
1228    vfp_s26,
1229    vfp_s27,
1230    vfp_s28,
1231    vfp_s29,
1232    vfp_s30,
1233    vfp_s31
1234};
1235
1236enum
1237{
1238    vfp_d0 = 49, // match the g_gdb_register_map_arm table in RNBRemote.cpp
1239    vfp_d1,
1240    vfp_d2,
1241    vfp_d3,
1242    vfp_d4,
1243    vfp_d5,
1244    vfp_d6,
1245    vfp_d7,
1246    vfp_d8,
1247    vfp_d9,
1248    vfp_d10,
1249    vfp_d11,
1250    vfp_d12,
1251    vfp_d13,
1252    vfp_d14,
1253    vfp_d15,
1254    vfp_d16,
1255    vfp_d17,
1256    vfp_d18,
1257    vfp_d19,
1258    vfp_d20,
1259    vfp_d21,
1260    vfp_d22,
1261    vfp_d23,
1262    vfp_d24,
1263    vfp_d25,
1264    vfp_d26,
1265    vfp_d27,
1266    vfp_d28,
1267    vfp_d29,
1268    vfp_d30,
1269    vfp_d31
1270};
1271
1272enum
1273{
1274    vfp_q0 = 81, // match the g_gdb_register_map_arm table in RNBRemote.cpp
1275    vfp_q1,
1276    vfp_q2,
1277    vfp_q3,
1278    vfp_q4,
1279    vfp_q5,
1280    vfp_q6,
1281    vfp_q7,
1282    vfp_q8,
1283    vfp_q9,
1284    vfp_q10,
1285    vfp_q11,
1286    vfp_q12,
1287    vfp_q13,
1288    vfp_q14,
1289    vfp_q15,
1290    vfp_fpscr
1291};
1292
1293enum
1294{
1295    exc_exception,
1296    exc_fsr,
1297    exc_far,
1298};
1299
1300#define GPR_OFFSET_IDX(idx) (offsetof (DNBArchMachARM::GPR, __r[idx]))
1301#define GPR_OFFSET_NAME(reg) (offsetof (DNBArchMachARM::GPR, __##reg))
1302
1303#define EXC_OFFSET(reg)      (offsetof (DNBArchMachARM::EXC, __##reg)  + offsetof (DNBArchMachARM::Context, exc))
1304
1305// These macros will auto define the register name, alt name, register size,
1306// register offset, encoding, format and native register. This ensures that
1307// the register state structures are defined correctly and have the correct
1308// sizes and offsets.
1309#define DEFINE_GPR_IDX(idx, reg, alt, gen) { e_regSetGPR, gpr_##reg, #reg, alt, Uint, Hex, 4, GPR_OFFSET_IDX(idx), gcc_##reg, dwarf_##reg, gen, INVALID_NUB_REGNUM, NULL, NULL}
1310#define DEFINE_GPR_NAME(reg, alt, gen, inval) { e_regSetGPR, gpr_##reg, #reg, alt, Uint, Hex, 4, GPR_OFFSET_NAME(reg), gcc_##reg, dwarf_##reg, gen, INVALID_NUB_REGNUM, NULL, inval}
1311
1312// In case we are debugging to a debug target that the ability to
1313// change into the protected modes with folded registers (ABT, IRQ,
1314// FIQ, SYS, USR, etc..), we should invalidate r8-r14 if the CPSR
1315// gets modified.
1316
1317uint32_t g_invalidate_cpsr[] = {
1318    gpr_r8,
1319    gpr_r9,
1320    gpr_r10,
1321    gpr_r11,
1322    gpr_r12,
1323    gpr_sp,
1324    gpr_lr,
1325    INVALID_NUB_REGNUM };
1326
1327// General purpose registers
1328const DNBRegisterInfo
1329DNBArchMachARM::g_gpr_registers[] =
1330{
1331    DEFINE_GPR_IDX ( 0,  r0,"arg1", GENERIC_REGNUM_ARG1  ),
1332    DEFINE_GPR_IDX ( 1,  r1,"arg2", GENERIC_REGNUM_ARG2  ),
1333    DEFINE_GPR_IDX ( 2,  r2,"arg3", GENERIC_REGNUM_ARG3  ),
1334    DEFINE_GPR_IDX ( 3,  r3,"arg4", GENERIC_REGNUM_ARG4  ),
1335    DEFINE_GPR_IDX ( 4,  r4,  NULL, INVALID_NUB_REGNUM   ),
1336    DEFINE_GPR_IDX ( 5,  r5,  NULL, INVALID_NUB_REGNUM   ),
1337    DEFINE_GPR_IDX ( 6,  r6,  NULL, INVALID_NUB_REGNUM   ),
1338    DEFINE_GPR_IDX ( 7,  r7,  "fp", GENERIC_REGNUM_FP    ),
1339    DEFINE_GPR_IDX ( 8,  r8,  NULL, INVALID_NUB_REGNUM   ),
1340    DEFINE_GPR_IDX ( 9,  r9,  NULL, INVALID_NUB_REGNUM   ),
1341    DEFINE_GPR_IDX (10, r10,  NULL, INVALID_NUB_REGNUM   ),
1342    DEFINE_GPR_IDX (11, r11,  NULL, INVALID_NUB_REGNUM   ),
1343    DEFINE_GPR_IDX (12, r12,  NULL, INVALID_NUB_REGNUM   ),
1344    DEFINE_GPR_NAME (sp, "r13", GENERIC_REGNUM_SP, NULL),
1345    DEFINE_GPR_NAME (lr, "r14", GENERIC_REGNUM_RA, NULL),
1346    DEFINE_GPR_NAME (pc, "r15", GENERIC_REGNUM_PC, NULL),
1347    DEFINE_GPR_NAME (cpsr, "flags", GENERIC_REGNUM_FLAGS, g_invalidate_cpsr)
1348};
1349
1350uint32_t g_contained_q0[] {vfp_q0, INVALID_NUB_REGNUM };
1351uint32_t g_contained_q1[] {vfp_q1, INVALID_NUB_REGNUM };
1352uint32_t g_contained_q2[] {vfp_q2, INVALID_NUB_REGNUM };
1353uint32_t g_contained_q3[] {vfp_q3, INVALID_NUB_REGNUM };
1354uint32_t g_contained_q4[] {vfp_q4, INVALID_NUB_REGNUM };
1355uint32_t g_contained_q5[] {vfp_q5, INVALID_NUB_REGNUM };
1356uint32_t g_contained_q6[] {vfp_q6, INVALID_NUB_REGNUM };
1357uint32_t g_contained_q7[] {vfp_q7, INVALID_NUB_REGNUM };
1358uint32_t g_contained_q8[] {vfp_q8, INVALID_NUB_REGNUM };
1359uint32_t g_contained_q9[] {vfp_q9, INVALID_NUB_REGNUM };
1360uint32_t g_contained_q10[] {vfp_q10, INVALID_NUB_REGNUM };
1361uint32_t g_contained_q11[] {vfp_q11, INVALID_NUB_REGNUM };
1362uint32_t g_contained_q12[] {vfp_q12, INVALID_NUB_REGNUM };
1363uint32_t g_contained_q13[] {vfp_q13, INVALID_NUB_REGNUM };
1364uint32_t g_contained_q14[] {vfp_q14, INVALID_NUB_REGNUM };
1365uint32_t g_contained_q15[] {vfp_q15, INVALID_NUB_REGNUM };
1366
1367uint32_t g_invalidate_q0[]  {vfp_q0,   vfp_d0, vfp_d1,    vfp_s0, vfp_s1, vfp_s2, vfp_s3,        INVALID_NUB_REGNUM };
1368uint32_t g_invalidate_q1[]  {vfp_q1,   vfp_d2, vfp_d3,    vfp_s4, vfp_s5, vfp_s6, vfp_s7,        INVALID_NUB_REGNUM };
1369uint32_t g_invalidate_q2[]  {vfp_q2,   vfp_d4, vfp_d5,    vfp_s8, vfp_s9, vfp_s10, vfp_s11,      INVALID_NUB_REGNUM };
1370uint32_t g_invalidate_q3[]  {vfp_q3,   vfp_d6, vfp_d7,    vfp_s12, vfp_s13, vfp_s14, vfp_s15,    INVALID_NUB_REGNUM };
1371uint32_t g_invalidate_q4[]  {vfp_q4,   vfp_d8, vfp_d9,    vfp_s16, vfp_s17, vfp_s18, vfp_s19,    INVALID_NUB_REGNUM };
1372uint32_t g_invalidate_q5[]  {vfp_q5,   vfp_d10, vfp_d11,  vfp_s20, vfp_s21, vfp_s22, vfp_s23,    INVALID_NUB_REGNUM };
1373uint32_t g_invalidate_q6[]  {vfp_q6,   vfp_d12, vfp_d13,  vfp_s24, vfp_s25, vfp_s26, vfp_s27,    INVALID_NUB_REGNUM };
1374uint32_t g_invalidate_q7[]  {vfp_q7,   vfp_d14, vfp_d15,  vfp_s28, vfp_s29, vfp_s30, vfp_s31,    INVALID_NUB_REGNUM };
1375uint32_t g_invalidate_q8[]  {vfp_q8,   vfp_d16, vfp_d17,  INVALID_NUB_REGNUM };
1376uint32_t g_invalidate_q9[]  {vfp_q9,   vfp_d18, vfp_d19,  INVALID_NUB_REGNUM };
1377uint32_t g_invalidate_q10[] {vfp_q10,  vfp_d20, vfp_d21,  INVALID_NUB_REGNUM };
1378uint32_t g_invalidate_q11[] {vfp_q11,  vfp_d22, vfp_d23,  INVALID_NUB_REGNUM };
1379uint32_t g_invalidate_q12[] {vfp_q12,  vfp_d24, vfp_d25,  INVALID_NUB_REGNUM };
1380uint32_t g_invalidate_q13[] {vfp_q13,  vfp_d26, vfp_d27,  INVALID_NUB_REGNUM };
1381uint32_t g_invalidate_q14[] {vfp_q14,  vfp_d28, vfp_d29,  INVALID_NUB_REGNUM };
1382uint32_t g_invalidate_q15[] {vfp_q15,  vfp_d30, vfp_d31,  INVALID_NUB_REGNUM };
1383
1384#define VFP_S_OFFSET_IDX(idx) (offsetof (DNBArchMachARM::FPU, __r[(idx)]) + offsetof (DNBArchMachARM::Context, vfp))
1385#define VFP_D_OFFSET_IDX(idx) (VFP_S_OFFSET_IDX ((idx) * 2))
1386#define VFP_Q_OFFSET_IDX(idx) (VFP_S_OFFSET_IDX ((idx) * 4))
1387
1388#define VFP_OFFSET_NAME(reg) (offsetof (DNBArchMachARM::FPU, __##reg) + offsetof (DNBArchMachARM::Context, vfp))
1389
1390#define FLOAT_FORMAT Float
1391
1392#define DEFINE_VFP_S_IDX(idx)  e_regSetVFP, vfp_s##idx - vfp_s0, "s" #idx, NULL, IEEE754, FLOAT_FORMAT, 4, VFP_S_OFFSET_IDX(idx), INVALID_NUB_REGNUM, dwarf_s##idx, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM
1393#define DEFINE_VFP_D_IDX(idx)  e_regSetVFP, vfp_d##idx - vfp_s0, "d" #idx, NULL, IEEE754, FLOAT_FORMAT, 8, VFP_D_OFFSET_IDX(idx), INVALID_NUB_REGNUM, dwarf_d##idx, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM
1394#define DEFINE_VFP_Q_IDX(idx)  e_regSetVFP, vfp_q##idx - vfp_s0, "q" #idx, NULL, Vector, VectorOfUInt8, 16, VFP_Q_OFFSET_IDX(idx), INVALID_NUB_REGNUM, dwarf_q##idx, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM
1395
1396// Floating point registers
1397const DNBRegisterInfo
1398DNBArchMachARM::g_vfp_registers[] =
1399{
1400    { DEFINE_VFP_S_IDX ( 0), g_contained_q0, g_invalidate_q0 },
1401    { DEFINE_VFP_S_IDX ( 1), g_contained_q0, g_invalidate_q0 },
1402    { DEFINE_VFP_S_IDX ( 2), g_contained_q0, g_invalidate_q0 },
1403    { DEFINE_VFP_S_IDX ( 3), g_contained_q0, g_invalidate_q0 },
1404    { DEFINE_VFP_S_IDX ( 4), g_contained_q1, g_invalidate_q1 },
1405    { DEFINE_VFP_S_IDX ( 5), g_contained_q1, g_invalidate_q1 },
1406    { DEFINE_VFP_S_IDX ( 6), g_contained_q1, g_invalidate_q1 },
1407    { DEFINE_VFP_S_IDX ( 7), g_contained_q1, g_invalidate_q1 },
1408    { DEFINE_VFP_S_IDX ( 8), g_contained_q2, g_invalidate_q2 },
1409    { DEFINE_VFP_S_IDX ( 9), g_contained_q2, g_invalidate_q2 },
1410    { DEFINE_VFP_S_IDX (10), g_contained_q2, g_invalidate_q2 },
1411    { DEFINE_VFP_S_IDX (11), g_contained_q2, g_invalidate_q2 },
1412    { DEFINE_VFP_S_IDX (12), g_contained_q3, g_invalidate_q3 },
1413    { DEFINE_VFP_S_IDX (13), g_contained_q3, g_invalidate_q3 },
1414    { DEFINE_VFP_S_IDX (14), g_contained_q3, g_invalidate_q3 },
1415    { DEFINE_VFP_S_IDX (15), g_contained_q3, g_invalidate_q3 },
1416    { DEFINE_VFP_S_IDX (16), g_contained_q4, g_invalidate_q4 },
1417    { DEFINE_VFP_S_IDX (17), g_contained_q4, g_invalidate_q4 },
1418    { DEFINE_VFP_S_IDX (18), g_contained_q4, g_invalidate_q4 },
1419    { DEFINE_VFP_S_IDX (19), g_contained_q4, g_invalidate_q4 },
1420    { DEFINE_VFP_S_IDX (20), g_contained_q5, g_invalidate_q5 },
1421    { DEFINE_VFP_S_IDX (21), g_contained_q5, g_invalidate_q5 },
1422    { DEFINE_VFP_S_IDX (22), g_contained_q5, g_invalidate_q5 },
1423    { DEFINE_VFP_S_IDX (23), g_contained_q5, g_invalidate_q5 },
1424    { DEFINE_VFP_S_IDX (24), g_contained_q6, g_invalidate_q6 },
1425    { DEFINE_VFP_S_IDX (25), g_contained_q6, g_invalidate_q6 },
1426    { DEFINE_VFP_S_IDX (26), g_contained_q6, g_invalidate_q6 },
1427    { DEFINE_VFP_S_IDX (27), g_contained_q6, g_invalidate_q6 },
1428    { DEFINE_VFP_S_IDX (28), g_contained_q7, g_invalidate_q7 },
1429    { DEFINE_VFP_S_IDX (29), g_contained_q7, g_invalidate_q7 },
1430    { DEFINE_VFP_S_IDX (30), g_contained_q7, g_invalidate_q7 },
1431    { DEFINE_VFP_S_IDX (31), g_contained_q7, g_invalidate_q7 },
1432
1433    { DEFINE_VFP_D_IDX (0),  g_contained_q0, g_invalidate_q0 },
1434    { DEFINE_VFP_D_IDX (1),  g_contained_q0, g_invalidate_q0 },
1435    { DEFINE_VFP_D_IDX (2),  g_contained_q1, g_invalidate_q1 },
1436    { DEFINE_VFP_D_IDX (3),  g_contained_q1, g_invalidate_q1 },
1437    { DEFINE_VFP_D_IDX (4),  g_contained_q2, g_invalidate_q2 },
1438    { DEFINE_VFP_D_IDX (5),  g_contained_q2, g_invalidate_q2 },
1439    { DEFINE_VFP_D_IDX (6),  g_contained_q3, g_invalidate_q3 },
1440    { DEFINE_VFP_D_IDX (7),  g_contained_q3, g_invalidate_q3 },
1441    { DEFINE_VFP_D_IDX (8),  g_contained_q4, g_invalidate_q4 },
1442    { DEFINE_VFP_D_IDX (9),  g_contained_q4, g_invalidate_q4 },
1443    { DEFINE_VFP_D_IDX (10), g_contained_q5, g_invalidate_q5 },
1444    { DEFINE_VFP_D_IDX (11), g_contained_q5, g_invalidate_q5 },
1445    { DEFINE_VFP_D_IDX (12), g_contained_q6, g_invalidate_q6 },
1446    { DEFINE_VFP_D_IDX (13), g_contained_q6, g_invalidate_q6 },
1447    { DEFINE_VFP_D_IDX (14), g_contained_q7, g_invalidate_q7 },
1448    { DEFINE_VFP_D_IDX (15), g_contained_q7, g_invalidate_q7 },
1449    { DEFINE_VFP_D_IDX (16), g_contained_q8, g_invalidate_q8 },
1450    { DEFINE_VFP_D_IDX (17), g_contained_q8, g_invalidate_q8 },
1451    { DEFINE_VFP_D_IDX (18), g_contained_q9, g_invalidate_q9 },
1452    { DEFINE_VFP_D_IDX (19), g_contained_q9, g_invalidate_q9 },
1453    { DEFINE_VFP_D_IDX (20), g_contained_q10, g_invalidate_q10 },
1454    { DEFINE_VFP_D_IDX (21), g_contained_q10, g_invalidate_q10 },
1455    { DEFINE_VFP_D_IDX (22), g_contained_q11, g_invalidate_q11 },
1456    { DEFINE_VFP_D_IDX (23), g_contained_q11, g_invalidate_q11 },
1457    { DEFINE_VFP_D_IDX (24), g_contained_q12, g_invalidate_q12 },
1458    { DEFINE_VFP_D_IDX (25), g_contained_q12, g_invalidate_q12 },
1459    { DEFINE_VFP_D_IDX (26), g_contained_q13, g_invalidate_q13 },
1460    { DEFINE_VFP_D_IDX (27), g_contained_q13, g_invalidate_q13 },
1461    { DEFINE_VFP_D_IDX (28), g_contained_q14, g_invalidate_q14 },
1462    { DEFINE_VFP_D_IDX (29), g_contained_q14, g_invalidate_q14 },
1463    { DEFINE_VFP_D_IDX (30), g_contained_q15, g_invalidate_q15 },
1464    { DEFINE_VFP_D_IDX (31), g_contained_q15, g_invalidate_q15 },
1465
1466    { DEFINE_VFP_Q_IDX (0),  NULL,            g_invalidate_q0 },
1467    { DEFINE_VFP_Q_IDX (1),  NULL,            g_invalidate_q1 },
1468    { DEFINE_VFP_Q_IDX (2),  NULL,            g_invalidate_q2 },
1469    { DEFINE_VFP_Q_IDX (3),  NULL,            g_invalidate_q3 },
1470    { DEFINE_VFP_Q_IDX (4),  NULL,            g_invalidate_q4 },
1471    { DEFINE_VFP_Q_IDX (5),  NULL,            g_invalidate_q5 },
1472    { DEFINE_VFP_Q_IDX (6),  NULL,            g_invalidate_q6 },
1473    { DEFINE_VFP_Q_IDX (7),  NULL,            g_invalidate_q7 },
1474    { DEFINE_VFP_Q_IDX (8),  NULL,            g_invalidate_q8 },
1475    { DEFINE_VFP_Q_IDX (9),  NULL,            g_invalidate_q9 },
1476    { DEFINE_VFP_Q_IDX (10),  NULL,           g_invalidate_q10 },
1477    { DEFINE_VFP_Q_IDX (11),  NULL,           g_invalidate_q11 },
1478    { DEFINE_VFP_Q_IDX (12),  NULL,           g_invalidate_q12 },
1479    { DEFINE_VFP_Q_IDX (13),  NULL,           g_invalidate_q13 },
1480    { DEFINE_VFP_Q_IDX (14),  NULL,           g_invalidate_q14 },
1481    { DEFINE_VFP_Q_IDX (15),  NULL,           g_invalidate_q15 },
1482
1483    { e_regSetVFP, vfp_fpscr, "fpscr", NULL, Uint, Hex, 4, VFP_OFFSET_NAME(fpscr), INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, NULL, NULL }
1484};
1485
1486// Exception registers
1487
1488const DNBRegisterInfo
1489DNBArchMachARM::g_exc_registers[] =
1490{
1491  { e_regSetVFP, exc_exception  , "exception"   , NULL, Uint, Hex, 4, EXC_OFFSET(exception) , INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM },
1492  { e_regSetVFP, exc_fsr        , "fsr"         , NULL, Uint, Hex, 4, EXC_OFFSET(fsr)       , INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM },
1493  { e_regSetVFP, exc_far        , "far"         , NULL, Uint, Hex, 4, EXC_OFFSET(far)       , INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM }
1494};
1495
1496// Number of registers in each register set
1497const size_t DNBArchMachARM::k_num_gpr_registers = sizeof(g_gpr_registers)/sizeof(DNBRegisterInfo);
1498const size_t DNBArchMachARM::k_num_vfp_registers = sizeof(g_vfp_registers)/sizeof(DNBRegisterInfo);
1499const size_t DNBArchMachARM::k_num_exc_registers = sizeof(g_exc_registers)/sizeof(DNBRegisterInfo);
1500const size_t DNBArchMachARM::k_num_all_registers = k_num_gpr_registers + k_num_vfp_registers + k_num_exc_registers;
1501
1502//----------------------------------------------------------------------
1503// Register set definitions. The first definitions at register set index
1504// of zero is for all registers, followed by other registers sets. The
1505// register information for the all register set need not be filled in.
1506//----------------------------------------------------------------------
1507const DNBRegisterSetInfo
1508DNBArchMachARM::g_reg_sets[] =
1509{
1510    { "ARM Registers",              NULL,               k_num_all_registers     },
1511    { "General Purpose Registers",  g_gpr_registers,    k_num_gpr_registers     },
1512    { "Floating Point Registers",   g_vfp_registers,    k_num_vfp_registers     },
1513    { "Exception State Registers",  g_exc_registers,    k_num_exc_registers     }
1514};
1515// Total number of register sets for this architecture
1516const size_t DNBArchMachARM::k_num_register_sets = sizeof(g_reg_sets)/sizeof(DNBRegisterSetInfo);
1517
1518
1519const DNBRegisterSetInfo *
1520DNBArchMachARM::GetRegisterSetInfo(nub_size_t *num_reg_sets)
1521{
1522    *num_reg_sets = k_num_register_sets;
1523    return g_reg_sets;
1524}
1525
1526bool
1527DNBArchMachARM::GetRegisterValue(int set, int reg, DNBRegisterValue *value)
1528{
1529    if (set == REGISTER_SET_GENERIC)
1530    {
1531        switch (reg)
1532        {
1533        case GENERIC_REGNUM_PC:     // Program Counter
1534            set = e_regSetGPR;
1535            reg = gpr_pc;
1536            break;
1537
1538        case GENERIC_REGNUM_SP:     // Stack Pointer
1539            set = e_regSetGPR;
1540            reg = gpr_sp;
1541            break;
1542
1543        case GENERIC_REGNUM_FP:     // Frame Pointer
1544            set = e_regSetGPR;
1545            reg = gpr_r7;   // is this the right reg?
1546            break;
1547
1548        case GENERIC_REGNUM_RA:     // Return Address
1549            set = e_regSetGPR;
1550            reg = gpr_lr;
1551            break;
1552
1553        case GENERIC_REGNUM_FLAGS:  // Processor flags register
1554            set = e_regSetGPR;
1555            reg = gpr_cpsr;
1556            break;
1557
1558        default:
1559            return false;
1560        }
1561    }
1562
1563    if (GetRegisterState(set, false) != KERN_SUCCESS)
1564        return false;
1565
1566    const DNBRegisterInfo *regInfo = m_thread->GetRegisterInfo(set, reg);
1567    if (regInfo)
1568    {
1569        value->info = *regInfo;
1570        switch (set)
1571        {
1572        case e_regSetGPR:
1573            if (reg < k_num_gpr_registers)
1574            {
1575                value->value.uint32 = m_state.context.gpr.__r[reg];
1576                return true;
1577            }
1578            break;
1579
1580        case e_regSetVFP:
1581            // "reg" is an index into the floating point register set at this point.
1582            // We need to translate it up so entry 0 in the fp reg set is the same as vfp_s0
1583            // in the enumerated values for case statement below.
1584            reg += vfp_s0;
1585            if (reg >= vfp_s0 && reg <= vfp_s31)
1586            {
1587                value->value.uint32 = m_state.context.vfp.__r[reg - vfp_s0];
1588                return true;
1589            }
1590            else if (reg >= vfp_d0 && reg <= vfp_d31)
1591            {
1592                uint32_t d_reg_idx = reg - vfp_d0;
1593                uint32_t s_reg_idx = d_reg_idx * 2;
1594                value->value.v_sint32[0] = m_state.context.vfp.__r[s_reg_idx + 0];
1595                value->value.v_sint32[1] = m_state.context.vfp.__r[s_reg_idx + 1];
1596                return true;
1597            }
1598            else if (reg >= vfp_q0 && reg <= vfp_q15)
1599            {
1600                uint32_t s_reg_idx = (reg - vfp_q0) * 4;
1601                memcpy (&value->value.v_uint8, (uint8_t *) &m_state.context.vfp.__r[s_reg_idx], 16);
1602                return true;
1603            }
1604
1605            else if (reg == vfp_fpscr)
1606            {
1607                value->value.uint32 = m_state.context.vfp.__fpscr;
1608                return true;
1609            }
1610            break;
1611
1612        case e_regSetEXC:
1613            if (reg < k_num_exc_registers)
1614            {
1615                value->value.uint32 = (&m_state.context.exc.__exception)[reg];
1616                return true;
1617            }
1618            break;
1619        }
1620    }
1621    return false;
1622}
1623
1624bool
1625DNBArchMachARM::SetRegisterValue(int set, int reg, const DNBRegisterValue *value)
1626{
1627    if (set == REGISTER_SET_GENERIC)
1628    {
1629        switch (reg)
1630        {
1631        case GENERIC_REGNUM_PC:     // Program Counter
1632            set = e_regSetGPR;
1633            reg = gpr_pc;
1634            break;
1635
1636        case GENERIC_REGNUM_SP:     // Stack Pointer
1637            set = e_regSetGPR;
1638            reg = gpr_sp;
1639            break;
1640
1641        case GENERIC_REGNUM_FP:     // Frame Pointer
1642            set = e_regSetGPR;
1643            reg = gpr_r7;
1644            break;
1645
1646        case GENERIC_REGNUM_RA:     // Return Address
1647            set = e_regSetGPR;
1648            reg = gpr_lr;
1649            break;
1650
1651        case GENERIC_REGNUM_FLAGS:  // Processor flags register
1652            set = e_regSetGPR;
1653            reg = gpr_cpsr;
1654            break;
1655
1656        default:
1657            return false;
1658        }
1659    }
1660
1661    if (GetRegisterState(set, false) != KERN_SUCCESS)
1662        return false;
1663
1664    bool success = false;
1665    const DNBRegisterInfo *regInfo = m_thread->GetRegisterInfo(set, reg);
1666    if (regInfo)
1667    {
1668        switch (set)
1669        {
1670        case e_regSetGPR:
1671            if (reg < k_num_gpr_registers)
1672            {
1673                m_state.context.gpr.__r[reg] = value->value.uint32;
1674                success = true;
1675            }
1676            break;
1677
1678        case e_regSetVFP:
1679            // "reg" is an index into the floating point register set at this point.
1680            // We need to translate it up so entry 0 in the fp reg set is the same as vfp_s0
1681            // in the enumerated values for case statement below.
1682            reg += vfp_s0;
1683
1684            if (reg >= vfp_s0 && reg <= vfp_s31)
1685            {
1686                m_state.context.vfp.__r[reg - vfp_s0] = value->value.uint32;
1687                success = true;
1688            }
1689            else if (reg >= vfp_d0 && reg <= vfp_d31)
1690            {
1691                uint32_t d_reg_idx = reg - vfp_d0;
1692                uint32_t s_reg_idx = d_reg_idx * 2;
1693                m_state.context.vfp.__r[s_reg_idx + 0] = value->value.v_sint32[0];
1694                m_state.context.vfp.__r[s_reg_idx + 1] = value->value.v_sint32[1];
1695                success = true;
1696            }
1697            else if (reg >= vfp_q0 && reg <= vfp_q15)
1698            {
1699                uint32_t s_reg_idx = (reg - vfp_q0) * 4;
1700                memcpy ((uint8_t *) &m_state.context.vfp.__r[s_reg_idx], &value->value.v_uint8, 16);
1701                return true;
1702            }
1703            else if (reg == vfp_fpscr)
1704            {
1705                m_state.context.vfp.__fpscr = value->value.uint32;
1706                success = true;
1707            }
1708            break;
1709
1710        case e_regSetEXC:
1711            if (reg < k_num_exc_registers)
1712            {
1713                (&m_state.context.exc.__exception)[reg] = value->value.uint32;
1714                success = true;
1715            }
1716            break;
1717        }
1718
1719    }
1720    if (success)
1721        return SetRegisterState(set) == KERN_SUCCESS;
1722    return false;
1723}
1724
1725kern_return_t
1726DNBArchMachARM::GetRegisterState(int set, bool force)
1727{
1728    switch (set)
1729    {
1730    case e_regSetALL:   return GetGPRState(force) |
1731                               GetVFPState(force) |
1732                               GetEXCState(force) |
1733                               GetDBGState(force);
1734    case e_regSetGPR:   return GetGPRState(force);
1735    case e_regSetVFP:   return GetVFPState(force);
1736    case e_regSetEXC:   return GetEXCState(force);
1737    case e_regSetDBG:   return GetDBGState(force);
1738    default: break;
1739    }
1740    return KERN_INVALID_ARGUMENT;
1741}
1742
1743kern_return_t
1744DNBArchMachARM::SetRegisterState(int set)
1745{
1746    // Make sure we have a valid context to set.
1747    kern_return_t err = GetRegisterState(set, false);
1748    if (err != KERN_SUCCESS)
1749        return err;
1750
1751    switch (set)
1752    {
1753    case e_regSetALL:   return SetGPRState() |
1754                               SetVFPState() |
1755                               SetEXCState() |
1756                               SetDBGState();
1757    case e_regSetGPR:   return SetGPRState();
1758    case e_regSetVFP:   return SetVFPState();
1759    case e_regSetEXC:   return SetEXCState();
1760    case e_regSetDBG:   return SetDBGState();
1761    default: break;
1762    }
1763    return KERN_INVALID_ARGUMENT;
1764}
1765
1766bool
1767DNBArchMachARM::RegisterSetStateIsValid (int set) const
1768{
1769    return m_state.RegsAreValid(set);
1770}
1771
1772
1773nub_size_t
1774DNBArchMachARM::GetRegisterContext (void *buf, nub_size_t buf_len)
1775{
1776    nub_size_t size = sizeof (m_state.context);
1777
1778    if (buf && buf_len)
1779    {
1780        if (size > buf_len)
1781            size = buf_len;
1782
1783        bool force = false;
1784        if (GetGPRState(force) | GetVFPState(force) | GetEXCState(force))
1785            return 0;
1786        ::memcpy (buf, &m_state.context, size);
1787    }
1788    DNBLogThreadedIf (LOG_THREAD, "DNBArchMachARM::GetRegisterContext (buf = %p, len = %llu) => %llu", buf, (uint64_t)buf_len, (uint64_t)size);
1789    // Return the size of the register context even if NULL was passed in
1790    return size;
1791}
1792
1793nub_size_t
1794DNBArchMachARM::SetRegisterContext (const void *buf, nub_size_t buf_len)
1795{
1796    nub_size_t size = sizeof (m_state.context);
1797    if (buf == NULL || buf_len == 0)
1798        size = 0;
1799
1800    if (size)
1801    {
1802        if (size > buf_len)
1803            size = buf_len;
1804
1805        ::memcpy (&m_state.context, buf, size);
1806        SetGPRState();
1807        SetVFPState();
1808        SetEXCState();
1809    }
1810    DNBLogThreadedIf (LOG_THREAD, "DNBArchMachARM::SetRegisterContext (buf = %p, len = %llu) => %llu", buf, (uint64_t)buf_len, (uint64_t)size);
1811    return size;
1812}
1813
1814
1815#endif    // #if defined (__arm__)
1816
1817