DNBArchImpl.cpp revision 9a725f0e1d0589254d5e96fa3516d56a30799950
1//===-- DNBArchImpl.cpp -----------------------------------------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  Created by Greg Clayton on 6/25/07.
11//
12//===----------------------------------------------------------------------===//
13
14#if defined (__arm__)
15
16#include "MacOSX/arm/DNBArchImpl.h"
17#include "MacOSX/MachProcess.h"
18#include "MacOSX/MachThread.h"
19#include "DNBBreakpoint.h"
20#include "DNBLog.h"
21#include "DNBRegisterInfo.h"
22#include "DNB.h"
23#include "ARM_GCC_Registers.h"
24#include "ARM_DWARF_Registers.h"
25
26#include <sys/sysctl.h>
27
28// BCR address match type
29#define BCR_M_IMVA_MATCH        ((uint32_t)(0u << 21))
30#define BCR_M_CONTEXT_ID_MATCH  ((uint32_t)(1u << 21))
31#define BCR_M_IMVA_MISMATCH     ((uint32_t)(2u << 21))
32#define BCR_M_RESERVED          ((uint32_t)(3u << 21))
33
34// Link a BVR/BCR or WVR/WCR pair to another
35#define E_ENABLE_LINKING        ((uint32_t)(1u << 20))
36
37// Byte Address Select
38#define BAS_IMVA_PLUS_0         ((uint32_t)(1u << 5))
39#define BAS_IMVA_PLUS_1         ((uint32_t)(1u << 6))
40#define BAS_IMVA_PLUS_2         ((uint32_t)(1u << 7))
41#define BAS_IMVA_PLUS_3         ((uint32_t)(1u << 8))
42#define BAS_IMVA_0_1            ((uint32_t)(3u << 5))
43#define BAS_IMVA_2_3            ((uint32_t)(3u << 7))
44#define BAS_IMVA_ALL            ((uint32_t)(0xfu << 5))
45
46// Break only in priveleged or user mode
47#define S_RSVD                  ((uint32_t)(0u << 1))
48#define S_PRIV                  ((uint32_t)(1u << 1))
49#define S_USER                  ((uint32_t)(2u << 1))
50#define S_PRIV_USER             ((S_PRIV) | (S_USER))
51
52#define BCR_ENABLE              ((uint32_t)(1u))
53#define WCR_ENABLE              ((uint32_t)(1u))
54
55// Watchpoint load/store
56#define WCR_LOAD                ((uint32_t)(1u << 3))
57#define WCR_STORE               ((uint32_t)(1u << 4))
58
59// Definitions for the Debug Status and Control Register fields:
60// [5:2] => Method of debug entry
61//#define WATCHPOINT_OCCURRED     ((uint32_t)(2u))
62// I'm seeing this, instead.
63#define WATCHPOINT_OCCURRED     ((uint32_t)(10u))
64
65//#define DNB_ARCH_MACH_ARM_DEBUG_SW_STEP 1
66
67static const uint8_t g_arm_breakpoint_opcode[] = { 0xFE, 0xDE, 0xFF, 0xE7 };
68static const uint8_t g_thumb_breakpooint_opcode[] = { 0xFE, 0xDE };
69
70// ARM constants used during decoding
71#define REG_RD          0
72#define LDM_REGLIST     1
73#define PC_REG          15
74#define PC_REGLIST_BIT  0x8000
75
76// ARM conditions
77#define COND_EQ     0x0
78#define COND_NE     0x1
79#define COND_CS     0x2
80#define COND_HS     0x2
81#define COND_CC     0x3
82#define COND_LO     0x3
83#define COND_MI     0x4
84#define COND_PL     0x5
85#define COND_VS     0x6
86#define COND_VC     0x7
87#define COND_HI     0x8
88#define COND_LS     0x9
89#define COND_GE     0xA
90#define COND_LT     0xB
91#define COND_GT     0xC
92#define COND_LE     0xD
93#define COND_AL     0xE
94#define COND_UNCOND 0xF
95
96#define MASK_CPSR_T (1u << 5)
97#define MASK_CPSR_J (1u << 24)
98
99#define MNEMONIC_STRING_SIZE 32
100#define OPERAND_STRING_SIZE 128
101
102
103void
104DNBArchMachARM::Initialize()
105{
106    DNBArchPluginInfo arch_plugin_info =
107    {
108        CPU_TYPE_ARM,
109        DNBArchMachARM::Create,
110        DNBArchMachARM::GetRegisterSetInfo,
111        DNBArchMachARM::SoftwareBreakpointOpcode
112    };
113
114    // Register this arch plug-in with the main protocol class
115    DNBArchProtocol::RegisterArchPlugin (arch_plugin_info);
116}
117
118
119DNBArchProtocol *
120DNBArchMachARM::Create (MachThread *thread)
121{
122    DNBArchMachARM *obj = new DNBArchMachARM (thread);
123
124    // When new thread comes along, it tries to inherit from the global debug state, if it is valid.
125    if (Valid_Global_Debug_State)
126    {
127        obj->m_state.dbg = Global_Debug_State;
128        kern_return_t kret = obj->SetDBGState();
129        DNBLogThreadedIf(LOG_WATCHPOINTS,
130                         "DNBArchMachARM::Create() Inherit and SetDBGState() => 0x%8.8x.", kret);
131    }
132    return obj;
133}
134
135const uint8_t * const
136DNBArchMachARM::SoftwareBreakpointOpcode (nub_size_t byte_size)
137{
138    switch (byte_size)
139    {
140    case 2: return g_thumb_breakpooint_opcode;
141    case 4: return g_arm_breakpoint_opcode;
142    }
143    return NULL;
144}
145
146uint32_t
147DNBArchMachARM::GetCPUType()
148{
149    return CPU_TYPE_ARM;
150}
151
152uint64_t
153DNBArchMachARM::GetPC(uint64_t failValue)
154{
155    // Get program counter
156    if (GetGPRState(false) == KERN_SUCCESS)
157        return m_state.context.gpr.__pc;
158    return failValue;
159}
160
161kern_return_t
162DNBArchMachARM::SetPC(uint64_t value)
163{
164    // Get program counter
165    kern_return_t err = GetGPRState(false);
166    if (err == KERN_SUCCESS)
167    {
168        m_state.context.gpr.__pc = value;
169        err = SetGPRState();
170    }
171    return err == KERN_SUCCESS;
172}
173
174uint64_t
175DNBArchMachARM::GetSP(uint64_t failValue)
176{
177    // Get stack pointer
178    if (GetGPRState(false) == KERN_SUCCESS)
179        return m_state.context.gpr.__sp;
180    return failValue;
181}
182
183kern_return_t
184DNBArchMachARM::GetGPRState(bool force)
185{
186    int set = e_regSetGPR;
187    // Check if we have valid cached registers
188    if (!force && m_state.GetError(set, Read) == KERN_SUCCESS)
189        return KERN_SUCCESS;
190
191    // Read the registers from our thread
192    mach_msg_type_number_t count = ARM_THREAD_STATE_COUNT;
193    kern_return_t kret = ::thread_get_state(m_thread->ThreadID(), ARM_THREAD_STATE, (thread_state_t)&m_state.context.gpr, &count);
194    uint32_t *r = &m_state.context.gpr.__r[0];
195    DNBLogThreadedIf(LOG_THREAD, "thread_get_state(0x%4.4x, %u, &gpr, %u) => 0x%8.8x (count = %u) regs r0=%8.8x r1=%8.8x r2=%8.8x r3=%8.8x r4=%8.8x r5=%8.8x r6=%8.8x r7=%8.8x r8=%8.8x r9=%8.8x r10=%8.8x r11=%8.8x s12=%8.8x sp=%8.8x lr=%8.8x pc=%8.8x cpsr=%8.8x",
196                     m_thread->ThreadID(),
197                     ARM_THREAD_STATE,
198                     ARM_THREAD_STATE_COUNT,
199                     kret,
200                     count,
201                     r[0],
202                     r[1],
203                     r[2],
204                     r[3],
205                     r[4],
206                     r[5],
207                     r[6],
208                     r[7],
209                     r[8],
210                     r[9],
211                     r[10],
212                     r[11],
213                     r[12],
214                     r[13],
215                     r[14],
216                     r[15],
217                     r[16]);
218    m_state.SetError(set, Read, kret);
219    return kret;
220}
221
222kern_return_t
223DNBArchMachARM::GetVFPState(bool force)
224{
225    int set = e_regSetVFP;
226    // Check if we have valid cached registers
227    if (!force && m_state.GetError(set, Read) == KERN_SUCCESS)
228        return KERN_SUCCESS;
229
230    // Read the registers from our thread
231    mach_msg_type_number_t count = ARM_VFP_STATE_COUNT;
232    kern_return_t kret = ::thread_get_state(m_thread->ThreadID(), ARM_VFP_STATE, (thread_state_t)&m_state.context.vfp, &count);
233    if (DNBLogEnabledForAny (LOG_THREAD))
234    {
235        uint32_t *r = &m_state.context.vfp.__r[0];
236        DNBLogThreaded ("thread_get_state(0x%4.4x, %u, &gpr, %u) => 0x%8.8x (count => %u)",
237                        m_thread->ThreadID(),
238                        ARM_THREAD_STATE,
239                        ARM_THREAD_STATE_COUNT,
240                        kret,
241                        count);
242        DNBLogThreaded("   s0=%8.8x  s1=%8.8x  s2=%8.8x  s3=%8.8x  s4=%8.8x  s5=%8.8x  s6=%8.8x  s7=%8.8x",r[ 0],r[ 1],r[ 2],r[ 3],r[ 4],r[ 5],r[ 6],r[ 7]);
243        DNBLogThreaded("   s8=%8.8x  s9=%8.8x s10=%8.8x s11=%8.8x s12=%8.8x s13=%8.8x s14=%8.8x s15=%8.8x",r[ 8],r[ 9],r[10],r[11],r[12],r[13],r[14],r[15]);
244        DNBLogThreaded("  s16=%8.8x s17=%8.8x s18=%8.8x s19=%8.8x s20=%8.8x s21=%8.8x s22=%8.8x s23=%8.8x",r[16],r[17],r[18],r[19],r[20],r[21],r[22],r[23]);
245        DNBLogThreaded("  s24=%8.8x s25=%8.8x s26=%8.8x s27=%8.8x s28=%8.8x s29=%8.8x s30=%8.8x s31=%8.8x",r[24],r[25],r[26],r[27],r[28],r[29],r[30],r[31]);
246        DNBLogThreaded("  s32=%8.8x s33=%8.8x s34=%8.8x s35=%8.8x s36=%8.8x s37=%8.8x s38=%8.8x s39=%8.8x",r[32],r[33],r[34],r[35],r[36],r[37],r[38],r[39]);
247        DNBLogThreaded("  s40=%8.8x s41=%8.8x s42=%8.8x s43=%8.8x s44=%8.8x s45=%8.8x s46=%8.8x s47=%8.8x",r[40],r[41],r[42],r[43],r[44],r[45],r[46],r[47]);
248        DNBLogThreaded("  s48=%8.8x s49=%8.8x s50=%8.8x s51=%8.8x s52=%8.8x s53=%8.8x s54=%8.8x s55=%8.8x",r[48],r[49],r[50],r[51],r[52],r[53],r[54],r[55]);
249        DNBLogThreaded("  s56=%8.8x s57=%8.8x s58=%8.8x s59=%8.8x s60=%8.8x s61=%8.8x s62=%8.8x s63=%8.8x fpscr=%8.8x",r[56],r[57],r[58],r[59],r[60],r[61],r[62],r[63],r[64]);
250    }
251    m_state.SetError(set, Read, kret);
252    return kret;
253}
254
255kern_return_t
256DNBArchMachARM::GetEXCState(bool force)
257{
258    int set = e_regSetEXC;
259    // Check if we have valid cached registers
260    if (!force && m_state.GetError(set, Read) == KERN_SUCCESS)
261        return KERN_SUCCESS;
262
263    // Read the registers from our thread
264    mach_msg_type_number_t count = ARM_EXCEPTION_STATE_COUNT;
265    kern_return_t kret = ::thread_get_state(m_thread->ThreadID(), ARM_EXCEPTION_STATE, (thread_state_t)&m_state.context.exc, &count);
266    m_state.SetError(set, Read, kret);
267    return kret;
268}
269
270static void
271DumpDBGState(const DNBArchMachARM::DBG& dbg)
272{
273    uint32_t i = 0;
274    for (i=0; i<16; i++) {
275        DNBLogThreadedIf(LOG_STEP, "BVR%-2u/BCR%-2u = { 0x%8.8x, 0x%8.8x } WVR%-2u/WCR%-2u = { 0x%8.8x, 0x%8.8x }",
276            i, i, dbg.__bvr[i], dbg.__bcr[i],
277            i, i, dbg.__wvr[i], dbg.__wcr[i]);
278    }
279}
280
281kern_return_t
282DNBArchMachARM::GetDBGState(bool force)
283{
284    int set = e_regSetDBG;
285
286    // Check if we have valid cached registers
287    if (!force && m_state.GetError(set, Read) == KERN_SUCCESS)
288        return KERN_SUCCESS;
289
290    // Read the registers from our thread
291    mach_msg_type_number_t count = ARM_DEBUG_STATE_COUNT;
292    kern_return_t kret = ::thread_get_state(m_thread->ThreadID(), ARM_DEBUG_STATE, (thread_state_t)&m_state.dbg, &count);
293    m_state.SetError(set, Read, kret);
294    return kret;
295}
296
297kern_return_t
298DNBArchMachARM::SetGPRState()
299{
300    int set = e_regSetGPR;
301    kern_return_t kret = ::thread_set_state(m_thread->ThreadID(), ARM_THREAD_STATE, (thread_state_t)&m_state.context.gpr, ARM_THREAD_STATE_COUNT);
302    m_state.SetError(set, Write, kret);         // Set the current write error for this register set
303    m_state.InvalidateRegisterSetState(set);    // Invalidate the current register state in case registers are read back differently
304    return kret;                                // Return the error code
305}
306
307kern_return_t
308DNBArchMachARM::SetVFPState()
309{
310    int set = e_regSetVFP;
311    kern_return_t kret = ::thread_set_state (m_thread->ThreadID(), ARM_VFP_STATE, (thread_state_t)&m_state.context.vfp, ARM_VFP_STATE_COUNT);
312    m_state.SetError(set, Write, kret);         // Set the current write error for this register set
313    m_state.InvalidateRegisterSetState(set);    // Invalidate the current register state in case registers are read back differently
314    return kret;                                // Return the error code
315}
316
317kern_return_t
318DNBArchMachARM::SetEXCState()
319{
320    int set = e_regSetEXC;
321    kern_return_t kret = ::thread_set_state (m_thread->ThreadID(), ARM_EXCEPTION_STATE, (thread_state_t)&m_state.context.exc, ARM_EXCEPTION_STATE_COUNT);
322    m_state.SetError(set, Write, kret);         // Set the current write error for this register set
323    m_state.InvalidateRegisterSetState(set);    // Invalidate the current register state in case registers are read back differently
324    return kret;                                // Return the error code
325}
326
327kern_return_t
328DNBArchMachARM::SetDBGState()
329{
330    int set = e_regSetDBG;
331    kern_return_t kret = ::thread_set_state (m_thread->ThreadID(), ARM_DEBUG_STATE, (thread_state_t)&m_state.dbg, ARM_DEBUG_STATE_COUNT);
332    m_state.SetError(set, Write, kret);         // Set the current write error for this register set
333    m_state.InvalidateRegisterSetState(set);    // Invalidate the current register state in case registers are read back differently
334    return kret;                                // Return the error code
335}
336
337void
338DNBArchMachARM::ThreadWillResume()
339{
340    // Do we need to step this thread? If so, let the mach thread tell us so.
341    if (m_thread->IsStepping())
342    {
343        bool step_handled = false;
344        // This is the primary thread, let the arch do anything it needs
345        if (NumSupportedHardwareBreakpoints() > 0)
346        {
347#if defined (DNB_ARCH_MACH_ARM_DEBUG_SW_STEP)
348            bool half_step = m_hw_single_chained_step_addr != INVALID_NUB_ADDRESS;
349#endif
350            step_handled = EnableHardwareSingleStep(true) == KERN_SUCCESS;
351#if defined (DNB_ARCH_MACH_ARM_DEBUG_SW_STEP)
352            if (!half_step)
353                step_handled = false;
354#endif
355        }
356
357        if (!step_handled)
358        {
359            SetSingleStepSoftwareBreakpoints();
360        }
361    }
362
363    // Disable the triggered watchpoint temporarily before we resume.
364    // Plus, we try to enable hardware single step to execute past the instruction which triggered our watchpoint.
365    if (m_watchpoint_did_occur)
366    {
367        if (m_watchpoint_hw_index >= 0)
368        {
369            kern_return_t kret = GetDBGState(false);
370            if (kret == KERN_SUCCESS && !IsWatchpointEnabled(m_state.dbg, m_watchpoint_hw_index)) {
371                // The watchpoint might have been disabled by the user.  We don't need to do anything at all
372                // to enable hardware single stepping.
373                m_watchpoint_did_occur = false;
374                m_watchpoint_hw_index = -1;
375                return;
376            }
377
378            DisableHardwareWatchpoint0(m_watchpoint_hw_index, true);
379            DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM::ThreadWillResume() DisableHardwareWatchpoint(%d) called",
380                             m_watchpoint_hw_index);
381
382            // Enable hardware single step to move past the watchpoint-triggering instruction.
383            m_watchpoint_resume_single_step_enabled = (EnableHardwareSingleStep(true) == KERN_SUCCESS);
384
385            // If we are not able to enable single step to move past the watchpoint-triggering instruction,
386            // at least we should reset the two watchpoint member variables so that the next time around
387            // this callback function is invoked, the enclosing logical branch is skipped.
388            if (!m_watchpoint_resume_single_step_enabled) {
389                // Reset the two watchpoint member variables.
390                m_watchpoint_did_occur = false;
391                m_watchpoint_hw_index = -1;
392                DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM::ThreadWillResume() failed to enable single step");
393            }
394            else
395                DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM::ThreadWillResume() succeeded to enable single step");
396        }
397    }
398}
399
400bool
401DNBArchMachARM::ThreadDidStop()
402{
403    bool success = true;
404
405    m_state.InvalidateRegisterSetState (e_regSetALL);
406
407    if (m_watchpoint_resume_single_step_enabled)
408    {
409        // Great!  We now disable the hardware single step as well as re-enable the hardware watchpoint.
410        // See also ThreadWillResume().
411        if (EnableHardwareSingleStep(false) == KERN_SUCCESS)
412        {
413            if (m_watchpoint_did_occur && m_watchpoint_hw_index >= 0)
414            {
415                EnableHardwareWatchpoint0(m_watchpoint_hw_index, true);
416                m_watchpoint_resume_single_step_enabled = false;
417                m_watchpoint_did_occur = false;
418                m_watchpoint_hw_index = -1;
419            }
420            else
421            {
422                DNBLogError("internal error detected: m_watchpoint_resume_step_enabled is true but (m_watchpoint_did_occur && m_watchpoint_hw_index >= 0) does not hold!");
423            }
424        }
425        else
426        {
427            DNBLogError("internal error detected: m_watchpoint_resume_step_enabled is true but unable to disable single step!");
428        }
429    }
430
431    // Are we stepping a single instruction?
432    if (GetGPRState(true) == KERN_SUCCESS)
433    {
434        // We are single stepping, was this the primary thread?
435        if (m_thread->IsStepping())
436        {
437#if defined (DNB_ARCH_MACH_ARM_DEBUG_SW_STEP)
438            success = EnableHardwareSingleStep(false) == KERN_SUCCESS;
439            // Hardware single step must work if we are going to test software
440            // single step functionality
441            assert(success);
442            if (m_hw_single_chained_step_addr == INVALID_NUB_ADDRESS && m_sw_single_step_next_pc != INVALID_NUB_ADDRESS)
443            {
444                uint32_t sw_step_next_pc = m_sw_single_step_next_pc & 0xFFFFFFFEu;
445                bool sw_step_next_pc_is_thumb = (m_sw_single_step_next_pc & 1) != 0;
446                bool actual_next_pc_is_thumb = (m_state.context.gpr.__cpsr & 0x20) != 0;
447                if (m_state.context.gpr.__pc != sw_step_next_pc)
448                {
449                    DNBLogError("curr pc = 0x%8.8x - calculated single step target PC was incorrect: 0x%8.8x != 0x%8.8x", m_state.context.gpr.__pc, sw_step_next_pc, m_state.context.gpr.__pc);
450                    exit(1);
451                }
452                if (actual_next_pc_is_thumb != sw_step_next_pc_is_thumb)
453                {
454                    DNBLogError("curr pc = 0x%8.8x - calculated single step calculated mode mismatch: sw single mode = %s != %s",
455                                m_state.context.gpr.__pc,
456                                actual_next_pc_is_thumb ? "Thumb" : "ARM",
457                                sw_step_next_pc_is_thumb ? "Thumb" : "ARM");
458                    exit(1);
459                }
460                m_sw_single_step_next_pc = INVALID_NUB_ADDRESS;
461            }
462#else
463            // Are we software single stepping?
464            if (NUB_BREAK_ID_IS_VALID(m_sw_single_step_break_id) || m_sw_single_step_itblock_break_count)
465            {
466                // Remove any software single stepping breakpoints that we have set
467
468                // Do we have a normal software single step breakpoint?
469                if (NUB_BREAK_ID_IS_VALID(m_sw_single_step_break_id))
470                {
471                    DNBLogThreadedIf(LOG_STEP, "%s: removing software single step breakpoint (breakID=%d)", __FUNCTION__, m_sw_single_step_break_id);
472                    success = m_thread->Process()->DisableBreakpoint(m_sw_single_step_break_id, true);
473                    m_sw_single_step_break_id = INVALID_NUB_BREAK_ID;
474                }
475
476                // Do we have any Thumb IT breakpoints?
477                if (m_sw_single_step_itblock_break_count > 0)
478                {
479                    // See if we hit one of our Thumb IT breakpoints?
480                    DNBBreakpoint *step_bp = m_thread->Process()->Breakpoints().FindByAddress(m_state.context.gpr.__pc);
481
482                    if (step_bp)
483                    {
484                        // We did hit our breakpoint, tell the breakpoint it was
485                        // hit so that it can run its callback routine and fixup
486                        // the PC.
487                        DNBLogThreadedIf(LOG_STEP, "%s: IT software single step breakpoint hit (breakID=%u)", __FUNCTION__, step_bp->GetID());
488                        step_bp->BreakpointHit(m_thread->Process()->ProcessID(), m_thread->ThreadID());
489                    }
490
491                    // Remove all Thumb IT breakpoints
492                    for (int i = 0; i < m_sw_single_step_itblock_break_count; i++)
493                    {
494                        if (NUB_BREAK_ID_IS_VALID(m_sw_single_step_itblock_break_id[i]))
495                        {
496                            DNBLogThreadedIf(LOG_STEP, "%s: removing IT software single step breakpoint (breakID=%d)", __FUNCTION__, m_sw_single_step_itblock_break_id[i]);
497                            success = m_thread->Process()->DisableBreakpoint(m_sw_single_step_itblock_break_id[i], true);
498                            m_sw_single_step_itblock_break_id[i] = INVALID_NUB_BREAK_ID;
499                        }
500                    }
501                    m_sw_single_step_itblock_break_count = 0;
502
503#if defined (USE_ARM_DISASSEMBLER_FRAMEWORK)
504
505                    // Decode instructions up to the current PC to ensure the internal decoder state is valid for the IT block
506                    // The decoder has to decode each instruction in the IT block even if it is not executed so that
507                    // the fields are correctly updated
508                    DecodeITBlockInstructions(m_state.context.gpr.__pc);
509#endif
510                }
511
512            }
513            else
514                success = EnableHardwareSingleStep(false) == KERN_SUCCESS;
515#endif
516        }
517        else
518        {
519            // The MachThread will automatically restore the suspend count
520            // in ThreadDidStop(), so we don't need to do anything here if
521            // we weren't the primary thread the last time
522        }
523    }
524    return success;
525}
526
527bool
528DNBArchMachARM::NotifyException(MachException::Data& exc)
529{
530    switch (exc.exc_type)
531    {
532        default:
533            break;
534        case EXC_BREAKPOINT:
535            if (exc.exc_data.size() == 2 && exc.exc_data[0] == EXC_ARM_DA_DEBUG)
536            {
537                // exc_code = EXC_ARM_DA_DEBUG
538                //
539                // Check whether this corresponds to a watchpoint hit event.
540                // If yes, retrieve the exc_sub_code as the data break address.
541                if (!HasWatchpointOccurred())
542                    break;
543
544                // The data break address is passed as exc_data[1].
545                nub_addr_t addr = exc.exc_data[1];
546                // Find the hardware index with the side effect of possibly massaging the
547                // addr to return the starting address as seen from the debugger side.
548                uint32_t hw_index = GetHardwareWatchpointHit(addr);
549                if (hw_index != INVALID_NUB_HW_INDEX)
550                {
551                    m_watchpoint_did_occur = true;
552                    m_watchpoint_hw_index = hw_index;
553                    exc.exc_data[1] = addr;
554                    // Piggyback the hw_index in the exc.data.
555                    exc.exc_data.push_back(hw_index);
556                }
557
558                return true;
559            }
560            break;
561    }
562    return false;
563}
564
565bool
566DNBArchMachARM::StepNotComplete ()
567{
568    if (m_hw_single_chained_step_addr != INVALID_NUB_ADDRESS)
569    {
570        kern_return_t kret = KERN_INVALID_ARGUMENT;
571        kret = GetGPRState(false);
572        if (kret == KERN_SUCCESS)
573        {
574            if (m_state.context.gpr.__pc == m_hw_single_chained_step_addr)
575            {
576                DNBLogThreadedIf(LOG_STEP, "Need to step some more at 0x%8.8x", m_hw_single_chained_step_addr);
577                return true;
578            }
579        }
580    }
581
582    m_hw_single_chained_step_addr = INVALID_NUB_ADDRESS;
583    return false;
584}
585
586
587#if defined (USE_ARM_DISASSEMBLER_FRAMEWORK)
588
589void
590DNBArchMachARM::DecodeITBlockInstructions(nub_addr_t curr_pc)
591
592{
593    uint16_t opcode16;
594    uint32_t opcode32;
595    nub_addr_t next_pc_in_itblock;
596    nub_addr_t pc_in_itblock = m_last_decode_pc;
597
598    DNBLogThreadedIf(LOG_STEP | LOG_VERBOSE, "%s: last_decode_pc=0x%8.8x", __FUNCTION__, m_last_decode_pc);
599
600    // Decode IT block instruction from the instruction following the m_last_decoded_instruction at
601    // PC m_last_decode_pc upto and including the instruction at curr_pc
602    if (m_thread->Process()->Task().ReadMemory(pc_in_itblock, 2, &opcode16) == 2)
603    {
604        opcode32 = opcode16;
605        pc_in_itblock += 2;
606        // Check for 32 bit thumb opcode and read the upper 16 bits if needed
607        if (((opcode32 & 0xE000) == 0xE000) && opcode32 & 0x1800)
608        {
609            // Adjust 'next_pc_in_itblock' to point to the default next Thumb instruction for
610            // a 32 bit Thumb opcode
611            // Read bits 31:16 of a 32 bit Thumb opcode
612            if (m_thread->Process()->Task().ReadMemory(pc_in_itblock, 2, &opcode16) == 2)
613            {
614                pc_in_itblock += 2;
615                // 32 bit thumb opcode
616                opcode32 = (opcode32 << 16) | opcode16;
617            }
618            else
619            {
620                DNBLogError("%s: Unable to read opcode bits 31:16 for a 32 bit thumb opcode at pc=0x%8.8llx", __FUNCTION__, (uint64_t)pc_in_itblock);
621            }
622        }
623    }
624    else
625    {
626        DNBLogError("%s: Error reading 16-bit Thumb instruction at pc=0x%8.8x", __FUNCTION__, pc_in_itblock);
627    }
628
629    DNBLogThreadedIf(LOG_STEP | LOG_VERBOSE, "%s: pc_in_itblock=0x%8.8x, curr_pc=0x%8.8x", __FUNCTION__, pc_in_itblock, curr_pc);
630
631    next_pc_in_itblock = pc_in_itblock;
632    while (next_pc_in_itblock <= curr_pc)
633    {
634        arm_error_t decodeError;
635
636        m_last_decode_pc = pc_in_itblock;
637        decodeError = DecodeInstructionUsingDisassembler(pc_in_itblock, m_state.context.gpr.__cpsr, &m_last_decode_arm, &m_last_decode_thumb, &next_pc_in_itblock);
638
639        pc_in_itblock = next_pc_in_itblock;
640        DNBLogThreadedIf(LOG_STEP | LOG_VERBOSE, "%s: next_pc_in_itblock=0x%8.8x", __FUNCTION__, next_pc_in_itblock);
641    }
642}
643#endif
644
645// Set the single step bit in the processor status register.
646kern_return_t
647DNBArchMachARM::EnableHardwareSingleStep (bool enable)
648{
649    DNBError err;
650    DNBLogThreadedIf(LOG_STEP, "%s( enable = %d )", __FUNCTION__, enable);
651
652    err = GetGPRState(false);
653
654    if (err.Fail())
655    {
656        err.LogThreaded("%s: failed to read the GPR registers", __FUNCTION__);
657        return err.Error();
658    }
659
660    err = GetDBGState(false);
661
662    if (err.Fail())
663    {
664        err.LogThreaded("%s: failed to read the DBG registers", __FUNCTION__);
665        return err.Error();
666    }
667
668    const uint32_t i = 0;
669    if (enable)
670    {
671        m_hw_single_chained_step_addr = INVALID_NUB_ADDRESS;
672
673        // Save our previous state
674        m_dbg_save = m_state.dbg;
675        // Set a breakpoint that will stop when the PC doesn't match the current one!
676        m_state.dbg.__bvr[i] = m_state.context.gpr.__pc & 0xFFFFFFFCu;      // Set the current PC as the breakpoint address
677        m_state.dbg.__bcr[i] = BCR_M_IMVA_MISMATCH |    // Stop on address mismatch
678                               S_USER |                 // Stop only in user mode
679                               BCR_ENABLE;              // Enable this breakpoint
680        if (m_state.context.gpr.__cpsr & 0x20)
681        {
682            // Thumb breakpoint
683            if (m_state.context.gpr.__pc & 2)
684                m_state.dbg.__bcr[i] |= BAS_IMVA_2_3;
685            else
686                m_state.dbg.__bcr[i] |= BAS_IMVA_0_1;
687
688            uint16_t opcode;
689            if (sizeof(opcode) == m_thread->Process()->Task().ReadMemory(m_state.context.gpr.__pc, sizeof(opcode), &opcode))
690            {
691                if (((opcode & 0xE000) == 0xE000) && opcode & 0x1800)
692                {
693                    // 32 bit thumb opcode...
694                    if (m_state.context.gpr.__pc & 2)
695                    {
696                        // We can't take care of a 32 bit thumb instruction single step
697                        // with just IVA mismatching. We will need to chain an extra
698                        // hardware single step in order to complete this single step...
699                        m_hw_single_chained_step_addr = m_state.context.gpr.__pc + 2;
700                    }
701                    else
702                    {
703                        // Extend the number of bits to ignore for the mismatch
704                        m_state.dbg.__bcr[i] |= BAS_IMVA_ALL;
705                    }
706                }
707            }
708        }
709        else
710        {
711            // ARM breakpoint
712            m_state.dbg.__bcr[i] |= BAS_IMVA_ALL; // Stop when any address bits change
713        }
714
715        DNBLogThreadedIf(LOG_STEP, "%s: BVR%u=0x%8.8x  BCR%u=0x%8.8x", __FUNCTION__, i, m_state.dbg.__bvr[i], i, m_state.dbg.__bcr[i]);
716
717        for (uint32_t j=i+1; j<16; ++j)
718        {
719            // Disable all others
720            m_state.dbg.__bvr[j] = 0;
721            m_state.dbg.__bcr[j] = 0;
722        }
723    }
724    else
725    {
726        // Just restore the state we had before we did single stepping
727        m_state.dbg = m_dbg_save;
728    }
729
730    return SetDBGState();
731}
732
733// return 1 if bit "BIT" is set in "value"
734static inline uint32_t bit(uint32_t value, uint32_t bit)
735{
736    return (value >> bit) & 1u;
737}
738
739// return the bitfield "value[msbit:lsbit]".
740static inline uint32_t bits(uint32_t value, uint32_t msbit, uint32_t lsbit)
741{
742    assert(msbit >= lsbit);
743    uint32_t shift_left = sizeof(value) * 8 - 1 - msbit;
744    value <<= shift_left;           // shift anything above the msbit off of the unsigned edge
745    value >>= (shift_left + lsbit); // shift it back again down to the lsbit (including undoing any shift from above)
746    return value;                   // return our result
747}
748
749bool
750DNBArchMachARM::ConditionPassed(uint8_t condition, uint32_t cpsr)
751{
752    uint32_t cpsr_n = bit(cpsr, 31); // Negative condition code flag
753    uint32_t cpsr_z = bit(cpsr, 30); // Zero condition code flag
754    uint32_t cpsr_c = bit(cpsr, 29); // Carry condition code flag
755    uint32_t cpsr_v = bit(cpsr, 28); // Overflow condition code flag
756
757    switch (condition) {
758        case COND_EQ: // (0x0)
759            if (cpsr_z == 1) return true;
760            break;
761        case COND_NE: // (0x1)
762            if (cpsr_z == 0) return true;
763            break;
764        case COND_CS: // (0x2)
765            if (cpsr_c == 1) return true;
766            break;
767        case COND_CC: // (0x3)
768            if (cpsr_c == 0) return true;
769            break;
770        case COND_MI: // (0x4)
771            if (cpsr_n == 1) return true;
772            break;
773        case COND_PL: // (0x5)
774            if (cpsr_n == 0) return true;
775            break;
776        case COND_VS: // (0x6)
777            if (cpsr_v == 1) return true;
778            break;
779        case COND_VC: // (0x7)
780            if (cpsr_v == 0) return true;
781            break;
782        case COND_HI: // (0x8)
783            if ((cpsr_c == 1) && (cpsr_z == 0)) return true;
784            break;
785        case COND_LS: // (0x9)
786            if ((cpsr_c == 0) || (cpsr_z == 1)) return true;
787            break;
788        case COND_GE: // (0xA)
789            if (cpsr_n == cpsr_v) return true;
790            break;
791        case COND_LT: // (0xB)
792            if (cpsr_n != cpsr_v) return true;
793            break;
794        case COND_GT: // (0xC)
795            if ((cpsr_z == 0) && (cpsr_n == cpsr_v)) return true;
796            break;
797        case COND_LE: // (0xD)
798            if ((cpsr_z == 1) || (cpsr_n != cpsr_v)) return true;
799            break;
800        default:
801            return true;
802            break;
803    }
804
805    return false;
806}
807
808#if defined (USE_ARM_DISASSEMBLER_FRAMEWORK)
809
810bool
811DNBArchMachARM::ComputeNextPC(nub_addr_t currentPC, arm_decoded_instruction_t decodedInstruction, bool currentPCIsThumb, nub_addr_t *targetPC)
812{
813    nub_addr_t myTargetPC, addressWherePCLives;
814    pid_t mypid;
815
816    uint32_t cpsr_c = bit(m_state.context.gpr.__cpsr, 29); // Carry condition code flag
817
818    uint32_t firstOperand=0, secondOperand=0, shiftAmount=0, secondOperandAfterShift=0, immediateValue=0;
819    uint32_t halfwords=0, baseAddress=0, immediateOffset=0, addressOffsetFromRegister=0, addressOffsetFromRegisterAfterShift;
820    uint32_t baseAddressIndex=INVALID_NUB_HW_INDEX;
821    uint32_t firstOperandIndex=INVALID_NUB_HW_INDEX;
822    uint32_t secondOperandIndex=INVALID_NUB_HW_INDEX;
823    uint32_t addressOffsetFromRegisterIndex=INVALID_NUB_HW_INDEX;
824    uint32_t shiftRegisterIndex=INVALID_NUB_HW_INDEX;
825    uint16_t registerList16, registerList16NoPC;
826    uint8_t registerList8;
827    uint32_t numRegistersToLoad=0;
828
829    DNBLogThreadedIf(LOG_STEP | LOG_VERBOSE, "%s: instruction->code=%d", __FUNCTION__, decodedInstruction.instruction->code);
830
831    // Get the following in this switch statement:
832    //   - firstOperand, secondOperand, immediateValue, shiftAmount: For arithmetic, logical and move instructions
833    //   - baseAddress, immediateOffset, shiftAmount: For LDR
834    //   - numRegistersToLoad: For LDM and POP instructions
835    switch (decodedInstruction.instruction->code)
836    {
837            // Arithmetic operations that can change the PC
838        case ARM_INST_ADC:
839        case ARM_INST_ADCS:
840        case ARM_INST_ADD:
841        case ARM_INST_ADDS:
842        case ARM_INST_AND:
843        case ARM_INST_ANDS:
844        case ARM_INST_ASR:
845        case ARM_INST_ASRS:
846        case ARM_INST_BIC:
847        case ARM_INST_BICS:
848        case ARM_INST_EOR:
849        case ARM_INST_EORS:
850        case ARM_INST_ORR:
851        case ARM_INST_ORRS:
852        case ARM_INST_RSB:
853        case ARM_INST_RSBS:
854        case ARM_INST_RSC:
855        case ARM_INST_RSCS:
856        case ARM_INST_SBC:
857        case ARM_INST_SBCS:
858        case ARM_INST_SUB:
859        case ARM_INST_SUBS:
860            switch (decodedInstruction.addressMode)
861            {
862                case ARM_ADDR_DATA_IMM:
863                    if (decodedInstruction.numOperands != 3)
864                    {
865                        DNBLogError("Expected 3 operands in decoded instruction structure. numOperands is %d!", decodedInstruction.numOperands);
866                        return false;
867                    }
868
869                    if (decodedInstruction.op[0].value != PC_REG)
870                    {
871                        DNBLogError("Destination register is not a PC! %s routine should be called on on instructions that modify the PC. Destination register is R%d!", __FUNCTION__, decodedInstruction.op[0].value);
872                        return false;
873                    }
874
875                    // Get firstOperand register value (at index=1)
876                    firstOperandIndex = decodedInstruction.op[1].value; // first operand register index
877                    firstOperand = m_state.context.gpr.__r[firstOperandIndex];
878
879                    // Get immediateValue (at index=2)
880                    immediateValue = decodedInstruction.op[2].value;
881
882                    break;
883
884                case ARM_ADDR_DATA_REG:
885                    if (decodedInstruction.numOperands != 3)
886                    {
887                        DNBLogError("Expected 3 operands in decoded instruction structure. numOperands is %d!", decodedInstruction.numOperands);
888                        return false;
889                    }
890
891                    if (decodedInstruction.op[0].value != PC_REG)
892                    {
893                        DNBLogError("Destination register is not a PC! %s routine should be called on on instructions that modify the PC. Destination register is R%d!", __FUNCTION__, decodedInstruction.op[0].value);
894                        return false;
895                    }
896
897                    // Get firstOperand register value (at index=1)
898                    firstOperandIndex = decodedInstruction.op[1].value; // first operand register index
899                    firstOperand = m_state.context.gpr.__r[firstOperandIndex];
900
901                    // Get secondOperand register value (at index=2)
902                    secondOperandIndex = decodedInstruction.op[2].value; // second operand register index
903                    secondOperand = m_state.context.gpr.__r[secondOperandIndex];
904
905                    break;
906
907                case ARM_ADDR_DATA_SCALED_IMM:
908                    if (decodedInstruction.numOperands != 4)
909                    {
910                        DNBLogError("Expected 4 operands in decoded instruction structure. numOperands is %d!", decodedInstruction.numOperands);
911                        return false;
912                    }
913
914                    if (decodedInstruction.op[0].value != PC_REG)
915                    {
916                        DNBLogError("Destination register is not a PC! %s routine should be called on on instructions that modify the PC. Destination register is R%d!", __FUNCTION__, decodedInstruction.op[0].value);
917                        return false;
918                    }
919
920                    // Get firstOperand register value (at index=1)
921                    firstOperandIndex = decodedInstruction.op[1].value; // first operand register index
922                    firstOperand = m_state.context.gpr.__r[firstOperandIndex];
923
924                    // Get secondOperand register value (at index=2)
925                    secondOperandIndex = decodedInstruction.op[2].value; // second operand register index
926                    secondOperand = m_state.context.gpr.__r[secondOperandIndex];
927
928                    // Get shiftAmount as immediate value (at index=3)
929                    shiftAmount = decodedInstruction.op[3].value;
930
931                    break;
932
933
934                case ARM_ADDR_DATA_SCALED_REG:
935                    if (decodedInstruction.numOperands != 4)
936                    {
937                        DNBLogError("Expected 4 operands in decoded instruction structure. numOperands is %d!", decodedInstruction.numOperands);
938                        return false;
939                    }
940
941                    if (decodedInstruction.op[0].value != PC_REG)
942                    {
943                        DNBLogError("Destination register is not a PC! %s routine should be called on on instructions that modify the PC. Destination register is R%d!", __FUNCTION__, decodedInstruction.op[0].value);
944                        return false;
945                    }
946
947                    // Get firstOperand register value (at index=1)
948                    firstOperandIndex = decodedInstruction.op[1].value; // first operand register index
949                    firstOperand = m_state.context.gpr.__r[firstOperandIndex];
950
951                    // Get secondOperand register value (at index=2)
952                    secondOperandIndex = decodedInstruction.op[2].value; // second operand register index
953                    secondOperand = m_state.context.gpr.__r[secondOperandIndex];
954
955                    // Get shiftAmount from register (at index=3)
956                    shiftRegisterIndex = decodedInstruction.op[3].value; // second operand register index
957                    shiftAmount = m_state.context.gpr.__r[shiftRegisterIndex];
958
959                    break;
960
961                case THUMB_ADDR_HR_HR:
962                    if (decodedInstruction.numOperands != 2)
963                    {
964                        DNBLogError("Expected 2 operands in decoded instruction structure. numOperands is %d!", decodedInstruction.numOperands);
965                        return false;
966                    }
967
968                    if (decodedInstruction.op[0].value != PC_REG)
969                    {
970                        DNBLogError("Destination register is not a PC! %s routine should be called on on instructions that modify the PC. Destination register is R%d!", __FUNCTION__, decodedInstruction.op[0].value);
971                        return false;
972                    }
973
974                    // Get firstOperand register value (at index=0)
975                    firstOperandIndex = decodedInstruction.op[0].value; // first operand register index
976                    firstOperand = m_state.context.gpr.__r[firstOperandIndex];
977
978                    // Get secondOperand register value (at index=1)
979                    secondOperandIndex = decodedInstruction.op[1].value; // second operand register index
980                    secondOperand = m_state.context.gpr.__r[secondOperandIndex];
981
982                    break;
983
984                default:
985                    break;
986            }
987            break;
988
989            // Logical shifts and move operations that can change the PC
990        case ARM_INST_LSL:
991        case ARM_INST_LSLS:
992        case ARM_INST_LSR:
993        case ARM_INST_LSRS:
994        case ARM_INST_MOV:
995        case ARM_INST_MOVS:
996        case ARM_INST_MVN:
997        case ARM_INST_MVNS:
998        case ARM_INST_ROR:
999        case ARM_INST_RORS:
1000        case ARM_INST_RRX:
1001        case ARM_INST_RRXS:
1002            // In these cases, the firstOperand is always 0, as if it does not exist
1003            switch (decodedInstruction.addressMode)
1004            {
1005                case ARM_ADDR_DATA_IMM:
1006                    if (decodedInstruction.numOperands != 2)
1007                    {
1008                        DNBLogError("Expected 2 operands in decoded instruction structure. numOperands is %d!", decodedInstruction.numOperands);
1009                        return false;
1010                    }
1011
1012                    if (decodedInstruction.op[0].value != PC_REG)
1013                    {
1014                        DNBLogError("Destination register is not a PC! %s routine should be called on on instructions that modify the PC. Destination register is R%d!", __FUNCTION__, decodedInstruction.op[0].value);
1015                        return false;
1016                    }
1017
1018                    // Get immediateValue (at index=1)
1019                    immediateValue = decodedInstruction.op[1].value;
1020
1021                    break;
1022
1023                case ARM_ADDR_DATA_REG:
1024                    if (decodedInstruction.numOperands != 2)
1025                    {
1026                        DNBLogError("Expected 2 operands in decoded instruction structure. numOperands is %d!", decodedInstruction.numOperands);
1027                        return false;
1028                    }
1029
1030                    if (decodedInstruction.op[0].value != PC_REG)
1031                    {
1032                        DNBLogError("Destination register is not a PC! %s routine should be called on on instructions that modify the PC. Destination register is R%d!", __FUNCTION__, decodedInstruction.op[0].value);
1033                        return false;
1034                    }
1035
1036                    // Get secondOperand register value (at index=1)
1037                    secondOperandIndex = decodedInstruction.op[1].value; // second operand register index
1038                    secondOperand = m_state.context.gpr.__r[secondOperandIndex];
1039
1040                    break;
1041
1042                case ARM_ADDR_DATA_SCALED_IMM:
1043                    if (decodedInstruction.numOperands != 3)
1044                    {
1045                        DNBLogError("Expected 4 operands in decoded instruction structure. numOperands is %d!", decodedInstruction.numOperands);
1046                        return false;
1047                    }
1048
1049                    if (decodedInstruction.op[0].value != PC_REG)
1050                    {
1051                        DNBLogError("Destination register is not a PC! %s routine should be called on on instructions that modify the PC. Destination register is R%d!", __FUNCTION__, decodedInstruction.op[0].value);
1052                        return false;
1053                    }
1054
1055                    // Get secondOperand register value (at index=1)
1056                    secondOperandIndex = decodedInstruction.op[2].value; // second operand register index
1057                    secondOperand = m_state.context.gpr.__r[secondOperandIndex];
1058
1059                    // Get shiftAmount as immediate value (at index=2)
1060                    shiftAmount = decodedInstruction.op[2].value;
1061
1062                    break;
1063
1064
1065                case ARM_ADDR_DATA_SCALED_REG:
1066                    if (decodedInstruction.numOperands != 3)
1067                    {
1068                        DNBLogError("Expected 3 operands in decoded instruction structure. numOperands is %d!", decodedInstruction.numOperands);
1069                        return false;
1070                    }
1071
1072                    if (decodedInstruction.op[0].value != PC_REG)
1073                    {
1074                        DNBLogError("Destination register is not a PC! %s routine should be called on on instructions that modify the PC. Destination register is R%d!", __FUNCTION__, decodedInstruction.op[0].value);
1075                        return false;
1076                    }
1077
1078                    // Get secondOperand register value (at index=1)
1079                    secondOperandIndex = decodedInstruction.op[1].value; // second operand register index
1080                    secondOperand = m_state.context.gpr.__r[secondOperandIndex];
1081
1082                    // Get shiftAmount from register (at index=2)
1083                    shiftRegisterIndex = decodedInstruction.op[2].value; // second operand register index
1084                    shiftAmount = m_state.context.gpr.__r[shiftRegisterIndex];
1085
1086                    break;
1087
1088                case THUMB_ADDR_HR_HR:
1089                    if (decodedInstruction.numOperands != 2)
1090                    {
1091                        DNBLogError("Expected 2 operands in decoded instruction structure. numOperands is %d!", decodedInstruction.numOperands);
1092                        return false;
1093                    }
1094
1095                    if (decodedInstruction.op[0].value != PC_REG)
1096                    {
1097                        DNBLogError("Destination register is not a PC! %s routine should be called on on instructions that modify the PC. Destination register is R%d!", __FUNCTION__, decodedInstruction.op[0].value);
1098                        return false;
1099                    }
1100
1101                    // Get secondOperand register value (at index=1)
1102                    secondOperandIndex = decodedInstruction.op[1].value; // second operand register index
1103                    secondOperand = m_state.context.gpr.__r[secondOperandIndex];
1104
1105                    break;
1106
1107                default:
1108                    break;
1109            }
1110
1111            break;
1112
1113            // Simple branches, used to hop around within a routine
1114        case ARM_INST_B:
1115            *targetPC = decodedInstruction.targetPC; // Known targetPC
1116            return true;
1117            break;
1118
1119            // Branch-and-link, used to call ARM subroutines
1120        case ARM_INST_BL:
1121            *targetPC = decodedInstruction.targetPC; // Known targetPC
1122            return true;
1123            break;
1124
1125            // Branch-and-link with exchange, used to call opposite-mode subroutines
1126        case ARM_INST_BLX:
1127            if ((decodedInstruction.addressMode == ARM_ADDR_BRANCH_IMM) ||
1128                (decodedInstruction.addressMode == THUMB_ADDR_UNCOND))
1129            {
1130                *targetPC = decodedInstruction.targetPC; // Known targetPC
1131                return true;
1132            }
1133            else    // addressMode == ARM_ADDR_BRANCH_REG
1134            {
1135                // Unknown target unless we're branching to the PC itself,
1136                //  although this may not work properly with BLX
1137                if (decodedInstruction.op[REG_RD].value == PC_REG)
1138                {
1139                    // this should (almost) never happen
1140                    *targetPC = decodedInstruction.targetPC; // Known targetPC
1141                    return true;
1142                }
1143
1144                // Get the branch address and return
1145                if (decodedInstruction.numOperands != 1)
1146                {
1147                    DNBLogError("Expected 1 operands in decoded instruction structure. numOperands is %d!", decodedInstruction.numOperands);
1148                    return false;
1149                }
1150
1151                // Get branch address in register (at index=0)
1152                *targetPC = m_state.context.gpr.__r[decodedInstruction.op[0].value];
1153                return true;
1154            }
1155            break;
1156
1157            // Branch with exchange, used to hop to opposite-mode code
1158            // Branch to Jazelle code, used to execute Java; included here since it
1159            //  acts just like BX unless the Jazelle unit is active and JPC is
1160            //  already loaded into it.
1161        case ARM_INST_BX:
1162        case ARM_INST_BXJ:
1163            // Unknown target unless we're branching to the PC itself,
1164            //  although this can never switch to Thumb mode and is
1165            //  therefore pretty much useless
1166            if (decodedInstruction.op[REG_RD].value == PC_REG)
1167            {
1168                // this should (almost) never happen
1169                *targetPC = decodedInstruction.targetPC; // Known targetPC
1170                return true;
1171            }
1172
1173            // Get the branch address and return
1174            if (decodedInstruction.numOperands != 1)
1175            {
1176                DNBLogError("Expected 1 operands in decoded instruction structure. numOperands is %d!", decodedInstruction.numOperands);
1177                return false;
1178            }
1179
1180            // Get branch address in register (at index=0)
1181            *targetPC = m_state.context.gpr.__r[decodedInstruction.op[0].value];
1182            return true;
1183            break;
1184
1185            // Compare and branch on zero/non-zero (Thumb-16 only)
1186            // Unusual condition check built into the instruction
1187        case ARM_INST_CBZ:
1188        case ARM_INST_CBNZ:
1189            // Branch address is known at compile time
1190            // Get the branch address and return
1191            if (decodedInstruction.numOperands != 2)
1192            {
1193                DNBLogError("Expected 2 operands in decoded instruction structure. numOperands is %d!", decodedInstruction.numOperands);
1194                return false;
1195            }
1196
1197            // Get branch address as an immediate value (at index=1)
1198            *targetPC = decodedInstruction.op[1].value;
1199            return true;
1200            break;
1201
1202            // Load register can be used to load PC, usually with a function pointer
1203        case ARM_INST_LDR:
1204            if (decodedInstruction.op[REG_RD].value != PC_REG)
1205            {
1206                DNBLogError("Destination register is not a PC! %s routine should be called on on instructions that modify the PC. Destination register is R%d!", __FUNCTION__, decodedInstruction.op[0].value);
1207                return false;
1208            }
1209            switch (decodedInstruction.addressMode)
1210            {
1211                case ARM_ADDR_LSWUB_IMM:
1212                case ARM_ADDR_LSWUB_IMM_PRE:
1213                case ARM_ADDR_LSWUB_IMM_POST:
1214                    if (decodedInstruction.numOperands != 3)
1215                    {
1216                        DNBLogError("Expected 3 operands in decoded instruction structure. numOperands is %d!", decodedInstruction.numOperands);
1217                        return false;
1218                    }
1219
1220                    // Get baseAddress from register (at index=1)
1221                    baseAddressIndex = decodedInstruction.op[1].value;
1222                    baseAddress = m_state.context.gpr.__r[baseAddressIndex];
1223
1224                    // Get immediateOffset (at index=2)
1225                    immediateOffset = decodedInstruction.op[2].value;
1226                    break;
1227
1228                case ARM_ADDR_LSWUB_REG:
1229                case ARM_ADDR_LSWUB_REG_PRE:
1230                case ARM_ADDR_LSWUB_REG_POST:
1231                    if (decodedInstruction.numOperands != 3)
1232                    {
1233                        DNBLogError("Expected 3 operands in decoded instruction structure. numOperands is %d!", decodedInstruction.numOperands);
1234                        return false;
1235                    }
1236
1237                    // Get baseAddress from register (at index=1)
1238                    baseAddressIndex = decodedInstruction.op[1].value;
1239                    baseAddress = m_state.context.gpr.__r[baseAddressIndex];
1240
1241                    // Get immediateOffset from register (at index=2)
1242                    addressOffsetFromRegisterIndex = decodedInstruction.op[2].value;
1243                    addressOffsetFromRegister = m_state.context.gpr.__r[addressOffsetFromRegisterIndex];
1244
1245                    break;
1246
1247                case ARM_ADDR_LSWUB_SCALED:
1248                case ARM_ADDR_LSWUB_SCALED_PRE:
1249                case ARM_ADDR_LSWUB_SCALED_POST:
1250                    if (decodedInstruction.numOperands != 4)
1251                    {
1252                        DNBLogError("Expected 4 operands in decoded instruction structure. numOperands is %d!", decodedInstruction.numOperands);
1253                        return false;
1254                    }
1255
1256                    // Get baseAddress from register (at index=1)
1257                    baseAddressIndex = decodedInstruction.op[1].value;
1258                    baseAddress = m_state.context.gpr.__r[baseAddressIndex];
1259
1260                    // Get immediateOffset from register (at index=2)
1261                    addressOffsetFromRegisterIndex = decodedInstruction.op[2].value;
1262                    addressOffsetFromRegister = m_state.context.gpr.__r[addressOffsetFromRegisterIndex];
1263
1264                    // Get shiftAmount (at index=3)
1265                    shiftAmount = decodedInstruction.op[3].value;
1266
1267                    break;
1268
1269                default:
1270                    break;
1271            }
1272            break;
1273
1274            // 32b load multiple operations can load the PC along with everything else,
1275            //  usually to return from a function call
1276        case ARM_INST_LDMDA:
1277        case ARM_INST_LDMDB:
1278        case ARM_INST_LDMIA:
1279        case ARM_INST_LDMIB:
1280            if (decodedInstruction.op[LDM_REGLIST].value & PC_REGLIST_BIT)
1281            {
1282                if (decodedInstruction.numOperands != 2)
1283                {
1284                    DNBLogError("Expected 2 operands in decoded instruction structure. numOperands is %d!", decodedInstruction.numOperands);
1285                    return false;
1286                }
1287
1288                // Get baseAddress from register (at index=0)
1289                baseAddressIndex = decodedInstruction.op[0].value;
1290                baseAddress = m_state.context.gpr.__r[baseAddressIndex];
1291
1292                // Get registerList from register (at index=1)
1293                registerList16 = (uint16_t)decodedInstruction.op[1].value;
1294
1295                // Count number of registers to load in the multiple register list excluding the PC
1296                registerList16NoPC = registerList16&0x3FFF; // exclude the PC
1297                numRegistersToLoad=0;
1298                for (int i = 0; i < 16; i++)
1299                {
1300                    if (registerList16NoPC & 0x1) numRegistersToLoad++;
1301                    registerList16NoPC = registerList16NoPC >> 1;
1302                }
1303            }
1304            else
1305            {
1306                DNBLogError("Destination register is not a PC! %s routine should be called on on instructions that modify the PC. Destination register is R%d!", __FUNCTION__, decodedInstruction.op[0].value);
1307                return false;
1308            }
1309            break;
1310
1311            // Normal 16-bit LD multiple can't touch R15, but POP can
1312        case ARM_INST_POP:  // Can also get the PC & updates SP
1313            // Get baseAddress from SP (at index=0)
1314            baseAddress = m_state.context.gpr.__sp;
1315
1316            if (decodedInstruction.thumb16b)
1317            {
1318                // Get registerList from register (at index=0)
1319                registerList8 = (uint8_t)decodedInstruction.op[0].value;
1320
1321                // Count number of registers to load in the multiple register list
1322                numRegistersToLoad=0;
1323                for (int i = 0; i < 8; i++)
1324                {
1325                    if (registerList8 & 0x1) numRegistersToLoad++;
1326                    registerList8 = registerList8 >> 1;
1327                }
1328            }
1329            else
1330            {
1331                // Get registerList from register (at index=0)
1332                registerList16 = (uint16_t)decodedInstruction.op[0].value;
1333
1334                // Count number of registers to load in the multiple register list excluding the PC
1335                registerList16NoPC = registerList16&0x3FFF; // exclude the PC
1336                numRegistersToLoad=0;
1337                for (int i = 0; i < 16; i++)
1338                {
1339                    if (registerList16NoPC & 0x1) numRegistersToLoad++;
1340                    registerList16NoPC = registerList16NoPC >> 1;
1341                }
1342            }
1343            break;
1344
1345            // 16b TBB and TBH instructions load a jump address from a table
1346        case ARM_INST_TBB:
1347        case ARM_INST_TBH:
1348            // Get baseAddress from register (at index=0)
1349            baseAddressIndex = decodedInstruction.op[0].value;
1350            baseAddress = m_state.context.gpr.__r[baseAddressIndex];
1351
1352            // Get immediateOffset from register (at index=1)
1353            addressOffsetFromRegisterIndex = decodedInstruction.op[1].value;
1354            addressOffsetFromRegister = m_state.context.gpr.__r[addressOffsetFromRegisterIndex];
1355            break;
1356
1357            // ThumbEE branch-to-handler instructions: Jump to handlers at some offset
1358            //  from a special base pointer register (which is unknown at disassembly time)
1359        case ARM_INST_HB:
1360        case ARM_INST_HBP:
1361//          TODO: ARM_INST_HB, ARM_INST_HBP
1362            break;
1363
1364        case ARM_INST_HBL:
1365        case ARM_INST_HBLP:
1366//          TODO: ARM_INST_HBL, ARM_INST_HBLP
1367            break;
1368
1369            // Breakpoint and software interrupt jump to interrupt handler (always ARM)
1370        case ARM_INST_BKPT:
1371        case ARM_INST_SMC:
1372        case ARM_INST_SVC:
1373
1374            // Return from exception, obviously modifies PC [interrupt only!]
1375        case ARM_INST_RFEDA:
1376        case ARM_INST_RFEDB:
1377        case ARM_INST_RFEIA:
1378        case ARM_INST_RFEIB:
1379
1380            // Other instructions either can't change R15 or are "undefined" if you do,
1381            //  so no sane compiler should ever generate them & we don't care here.
1382            //  Also, R15 can only legally be used in a read-only manner for the
1383            //  various ARM addressing mode (to get PC-relative addressing of constants),
1384            //  but can NOT be used with any of the update modes.
1385        default:
1386            DNBLogError("%s should not be called for instruction code %d!", __FUNCTION__, decodedInstruction.instruction->code);
1387            return false;
1388            break;
1389    }
1390
1391    // Adjust PC if PC is one of the input operands
1392    if (baseAddressIndex == PC_REG)
1393    {
1394        if (currentPCIsThumb)
1395            baseAddress += 4;
1396        else
1397            baseAddress += 8;
1398    }
1399
1400    if (firstOperandIndex == PC_REG)
1401    {
1402        if (currentPCIsThumb)
1403            firstOperand += 4;
1404        else
1405            firstOperand += 8;
1406    }
1407
1408    if (secondOperandIndex == PC_REG)
1409    {
1410        if (currentPCIsThumb)
1411            secondOperand += 4;
1412        else
1413            secondOperand += 8;
1414    }
1415
1416    if (addressOffsetFromRegisterIndex == PC_REG)
1417    {
1418        if (currentPCIsThumb)
1419            addressOffsetFromRegister += 4;
1420        else
1421            addressOffsetFromRegister += 8;
1422    }
1423
1424    DNBLogThreadedIf(LOG_STEP | LOG_VERBOSE,
1425        "%s: firstOperand=%8.8x, secondOperand=%8.8x, immediateValue = %d, shiftAmount = %d, baseAddress = %8.8x, addressOffsetFromRegister = %8.8x, immediateOffset = %d, numRegistersToLoad = %d",
1426        __FUNCTION__,
1427        firstOperand,
1428        secondOperand,
1429        immediateValue,
1430        shiftAmount,
1431        baseAddress,
1432        addressOffsetFromRegister,
1433        immediateOffset,
1434        numRegistersToLoad);
1435
1436
1437    // Calculate following values after applying shiftAmount:
1438    //   - immediateOffsetAfterShift, secondOperandAfterShift
1439
1440    switch (decodedInstruction.scaleMode)
1441    {
1442        case ARM_SCALE_NONE:
1443            addressOffsetFromRegisterAfterShift = addressOffsetFromRegister;
1444            secondOperandAfterShift = secondOperand;
1445            break;
1446
1447        case ARM_SCALE_LSL:             // Logical shift left
1448            addressOffsetFromRegisterAfterShift = addressOffsetFromRegister << shiftAmount;
1449            secondOperandAfterShift = secondOperand << shiftAmount;
1450            break;
1451
1452        case ARM_SCALE_LSR:             // Logical shift right
1453            addressOffsetFromRegisterAfterShift = addressOffsetFromRegister >> shiftAmount;
1454            secondOperandAfterShift = secondOperand >> shiftAmount;
1455            break;
1456
1457        case ARM_SCALE_ASR:             // Arithmetic shift right
1458            asm("mov %0, %1, asr %2" : "=r" (addressOffsetFromRegisterAfterShift) : "r" (addressOffsetFromRegister), "r" (shiftAmount));
1459            asm("mov %0, %1, asr %2" : "=r" (secondOperandAfterShift) : "r" (secondOperand), "r" (shiftAmount));
1460            break;
1461
1462        case ARM_SCALE_ROR:             // Rotate right
1463            asm("mov %0, %1, ror %2" : "=r" (addressOffsetFromRegisterAfterShift) : "r" (addressOffsetFromRegister), "r" (shiftAmount));
1464            asm("mov %0, %1, ror %2" : "=r" (secondOperandAfterShift) : "r" (secondOperand), "r" (shiftAmount));
1465            break;
1466
1467        case ARM_SCALE_RRX:             // Rotate right, pulling in carry (1-bit shift only)
1468            asm("mov %0, %1, rrx" : "=r" (addressOffsetFromRegisterAfterShift) : "r" (addressOffsetFromRegister));
1469            asm("mov %0, %1, rrx" : "=r" (secondOperandAfterShift) : "r" (secondOperand));
1470            break;
1471    }
1472
1473    // Emulate instruction to calculate targetPC
1474    // All branches are already handled in the first switch statement. A branch should not reach this switch
1475    switch (decodedInstruction.instruction->code)
1476    {
1477            // Arithmetic operations that can change the PC
1478        case ARM_INST_ADC:
1479        case ARM_INST_ADCS:
1480            // Add with Carry
1481            *targetPC = firstOperand + (secondOperandAfterShift + immediateValue) + cpsr_c;
1482            break;
1483
1484        case ARM_INST_ADD:
1485        case ARM_INST_ADDS:
1486            *targetPC = firstOperand + (secondOperandAfterShift + immediateValue);
1487            break;
1488
1489        case ARM_INST_AND:
1490        case ARM_INST_ANDS:
1491            *targetPC = firstOperand & (secondOperandAfterShift + immediateValue);
1492            break;
1493
1494        case ARM_INST_ASR:
1495        case ARM_INST_ASRS:
1496            asm("mov %0, %1, asr %2" : "=r" (myTargetPC) : "r" (firstOperand), "r" (secondOperandAfterShift + immediateValue));
1497            *targetPC = myTargetPC;
1498            break;
1499
1500        case ARM_INST_BIC:
1501        case ARM_INST_BICS:
1502            asm("bic %0, %1, %2" : "=r" (myTargetPC) : "r" (firstOperand), "r" (secondOperandAfterShift + immediateValue));
1503            *targetPC = myTargetPC;
1504            break;
1505
1506        case ARM_INST_EOR:
1507        case ARM_INST_EORS:
1508            asm("eor %0, %1, %2" : "=r" (myTargetPC) : "r" (firstOperand), "r" (secondOperandAfterShift + immediateValue));
1509            *targetPC = myTargetPC;
1510            break;
1511
1512        case ARM_INST_ORR:
1513        case ARM_INST_ORRS:
1514            asm("orr %0, %1, %2" : "=r" (myTargetPC) : "r" (firstOperand), "r" (secondOperandAfterShift + immediateValue));
1515            *targetPC = myTargetPC;
1516            break;
1517
1518        case ARM_INST_RSB:
1519        case ARM_INST_RSBS:
1520            asm("rsb %0, %1, %2" : "=r" (myTargetPC) : "r" (firstOperand), "r" (secondOperandAfterShift + immediateValue));
1521            *targetPC = myTargetPC;
1522            break;
1523
1524        case ARM_INST_RSC:
1525        case ARM_INST_RSCS:
1526            myTargetPC = secondOperandAfterShift - (firstOperand + !cpsr_c);
1527            *targetPC = myTargetPC;
1528            break;
1529
1530        case ARM_INST_SBC:
1531        case ARM_INST_SBCS:
1532            asm("sbc %0, %1, %2" : "=r" (myTargetPC) : "r" (firstOperand), "r" (secondOperandAfterShift + immediateValue  + !cpsr_c));
1533            *targetPC = myTargetPC;
1534            break;
1535
1536        case ARM_INST_SUB:
1537        case ARM_INST_SUBS:
1538            asm("sub %0, %1, %2" : "=r" (myTargetPC) : "r" (firstOperand), "r" (secondOperandAfterShift + immediateValue));
1539            *targetPC = myTargetPC;
1540            break;
1541
1542            // Logical shifts and move operations that can change the PC
1543        case ARM_INST_LSL:
1544        case ARM_INST_LSLS:
1545        case ARM_INST_LSR:
1546        case ARM_INST_LSRS:
1547        case ARM_INST_MOV:
1548        case ARM_INST_MOVS:
1549        case ARM_INST_ROR:
1550        case ARM_INST_RORS:
1551        case ARM_INST_RRX:
1552        case ARM_INST_RRXS:
1553            myTargetPC = secondOperandAfterShift + immediateValue;
1554            *targetPC = myTargetPC;
1555            break;
1556
1557        case ARM_INST_MVN:
1558        case ARM_INST_MVNS:
1559            myTargetPC = !(secondOperandAfterShift + immediateValue);
1560            *targetPC = myTargetPC;
1561            break;
1562
1563            // Load register can be used to load PC, usually with a function pointer
1564        case ARM_INST_LDR:
1565            switch (decodedInstruction.addressMode) {
1566                case ARM_ADDR_LSWUB_IMM_POST:
1567                case ARM_ADDR_LSWUB_REG_POST:
1568                case ARM_ADDR_LSWUB_SCALED_POST:
1569                    addressWherePCLives = baseAddress;
1570                    break;
1571
1572                case ARM_ADDR_LSWUB_IMM:
1573                case ARM_ADDR_LSWUB_REG:
1574                case ARM_ADDR_LSWUB_SCALED:
1575                case ARM_ADDR_LSWUB_IMM_PRE:
1576                case ARM_ADDR_LSWUB_REG_PRE:
1577                case ARM_ADDR_LSWUB_SCALED_PRE:
1578                    addressWherePCLives = baseAddress + (addressOffsetFromRegisterAfterShift + immediateOffset);
1579                    break;
1580
1581                default:
1582                    break;
1583            }
1584
1585            mypid = m_thread->ProcessID();
1586            if (DNBProcessMemoryRead(mypid, addressWherePCLives, sizeof(nub_addr_t), &myTargetPC) !=  sizeof(nub_addr_t))
1587            {
1588                DNBLogError("Could not read memory at %8.8x to get targetPC when processing the pop instruction!", addressWherePCLives);
1589                return false;
1590            }
1591
1592            *targetPC = myTargetPC;
1593            break;
1594
1595            // 32b load multiple operations can load the PC along with everything else,
1596            //  usually to return from a function call
1597        case ARM_INST_LDMDA:
1598            mypid = m_thread->ProcessID();
1599            addressWherePCLives = baseAddress;
1600            if (DNBProcessMemoryRead(mypid, addressWherePCLives, sizeof(nub_addr_t), &myTargetPC) !=  sizeof(nub_addr_t))
1601            {
1602                DNBLogError("Could not read memory at %8.8x to get targetPC when processing the pop instruction!", addressWherePCLives);
1603                return false;
1604            }
1605
1606            *targetPC = myTargetPC;
1607            break;
1608
1609        case ARM_INST_LDMDB:
1610            mypid = m_thread->ProcessID();
1611            addressWherePCLives = baseAddress - 4;
1612            if (DNBProcessMemoryRead(mypid, addressWherePCLives, sizeof(nub_addr_t), &myTargetPC) !=  sizeof(nub_addr_t))
1613            {
1614                DNBLogError("Could not read memory at %8.8x to get targetPC when processing the pop instruction!", addressWherePCLives);
1615                return false;
1616            }
1617
1618            *targetPC = myTargetPC;
1619            break;
1620
1621        case ARM_INST_LDMIB:
1622            mypid = m_thread->ProcessID();
1623            addressWherePCLives = baseAddress + numRegistersToLoad*4 + 4;
1624            if (DNBProcessMemoryRead(mypid, addressWherePCLives, sizeof(nub_addr_t), &myTargetPC) !=  sizeof(nub_addr_t))
1625            {
1626                DNBLogError("Could not read memory at %8.8x to get targetPC when processing the pop instruction!", addressWherePCLives);
1627                return false;
1628            }
1629
1630            *targetPC = myTargetPC;
1631            break;
1632
1633        case ARM_INST_LDMIA: // same as pop
1634            // Normal 16-bit LD multiple can't touch R15, but POP can
1635        case ARM_INST_POP:  // Can also get the PC & updates SP
1636            mypid = m_thread->ProcessID();
1637            addressWherePCLives = baseAddress + numRegistersToLoad*4;
1638            if (DNBProcessMemoryRead(mypid, addressWherePCLives, sizeof(nub_addr_t), &myTargetPC) !=  sizeof(nub_addr_t))
1639            {
1640                DNBLogError("Could not read memory at %8.8x to get targetPC when processing the pop instruction!", addressWherePCLives);
1641                return false;
1642            }
1643
1644            *targetPC = myTargetPC;
1645            break;
1646
1647            // 16b TBB and TBH instructions load a jump address from a table
1648        case ARM_INST_TBB:
1649            mypid = m_thread->ProcessID();
1650            addressWherePCLives = baseAddress + addressOffsetFromRegisterAfterShift;
1651            if (DNBProcessMemoryRead(mypid, addressWherePCLives, 1, &halfwords) !=  1)
1652            {
1653                DNBLogError("Could not read memory at %8.8x to get targetPC when processing the TBB instruction!", addressWherePCLives);
1654                return false;
1655            }
1656            // add 4 to currentPC since we are in Thumb mode and then add 2*halfwords
1657            *targetPC = (currentPC + 4) + 2*halfwords;
1658            break;
1659
1660        case ARM_INST_TBH:
1661            mypid = m_thread->ProcessID();
1662            addressWherePCLives = ((baseAddress + (addressOffsetFromRegisterAfterShift << 1)) & ~0x1);
1663            if (DNBProcessMemoryRead(mypid, addressWherePCLives, 2, &halfwords) !=  2)
1664            {
1665                DNBLogError("Could not read memory at %8.8x to get targetPC when processing the TBH instruction!", addressWherePCLives);
1666                return false;
1667            }
1668            // add 4 to currentPC since we are in Thumb mode and then add 2*halfwords
1669            *targetPC = (currentPC + 4) + 2*halfwords;
1670            break;
1671
1672            // ThumbEE branch-to-handler instructions: Jump to handlers at some offset
1673            //  from a special base pointer register (which is unknown at disassembly time)
1674        case ARM_INST_HB:
1675        case ARM_INST_HBP:
1676            //          TODO: ARM_INST_HB, ARM_INST_HBP
1677            break;
1678
1679        case ARM_INST_HBL:
1680        case ARM_INST_HBLP:
1681            //          TODO: ARM_INST_HBL, ARM_INST_HBLP
1682            break;
1683
1684            // Breakpoint and software interrupt jump to interrupt handler (always ARM)
1685        case ARM_INST_BKPT:
1686        case ARM_INST_SMC:
1687        case ARM_INST_SVC:
1688            //          TODO: ARM_INST_BKPT, ARM_INST_SMC, ARM_INST_SVC
1689            break;
1690
1691            // Return from exception, obviously modifies PC [interrupt only!]
1692        case ARM_INST_RFEDA:
1693        case ARM_INST_RFEDB:
1694        case ARM_INST_RFEIA:
1695        case ARM_INST_RFEIB:
1696            //          TODO: ARM_INST_RFEDA, ARM_INST_RFEDB, ARM_INST_RFEIA, ARM_INST_RFEIB
1697            break;
1698
1699            // Other instructions either can't change R15 or are "undefined" if you do,
1700            //  so no sane compiler should ever generate them & we don't care here.
1701            //  Also, R15 can only legally be used in a read-only manner for the
1702            //  various ARM addressing mode (to get PC-relative addressing of constants),
1703            //  but can NOT be used with any of the update modes.
1704        default:
1705            DNBLogError("%s should not be called for instruction code %d!", __FUNCTION__, decodedInstruction.instruction->code);
1706            return false;
1707            break;
1708    }
1709
1710    return true;
1711}
1712
1713void
1714DNBArchMachARM::EvaluateNextInstructionForSoftwareBreakpointSetup(nub_addr_t currentPC, uint32_t cpsr, bool currentPCIsThumb, nub_addr_t *nextPC, bool *nextPCIsThumb)
1715{
1716    DNBLogThreadedIf(LOG_STEP | LOG_VERBOSE, "DNBArchMachARM::EvaluateNextInstructionForSoftwareBreakpointSetup() called");
1717
1718    nub_addr_t targetPC = INVALID_NUB_ADDRESS;
1719    uint32_t registerValue;
1720    arm_error_t decodeError;
1721    nub_addr_t currentPCInITBlock, nextPCInITBlock;
1722    int i;
1723    bool last_decoded_instruction_executes = true;
1724
1725    DNBLogThreadedIf(LOG_STEP | LOG_VERBOSE, "%s: default nextPC=0x%8.8x (%s)", __FUNCTION__, *nextPC, *nextPCIsThumb ? "Thumb" : "ARM");
1726
1727    // Update *nextPC and *nextPCIsThumb for special cases
1728    if (m_last_decode_thumb.itBlockRemaining) // we are in an IT block
1729    {
1730        // Set the nextPC to the PC of the instruction which will execute in the IT block
1731        // If none of the instruction execute in the IT block based on the condition flags,
1732        // then point to the instruction immediately following the IT block
1733        const int itBlockRemaining = m_last_decode_thumb.itBlockRemaining;
1734        DNBLogThreadedIf(LOG_STEP | LOG_VERBOSE, "%s: itBlockRemaining=%8.8x", __FUNCTION__, itBlockRemaining);
1735
1736        // Determine the PC at which the next instruction resides
1737        if (m_last_decode_arm.thumb16b)
1738            currentPCInITBlock = currentPC + 2;
1739        else
1740            currentPCInITBlock = currentPC + 4;
1741
1742        for (i = 0; i < itBlockRemaining; i++)
1743        {
1744            DNBLogThreadedIf(LOG_STEP | LOG_VERBOSE, "%s: currentPCInITBlock=%8.8x", __FUNCTION__, currentPCInITBlock);
1745            decodeError = DecodeInstructionUsingDisassembler(currentPCInITBlock, cpsr, &m_last_decode_arm, &m_last_decode_thumb, &nextPCInITBlock);
1746
1747            if (decodeError != ARM_SUCCESS)
1748                DNBLogError("unable to disassemble instruction at 0x%8.8llx", (uint64_t)currentPCInITBlock);
1749
1750            DNBLogThreadedIf(LOG_STEP | LOG_VERBOSE, "%s: condition=%d", __FUNCTION__, m_last_decode_arm.condition);
1751            if (ConditionPassed(m_last_decode_arm.condition, cpsr))
1752            {
1753                DNBLogThreadedIf(LOG_STEP | LOG_VERBOSE, "%s: Condition codes matched for instruction %d", __FUNCTION__, i);
1754                break; // break from the for loop
1755            }
1756            else
1757            {
1758                DNBLogThreadedIf(LOG_STEP | LOG_VERBOSE, "%s: Condition codes DID NOT matched for instruction %d", __FUNCTION__, i);
1759            }
1760
1761            // update currentPC and nextPCInITBlock
1762            currentPCInITBlock = nextPCInITBlock;
1763        }
1764
1765        if (i == itBlockRemaining) // We came out of the IT block without executing any instructions
1766            last_decoded_instruction_executes = false;
1767
1768        *nextPC = currentPCInITBlock;
1769        DNBLogThreadedIf(LOG_STEP | LOG_VERBOSE, "%s: After IT block step-through: *nextPC=%8.8x", __FUNCTION__, *nextPC);
1770    }
1771
1772    DNBLogThreadedIf(LOG_STEP | LOG_VERBOSE,
1773                    "%s: cpsr = %8.8x, thumb16b = %d, thumb = %d, branch = %d, conditional = %d, knownTarget = %d, links = %d, canSwitchMode = %d, doesSwitchMode = %d",
1774                    __FUNCTION__,
1775                    cpsr,
1776                    m_last_decode_arm.thumb16b,
1777                    m_last_decode_arm.thumb,
1778                    m_last_decode_arm.branch,
1779                    m_last_decode_arm.conditional,
1780                    m_last_decode_arm.knownTarget,
1781                    m_last_decode_arm.links,
1782                    m_last_decode_arm.canSwitchMode,
1783                    m_last_decode_arm.doesSwitchMode);
1784
1785
1786    if (last_decoded_instruction_executes &&                    // Was this a conditional instruction that did execute?
1787        m_last_decode_arm.branch &&                             // Can this instruction change the PC?
1788        (m_last_decode_arm.instruction->code != ARM_INST_SVC))  // If this instruction is not an SVC instruction
1789    {
1790        // Set targetPC. Compute if needed.
1791        if (m_last_decode_arm.knownTarget)
1792        {
1793            // Fixed, known PC-relative
1794            targetPC = m_last_decode_arm.targetPC;
1795        }
1796        else
1797        {
1798            // if targetPC is not known at compile time (PC-relative target), compute targetPC
1799            if (!ComputeNextPC(currentPC, m_last_decode_arm, currentPCIsThumb, &targetPC))
1800            {
1801                DNBLogError("%s: Unable to compute targetPC for instruction at 0x%8.8llx", __FUNCTION__, (uint64_t)currentPC);
1802                targetPC = INVALID_NUB_ADDRESS;
1803            }
1804        }
1805
1806        DNBLogThreadedIf(LOG_STEP | LOG_VERBOSE, "%s: targetPC=0x%8.8x, cpsr=0x%8.8x, condition=0x%hhx", __FUNCTION__, targetPC, cpsr, m_last_decode_arm.condition);
1807
1808        // Refine nextPC computation
1809        if ((m_last_decode_arm.instruction->code == ARM_INST_CBZ) ||
1810            (m_last_decode_arm.instruction->code == ARM_INST_CBNZ))
1811        {
1812            // Compare and branch on zero/non-zero (Thumb-16 only)
1813            // Unusual condition check built into the instruction
1814            registerValue = m_state.context.gpr.__r[m_last_decode_arm.op[REG_RD].value];
1815
1816            if (m_last_decode_arm.instruction->code == ARM_INST_CBZ)
1817            {
1818                if (registerValue == 0)
1819                    *nextPC = targetPC;
1820            }
1821            else
1822            {
1823                if (registerValue != 0)
1824                    *nextPC = targetPC;
1825            }
1826        }
1827        else if (m_last_decode_arm.conditional) // Is the change conditional on flag results?
1828        {
1829            if (ConditionPassed(m_last_decode_arm.condition, cpsr)) // conditions match
1830            {
1831                DNBLogThreadedIf(LOG_STEP | LOG_VERBOSE, "%s: Condition matched!", __FUNCTION__);
1832                *nextPC = targetPC;
1833            }
1834            else
1835            {
1836                DNBLogThreadedIf(LOG_STEP | LOG_VERBOSE, "%s: Condition did not match!", __FUNCTION__);
1837            }
1838        }
1839        else
1840        {
1841            *nextPC = targetPC;
1842        }
1843
1844        // Refine nextPCIsThumb computation
1845        if (m_last_decode_arm.doesSwitchMode)
1846        {
1847            *nextPCIsThumb = !currentPCIsThumb;
1848        }
1849        else if (m_last_decode_arm.canSwitchMode)
1850        {
1851            // Legal to switch ARM <--> Thumb mode with this branch
1852            // dependent on bit[0] of targetPC
1853            *nextPCIsThumb = (*nextPC & 1u) != 0;
1854        }
1855        else
1856        {
1857            *nextPCIsThumb = currentPCIsThumb;
1858        }
1859    }
1860
1861    DNBLogThreadedIf(LOG_STEP, "%s: calculated nextPC=0x%8.8x (%s)", __FUNCTION__, *nextPC, *nextPCIsThumb ? "Thumb" : "ARM");
1862}
1863
1864
1865arm_error_t
1866DNBArchMachARM::DecodeInstructionUsingDisassembler(nub_addr_t curr_pc, uint32_t curr_cpsr, arm_decoded_instruction_t *decodedInstruction, thumb_static_data_t *thumbStaticData, nub_addr_t *next_pc)
1867{
1868
1869    DNBLogThreadedIf(LOG_STEP | LOG_VERBOSE, "%s: pc=0x%8.8x, cpsr=0x%8.8x", __FUNCTION__, curr_pc, curr_cpsr);
1870
1871    const uint32_t isetstate_mask = MASK_CPSR_T | MASK_CPSR_J;
1872    const uint32_t curr_isetstate = curr_cpsr & isetstate_mask;
1873    uint32_t opcode32;
1874    nub_addr_t nextPC = curr_pc;
1875    arm_error_t decodeReturnCode = ARM_SUCCESS;
1876
1877    m_last_decode_pc = curr_pc;
1878    DNBLogThreadedIf(LOG_STEP | LOG_VERBOSE, "%s: last_decode_pc=0x%8.8x", __FUNCTION__, m_last_decode_pc);
1879
1880    switch (curr_isetstate) {
1881        case 0x0: // ARM Instruction
1882            // Read the ARM opcode
1883            if (m_thread->Process()->Task().ReadMemory(curr_pc, 4, &opcode32) != 4)
1884            {
1885                DNBLogError("unable to read opcode bits 31:0 for an ARM opcode at 0x%8.8llx", (uint64_t)curr_pc);
1886                decodeReturnCode = ARM_ERROR;
1887            }
1888            else
1889            {
1890                nextPC += 4;
1891                decodeReturnCode = ArmDisassembler((uint64_t)curr_pc, opcode32, false, decodedInstruction, NULL, 0, NULL, 0);
1892
1893                if (decodeReturnCode != ARM_SUCCESS)
1894                    DNBLogError("Unable to decode ARM instruction 0x%8.8x at 0x%8.8llx", opcode32, (uint64_t)curr_pc);
1895            }
1896            break;
1897
1898        case 0x20: // Thumb Instruction
1899            uint16_t opcode16;
1900            // Read the a 16 bit Thumb opcode
1901            if (m_thread->Process()->Task().ReadMemory(curr_pc, 2, &opcode16) != 2)
1902            {
1903                DNBLogError("unable to read opcode bits 15:0 for a thumb opcode at 0x%8.8llx", (uint64_t)curr_pc);
1904                decodeReturnCode = ARM_ERROR;
1905            }
1906            else
1907            {
1908                nextPC += 2;
1909                opcode32 = opcode16;
1910
1911                decodeReturnCode = ThumbDisassembler((uint64_t)curr_pc, opcode16, false, false, thumbStaticData, decodedInstruction, NULL, 0, NULL, 0);
1912
1913                switch (decodeReturnCode) {
1914                    case ARM_SKIP:
1915                        // 32 bit thumb opcode
1916                        nextPC += 2;
1917                        if (m_thread->Process()->Task().ReadMemory(curr_pc+2, 2, &opcode16) != 2)
1918                        {
1919                            DNBLogError("unable to read opcode bits 15:0 for a thumb opcode at 0x%8.8llx", (uint64_t)curr_pc+2);
1920                        }
1921                        else
1922                        {
1923                            opcode32 = (opcode32 << 16) | opcode16;
1924
1925                            decodeReturnCode = ThumbDisassembler((uint64_t)(curr_pc+2), opcode16, false, false, thumbStaticData, decodedInstruction, NULL, 0, NULL, 0);
1926
1927                            if (decodeReturnCode != ARM_SUCCESS)
1928                                DNBLogError("Unable to decode 2nd half of Thumb instruction 0x%8.4hx at 0x%8.8llx", opcode16, (uint64_t)curr_pc+2);
1929                            break;
1930                        }
1931                        break;
1932
1933                    case ARM_SUCCESS:
1934                        // 16 bit thumb opcode; at this point we are done decoding the opcode
1935                        break;
1936
1937                    default:
1938                        DNBLogError("Unable to decode Thumb instruction 0x%8.4hx at 0x%8.8llx", opcode16, (uint64_t)curr_pc);
1939                        decodeReturnCode = ARM_ERROR;
1940                        break;
1941                }
1942            }
1943            break;
1944
1945        default:
1946            break;
1947    }
1948
1949    if (next_pc)
1950        *next_pc = nextPC;
1951
1952    return decodeReturnCode;
1953}
1954
1955#endif
1956
1957nub_bool_t
1958DNBArchMachARM::BreakpointHit (nub_process_t pid, nub_thread_t tid, nub_break_t breakID, void *baton)
1959{
1960    nub_addr_t bkpt_pc = (nub_addr_t)baton;
1961    DNBLogThreadedIf(LOG_STEP | LOG_VERBOSE, "%s(pid = %i, tid = %4.4x, breakID = %u, baton = %p): Setting PC to 0x%8.8x", __FUNCTION__, pid, tid, breakID, baton, bkpt_pc);
1962
1963    DNBRegisterValue pc_value;
1964    DNBThreadGetRegisterValueByID (pid, tid, REGISTER_SET_GENERIC, GENERIC_REGNUM_PC, &pc_value);
1965    pc_value.value.uint32 = bkpt_pc;
1966    return DNBThreadSetRegisterValueByID (pid, tid, REGISTER_SET_GENERIC, GENERIC_REGNUM_PC, &pc_value);
1967}
1968
1969// Set the single step bit in the processor status register.
1970kern_return_t
1971DNBArchMachARM::SetSingleStepSoftwareBreakpoints()
1972{
1973    DNBError err;
1974
1975#if defined (USE_ARM_DISASSEMBLER_FRAMEWORK)
1976    err = GetGPRState(false);
1977
1978    if (err.Fail())
1979    {
1980        err.LogThreaded("%s: failed to read the GPR registers", __FUNCTION__);
1981        return err.Error();
1982    }
1983
1984    nub_addr_t curr_pc = m_state.context.gpr.__pc;
1985    uint32_t curr_cpsr = m_state.context.gpr.__cpsr;
1986    nub_addr_t next_pc = curr_pc;
1987
1988    bool curr_pc_is_thumb = (m_state.context.gpr.__cpsr & 0x20) != 0;
1989    bool next_pc_is_thumb = curr_pc_is_thumb;
1990
1991    uint32_t curr_itstate = ((curr_cpsr & 0x6000000) >> 25) | ((curr_cpsr & 0xFC00) >> 8);
1992    bool inITBlock = (curr_itstate & 0xF) ? 1 : 0;
1993    bool lastInITBlock = ((curr_itstate & 0xF) == 0x8) ? 1 : 0;
1994
1995    DNBLogThreadedIf(LOG_STEP | LOG_VERBOSE, "%s: curr_pc=0x%8.8x (%s), curr_itstate=0x%x, inITBlock=%d, lastInITBlock=%d", __FUNCTION__, curr_pc, curr_pc_is_thumb ? "Thumb" : "ARM", curr_itstate, inITBlock, lastInITBlock);
1996
1997    // If the instruction is not in the IT block, then decode using the Disassembler and compute next_pc
1998    if (!inITBlock)
1999    {
2000        DNBLogThreadedIf(LOG_STEP | LOG_VERBOSE, "%s: Decoding an instruction NOT in the IT block", __FUNCTION__);
2001
2002        arm_error_t decodeReturnCode =  DecodeInstructionUsingDisassembler(curr_pc, curr_cpsr, &m_last_decode_arm, &m_last_decode_thumb, &next_pc);
2003
2004        if (decodeReturnCode != ARM_SUCCESS)
2005        {
2006            err = KERN_INVALID_ARGUMENT;
2007            DNBLogError("DNBArchMachARM::SetSingleStepSoftwareBreakpoints: Unable to disassemble instruction at 0x%8.8llx", (uint64_t)curr_pc);
2008        }
2009    }
2010    else
2011    {
2012        next_pc = curr_pc + ((m_last_decode_arm.thumb16b) ? 2 : 4);
2013    }
2014
2015    // Instruction is NOT in the IT block OR
2016    if (!inITBlock)
2017    {
2018        DNBLogThreadedIf(LOG_STEP | LOG_VERBOSE, "%s: normal instruction", __FUNCTION__);
2019        EvaluateNextInstructionForSoftwareBreakpointSetup(curr_pc, m_state.context.gpr.__cpsr, curr_pc_is_thumb, &next_pc, &next_pc_is_thumb);
2020    }
2021    else if (inITBlock && !m_last_decode_arm.setsFlags)
2022    {
2023        DNBLogThreadedIf(LOG_STEP | LOG_VERBOSE, "%s: IT instruction that doesn't set flags", __FUNCTION__);
2024        EvaluateNextInstructionForSoftwareBreakpointSetup(curr_pc, m_state.context.gpr.__cpsr, curr_pc_is_thumb, &next_pc, &next_pc_is_thumb);
2025    }
2026    else if (lastInITBlock && m_last_decode_arm.branch)
2027    {
2028        DNBLogThreadedIf(LOG_STEP | LOG_VERBOSE, "%s: IT instruction which last in the IT block and is a branch", __FUNCTION__);
2029        EvaluateNextInstructionForSoftwareBreakpointSetup(curr_pc, m_state.context.gpr.__cpsr, curr_pc_is_thumb, &next_pc, &next_pc_is_thumb);
2030    }
2031    else
2032    {
2033        // Instruction is in IT block and can modify the CPSR flags
2034        DNBLogThreadedIf(LOG_STEP | LOG_VERBOSE, "%s: IT instruction that sets flags", __FUNCTION__);
2035
2036        // NOTE: When this point of code is reached, the instruction at curr_pc has already been decoded
2037        // inside the function ThreadDidStop(). Therefore m_last_decode_arm, m_last_decode_thumb
2038        // reflect the decoded instruction at curr_pc
2039
2040        // If we find an instruction inside the IT block which will set/modify the condition flags (NZCV bits in CPSR),
2041        // we set breakpoints at all remaining instructions inside the IT block starting from the instruction immediately
2042        // following this one AND a breakpoint at the instruction immediately following the IT block. We do this because
2043        // we cannot determine the next_pc until the instruction at which we are currently stopped executes. Hence we
2044        // insert (m_last_decode_thumb.itBlockRemaining+1) 16-bit Thumb breakpoints at consecutive memory locations
2045        // starting at addrOfNextInstructionInITBlock. We record these breakpoints in class variable m_sw_single_step_itblock_break_id[],
2046        // and also record the total number of IT breakpoints set in the variable 'm_sw_single_step_itblock_break_count'.
2047
2048        // The instructions inside the IT block, which are replaced by the 16-bit Thumb breakpoints (opcode=0xDEFE)
2049        // instructions, can be either Thumb-16 or Thumb-32. When a Thumb-32 instruction (say, inst#1) is replaced  Thumb
2050        // by a 16-bit breakpoint (OS only supports 16-bit breakpoints in Thumb mode and 32-bit breakpoints in ARM mode), the
2051        // breakpoint for the next instruction (say instr#2) is saved in the upper half of this Thumb-32 (instr#1)
2052        // instruction. Hence if the execution stops at Breakpoint2 corresponding to instr#2, the PC is offset by 16-bits.
2053        // We therefore have to keep track of PC of each instruction in the IT block that is being replaced with the 16-bit
2054        // Thumb breakpoint, to ensure that when the breakpoint is hit, the PC is adjusted to the correct value. We save
2055        // the actual PC corresponding to each instruction in the IT block by associating a call back with each breakpoint
2056        // we set and passing it as a baton. When the breakpoint hits and the callback routine is called, the routine
2057        // adjusts the PC based on the baton that is passed to it.
2058
2059        nub_addr_t addrOfNextInstructionInITBlock, pcInITBlock, nextPCInITBlock, bpAddressInITBlock;
2060        uint16_t opcode16;
2061        uint32_t opcode32;
2062
2063        addrOfNextInstructionInITBlock = (m_last_decode_arm.thumb16b) ? curr_pc + 2 : curr_pc + 4;
2064
2065        pcInITBlock = addrOfNextInstructionInITBlock;
2066
2067        DNBLogThreadedIf(LOG_STEP | LOG_VERBOSE, "%s: itBlockRemaining=%d", __FUNCTION__, m_last_decode_thumb.itBlockRemaining);
2068
2069        m_sw_single_step_itblock_break_count = 0;
2070        for (int i = 0; i <= m_last_decode_thumb.itBlockRemaining; i++)
2071        {
2072            if (NUB_BREAK_ID_IS_VALID(m_sw_single_step_itblock_break_id[i]))
2073            {
2074                DNBLogError("FunctionProfiler::SetSingleStepSoftwareBreakpoints(): Array m_sw_single_step_itblock_break_id should not contain any valid breakpoint IDs at this point. But found a valid breakID=%d at index=%d", m_sw_single_step_itblock_break_id[i], i);
2075            }
2076            else
2077            {
2078                nextPCInITBlock = pcInITBlock;
2079                // Compute nextPCInITBlock based on opcode present at pcInITBlock
2080                if (m_thread->Process()->Task().ReadMemory(pcInITBlock, 2, &opcode16) == 2)
2081                {
2082                    opcode32 = opcode16;
2083                    nextPCInITBlock += 2;
2084
2085                    // Check for 32 bit thumb opcode and read the upper 16 bits if needed
2086                    if (((opcode32 & 0xE000) == 0xE000) && (opcode32 & 0x1800))
2087                    {
2088                        // Adjust 'next_pc_in_itblock' to point to the default next Thumb instruction for
2089                        // a 32 bit Thumb opcode
2090                        // Read bits 31:16 of a 32 bit Thumb opcode
2091                        if (m_thread->Process()->Task().ReadMemory(pcInITBlock+2, 2, &opcode16) == 2)
2092                        {
2093                            // 32 bit thumb opcode
2094                            opcode32 = (opcode32 << 16) | opcode16;
2095                            nextPCInITBlock += 2;
2096                        }
2097                        else
2098                        {
2099                            DNBLogError("FunctionProfiler::SetSingleStepSoftwareBreakpoints(): Unable to read opcode bits 31:16 for a 32 bit thumb opcode at pc=0x%8.8llx", (uint64_t)nextPCInITBlock);
2100                        }
2101                    }
2102                }
2103                else
2104                {
2105                    DNBLogError("FunctionProfiler::SetSingleStepSoftwareBreakpoints(): Error reading 16-bit Thumb instruction at pc=0x%8.8x", nextPCInITBlock);
2106                }
2107
2108
2109                // Set breakpoint and associate a callback function with it
2110                bpAddressInITBlock = addrOfNextInstructionInITBlock + 2*i;
2111                DNBLogThreadedIf(LOG_STEP | LOG_VERBOSE, "%s: Setting IT breakpoint[%d] at address: 0x%8.8x", __FUNCTION__, i, bpAddressInITBlock);
2112
2113                m_sw_single_step_itblock_break_id[i] = m_thread->Process()->CreateBreakpoint(bpAddressInITBlock, 2, false, m_thread->ThreadID());
2114                if (!NUB_BREAK_ID_IS_VALID(m_sw_single_step_itblock_break_id[i]))
2115                    err = KERN_INVALID_ARGUMENT;
2116                else
2117                {
2118                    DNBLogThreadedIf(LOG_STEP, "%s: Set IT breakpoint[%i]=%d set at 0x%8.8x for instruction at 0x%8.8x", __FUNCTION__, i, m_sw_single_step_itblock_break_id[i], bpAddressInITBlock, pcInITBlock);
2119
2120                    // Set the breakpoint callback for these special IT breakpoints
2121                    // so that if one of these breakpoints gets hit, it knows to
2122                    // update the PC to the original address of the conditional
2123                    // IT instruction.
2124                    DNBBreakpointSetCallback(m_thread->ProcessID(), m_sw_single_step_itblock_break_id[i], DNBArchMachARM::BreakpointHit, (void*)pcInITBlock);
2125                    m_sw_single_step_itblock_break_count++;
2126                }
2127            }
2128
2129            pcInITBlock = nextPCInITBlock;
2130        }
2131
2132        DNBLogThreadedIf(LOG_STEP | LOG_VERBOSE, "%s: Set %u IT software single breakpoints.", __FUNCTION__, m_sw_single_step_itblock_break_count);
2133
2134    }
2135
2136    DNBLogThreadedIf(LOG_STEP, "%s: next_pc=0x%8.8x (%s)", __FUNCTION__, next_pc, next_pc_is_thumb ? "Thumb" : "ARM");
2137
2138    if (next_pc & 0x1)
2139    {
2140        assert(next_pc_is_thumb);
2141    }
2142
2143    if (next_pc_is_thumb)
2144    {
2145        next_pc &= ~0x1;
2146    }
2147    else
2148    {
2149        assert((next_pc & 0x3) == 0);
2150    }
2151
2152    if (!inITBlock || (inITBlock && !m_last_decode_arm.setsFlags) || (lastInITBlock && m_last_decode_arm.branch))
2153    {
2154        err = KERN_SUCCESS;
2155
2156#if defined DNB_ARCH_MACH_ARM_DEBUG_SW_STEP
2157        m_sw_single_step_next_pc = next_pc;
2158        if (next_pc_is_thumb)
2159            m_sw_single_step_next_pc |= 1;  // Set bit zero if the next PC is expected to be Thumb
2160#else
2161        const DNBBreakpoint *bp = m_thread->Process()->Breakpoints().FindByAddress(next_pc);
2162
2163        if (bp == NULL)
2164        {
2165            m_sw_single_step_break_id = m_thread->Process()->CreateBreakpoint(next_pc, next_pc_is_thumb ? 2 : 4, false, m_thread->ThreadID());
2166            if (!NUB_BREAK_ID_IS_VALID(m_sw_single_step_break_id))
2167                err = KERN_INVALID_ARGUMENT;
2168            DNBLogThreadedIf(LOG_STEP, "%s: software single step breakpoint with breakID=%d set at 0x%8.8x", __FUNCTION__, m_sw_single_step_break_id, next_pc);
2169        }
2170#endif
2171    }
2172#else
2173    err.LogThreaded("%s: ARMDisassembler.framework support is disabled", __FUNCTION__);
2174#endif
2175    return err.Error();
2176}
2177
2178uint32_t
2179DNBArchMachARM::NumSupportedHardwareBreakpoints()
2180{
2181    // Set the init value to something that will let us know that we need to
2182    // autodetect how many breakpoints are supported dynamically...
2183    static uint32_t g_num_supported_hw_breakpoints = UINT_MAX;
2184    if (g_num_supported_hw_breakpoints == UINT_MAX)
2185    {
2186        // Set this to zero in case we can't tell if there are any HW breakpoints
2187        g_num_supported_hw_breakpoints = 0;
2188
2189        size_t len;
2190        uint32_t n = 0;
2191        len = sizeof (n);
2192        if (::sysctlbyname("hw.optional.breakpoint", &n, &len, NULL, 0) == 0)
2193        {
2194            g_num_supported_hw_breakpoints = n;
2195            DNBLogThreadedIf(LOG_THREAD, "hw.optional.breakpoint=%u", n);
2196        }
2197        else
2198        {
2199            // Read the DBGDIDR to get the number of available hardware breakpoints
2200            // However, in some of our current armv7 processors, hardware
2201            // breakpoints/watchpoints were not properly connected. So detect those
2202            // cases using a field in a sysctl. For now we are using "hw.cpusubtype"
2203            // field to distinguish CPU architectures. This is a hack until we can
2204            // get <rdar://problem/6372672> fixed, at which point we will switch to
2205            // using a different sysctl string that will tell us how many BRPs
2206            // are available to us directly without having to read DBGDIDR.
2207            uint32_t register_DBGDIDR;
2208
2209            asm("mrc p14, 0, %0, c0, c0, 0" : "=r" (register_DBGDIDR));
2210            uint32_t numBRPs = bits(register_DBGDIDR, 27, 24);
2211            // Zero is reserved for the BRP count, so don't increment it if it is zero
2212            if (numBRPs > 0)
2213                numBRPs++;
2214            DNBLogThreadedIf(LOG_THREAD, "DBGDIDR=0x%8.8x (number BRP pairs = %u)", register_DBGDIDR, numBRPs);
2215
2216            if (numBRPs > 0)
2217            {
2218                uint32_t cpusubtype;
2219                len = sizeof(cpusubtype);
2220                // TODO: remove this hack and change to using hw.optional.xx when implmented
2221                if (::sysctlbyname("hw.cpusubtype", &cpusubtype, &len, NULL, 0) == 0)
2222                {
2223                    DNBLogThreadedIf(LOG_THREAD, "hw.cpusubtype=%d", cpusubtype);
2224                    if (cpusubtype == CPU_SUBTYPE_ARM_V7)
2225                        DNBLogThreadedIf(LOG_THREAD, "Hardware breakpoints disabled for armv7 (rdar://problem/6372672)");
2226                    else
2227                        g_num_supported_hw_breakpoints = numBRPs;
2228                }
2229            }
2230        }
2231    }
2232    return g_num_supported_hw_breakpoints;
2233}
2234
2235
2236uint32_t
2237DNBArchMachARM::NumSupportedHardwareWatchpoints()
2238{
2239    // Set the init value to something that will let us know that we need to
2240    // autodetect how many watchpoints are supported dynamically...
2241    static uint32_t g_num_supported_hw_watchpoints = UINT_MAX;
2242    if (g_num_supported_hw_watchpoints == UINT_MAX)
2243    {
2244        // Set this to zero in case we can't tell if there are any HW breakpoints
2245        g_num_supported_hw_watchpoints = 0;
2246
2247
2248        size_t len;
2249        uint32_t n = 0;
2250        len = sizeof (n);
2251        if (::sysctlbyname("hw.optional.watchpoint", &n, &len, NULL, 0) == 0)
2252        {
2253            g_num_supported_hw_watchpoints = n;
2254            DNBLogThreadedIf(LOG_THREAD, "hw.optional.watchpoint=%u", n);
2255        }
2256        else
2257        {
2258            // Read the DBGDIDR to get the number of available hardware breakpoints
2259            // However, in some of our current armv7 processors, hardware
2260            // breakpoints/watchpoints were not properly connected. So detect those
2261            // cases using a field in a sysctl. For now we are using "hw.cpusubtype"
2262            // field to distinguish CPU architectures. This is a hack until we can
2263            // get <rdar://problem/6372672> fixed, at which point we will switch to
2264            // using a different sysctl string that will tell us how many WRPs
2265            // are available to us directly without having to read DBGDIDR.
2266
2267            uint32_t register_DBGDIDR;
2268            asm("mrc p14, 0, %0, c0, c0, 0" : "=r" (register_DBGDIDR));
2269            uint32_t numWRPs = bits(register_DBGDIDR, 31, 28) + 1;
2270            DNBLogThreadedIf(LOG_THREAD, "DBGDIDR=0x%8.8x (number WRP pairs = %u)", register_DBGDIDR, numWRPs);
2271
2272            if (numWRPs > 0)
2273            {
2274                uint32_t cpusubtype;
2275                size_t len;
2276                len = sizeof(cpusubtype);
2277                // TODO: remove this hack and change to using hw.optional.xx when implmented
2278                if (::sysctlbyname("hw.cpusubtype", &cpusubtype, &len, NULL, 0) == 0)
2279                {
2280                    DNBLogThreadedIf(LOG_THREAD, "hw.cpusubtype=0x%d", cpusubtype);
2281
2282                    if (cpusubtype == CPU_SUBTYPE_ARM_V7)
2283                        DNBLogThreadedIf(LOG_THREAD, "Hardware watchpoints disabled for armv7 (rdar://problem/6372672)");
2284                    else
2285                        g_num_supported_hw_watchpoints = numWRPs;
2286                }
2287            }
2288        }
2289    }
2290    return g_num_supported_hw_watchpoints;
2291}
2292
2293
2294uint32_t
2295DNBArchMachARM::EnableHardwareBreakpoint (nub_addr_t addr, nub_size_t size)
2296{
2297    // Make sure our address isn't bogus
2298    if (addr & 1)
2299        return INVALID_NUB_HW_INDEX;
2300
2301    kern_return_t kret = GetDBGState(false);
2302
2303    if (kret == KERN_SUCCESS)
2304    {
2305        const uint32_t num_hw_breakpoints = NumSupportedHardwareBreakpoints();
2306        uint32_t i;
2307        for (i=0; i<num_hw_breakpoints; ++i)
2308        {
2309            if ((m_state.dbg.__bcr[i] & BCR_ENABLE) == 0)
2310                break; // We found an available hw breakpoint slot (in i)
2311        }
2312
2313        // See if we found an available hw breakpoint slot above
2314        if (i < num_hw_breakpoints)
2315        {
2316            // Make sure bits 1:0 are clear in our address
2317            m_state.dbg.__bvr[i] = addr & ~((nub_addr_t)3);
2318
2319            if (size == 2 || addr & 2)
2320            {
2321                uint32_t byte_addr_select = (addr & 2) ? BAS_IMVA_2_3 : BAS_IMVA_0_1;
2322
2323                // We have a thumb breakpoint
2324                // We have an ARM breakpoint
2325                m_state.dbg.__bcr[i] =  BCR_M_IMVA_MATCH |  // Stop on address mismatch
2326                                        byte_addr_select |  // Set the correct byte address select so we only trigger on the correct opcode
2327                                        S_USER |            // Which modes should this breakpoint stop in?
2328                                        BCR_ENABLE;         // Enable this hardware breakpoint
2329                DNBLogThreadedIf (LOG_BREAKPOINTS, "DNBArchMachARM::EnableHardwareBreakpoint( addr = 0x%8.8llx, size = %zu ) - BVR%u/BCR%u = 0x%8.8x / 0x%8.8x (Thumb)",
2330                                  (uint64_t)addr,
2331                                  size,
2332                                  i,
2333                                  i,
2334                                  m_state.dbg.__bvr[i],
2335                                  m_state.dbg.__bcr[i]);
2336            }
2337            else if (size == 4)
2338            {
2339                // We have an ARM breakpoint
2340                m_state.dbg.__bcr[i] =  BCR_M_IMVA_MATCH |  // Stop on address mismatch
2341                                        BAS_IMVA_ALL |      // Stop on any of the four bytes following the IMVA
2342                                        S_USER |            // Which modes should this breakpoint stop in?
2343                                        BCR_ENABLE;         // Enable this hardware breakpoint
2344                DNBLogThreadedIf (LOG_BREAKPOINTS, "DNBArchMachARM::EnableHardwareBreakpoint( addr = 0x%8.8llx, size = %zu ) - BVR%u/BCR%u = 0x%8.8x / 0x%8.8x (ARM)",
2345                                  (uint64_t)addr,
2346                                  size,
2347                                  i,
2348                                  i,
2349                                  m_state.dbg.__bvr[i],
2350                                  m_state.dbg.__bcr[i]);
2351            }
2352
2353            kret = SetDBGState();
2354            DNBLogThreadedIf(LOG_BREAKPOINTS, "DNBArchMachARM::EnableHardwareBreakpoint() SetDBGState() => 0x%8.8x.", kret);
2355
2356            if (kret == KERN_SUCCESS)
2357                return i;
2358        }
2359        else
2360        {
2361            DNBLogThreadedIf (LOG_BREAKPOINTS, "DNBArchMachARM::EnableHardwareBreakpoint(addr = 0x%8.8llx, size = %zu) => all hardware breakpoint resources are being used.", (uint64_t)addr, size);
2362        }
2363    }
2364
2365    return INVALID_NUB_HW_INDEX;
2366}
2367
2368bool
2369DNBArchMachARM::DisableHardwareBreakpoint (uint32_t hw_index)
2370{
2371    kern_return_t kret = GetDBGState(false);
2372
2373    const uint32_t num_hw_points = NumSupportedHardwareBreakpoints();
2374    if (kret == KERN_SUCCESS)
2375    {
2376        if (hw_index < num_hw_points)
2377        {
2378            m_state.dbg.__bcr[hw_index] = 0;
2379            DNBLogThreadedIf(LOG_BREAKPOINTS, "DNBArchMachARM::SetHardwareBreakpoint( %u ) - BVR%u = 0x%8.8x  BCR%u = 0x%8.8x",
2380                    hw_index,
2381                    hw_index,
2382                    m_state.dbg.__bvr[hw_index],
2383                    hw_index,
2384                    m_state.dbg.__bcr[hw_index]);
2385
2386            kret = SetDBGState();
2387
2388            if (kret == KERN_SUCCESS)
2389                return true;
2390        }
2391    }
2392    return false;
2393}
2394
2395// This stores the lo->hi mappings.  It's safe to initialize to all 0's
2396// since hi > lo and therefore LoHi[i] cannot be 0.
2397static uint32_t LoHi[16] = { 0 };
2398
2399uint32_t
2400DNBArchMachARM::EnableHardwareWatchpoint (nub_addr_t addr, nub_size_t size, bool read, bool write)
2401{
2402    DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM::EnableHardwareWatchpoint(addr = 0x%8.8llx, size = %zu, read = %u, write = %u)", (uint64_t)addr, size, read, write);
2403
2404    const uint32_t num_hw_watchpoints = NumSupportedHardwareWatchpoints();
2405
2406    // Can't watch zero bytes
2407    if (size == 0)
2408        return INVALID_NUB_HW_INDEX;
2409
2410    // We must watch for either read or write
2411    if (read == false && write == false)
2412        return INVALID_NUB_HW_INDEX;
2413
2414    // Divide-and-conquer for size == 8.
2415    if (size == 8)
2416    {
2417        uint32_t lo = EnableHardwareWatchpoint(addr, 4, read, write);
2418        if (lo == INVALID_NUB_HW_INDEX)
2419            return INVALID_NUB_HW_INDEX;
2420        uint32_t hi = EnableHardwareWatchpoint(addr+4, 4, read, write);
2421        if (hi == INVALID_NUB_HW_INDEX)
2422        {
2423            DisableHardwareWatchpoint(lo);
2424            return INVALID_NUB_HW_INDEX;
2425        }
2426        // Tag thsi lo->hi mapping in our database.
2427        LoHi[lo] = hi;
2428        return lo;
2429    }
2430
2431    // Otherwise, can't watch more than 4 bytes per WVR/WCR pair
2432    if (size > 4)
2433        return INVALID_NUB_HW_INDEX;
2434
2435    // We can only watch up to four bytes that follow a 4 byte aligned address
2436    // per watchpoint register pair. Since we can only watch until the next 4
2437    // byte boundary, we need to make sure we can properly encode this.
2438
2439    // addr_word_offset = addr % 4, i.e, is in set([0, 1, 2, 3])
2440    //
2441    //     +---+---+---+---+
2442    //     | 0 | 1 | 2 | 3 |
2443    //     +---+---+---+---+
2444    //     ^
2445    //     |
2446    // word address (4-byte aligned) = addr & 0xFFFFFFFC => goes into WVR
2447    //
2448    // examples:
2449    // 1. addr_word_offset = 1, size = 1 to watch a uint_8 => byte_mask = (0b0001 << 1) = 0b0010
2450    // 2. addr_word_offset = 2, size = 2 to watch a uint_16 => byte_mask = (0b0011 << 2) = 0b1100
2451    //
2452    // where byte_mask goes into WCR[8:5]
2453
2454    uint32_t addr_word_offset = addr % 4;
2455    DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM::EnableHardwareWatchpoint() - addr_word_offset = 0x%8.8x", addr_word_offset);
2456
2457    uint32_t byte_mask = ((1u << size) - 1u) << addr_word_offset;
2458    DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM::EnableHardwareWatchpoint() - byte_mask = 0x%8.8x", byte_mask);
2459    if (byte_mask > 0xfu)
2460        return INVALID_NUB_HW_INDEX;
2461
2462    // Read the debug state
2463    kern_return_t kret = GetDBGState(false);
2464
2465    if (kret == KERN_SUCCESS)
2466    {
2467        // Check to make sure we have the needed hardware support
2468        uint32_t i = 0;
2469
2470        for (i=0; i<num_hw_watchpoints; ++i)
2471        {
2472            if ((m_state.dbg.__wcr[i] & WCR_ENABLE) == 0)
2473                break; // We found an available hw watchpoint slot (in i)
2474        }
2475
2476        // See if we found an available hw watchpoint slot above
2477        if (i < num_hw_watchpoints)
2478        {
2479            //DumpDBGState(m_state.dbg);
2480
2481            // Make the byte_mask into a valid Byte Address Select mask
2482            uint32_t byte_address_select = byte_mask << 5;
2483            // Make sure bits 1:0 are clear in our address
2484            m_state.dbg.__wvr[i] = addr & ~((nub_addr_t)3);     // DVA (Data Virtual Address)
2485            m_state.dbg.__wcr[i] =  byte_address_select |       // Which bytes that follow the DVA that we will watch
2486                                    S_USER |                    // Stop only in user mode
2487                                    (read ? WCR_LOAD : 0) |     // Stop on read access?
2488                                    (write ? WCR_STORE : 0) |   // Stop on write access?
2489                                    WCR_ENABLE;                 // Enable this watchpoint;
2490
2491            kret = SetDBGState();
2492            //DumpDBGState(m_state.dbg);
2493
2494            DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM::EnableHardwareWatchpoint() SetDBGState() => 0x%8.8x.", kret);
2495
2496            if (kret == KERN_SUCCESS)
2497                return i;
2498        }
2499        else
2500        {
2501            DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM::EnableHardwareWatchpoint(): All hardware resources (%u) are in use.", num_hw_watchpoints);
2502        }
2503    }
2504    return INVALID_NUB_HW_INDEX;
2505}
2506
2507bool
2508DNBArchMachARM::EnableHardwareWatchpoint0 (uint32_t hw_index, bool Delegate)
2509{
2510    kern_return_t kret = GetDBGState(false);
2511    if (kret != KERN_SUCCESS)
2512        return false;
2513
2514    const uint32_t num_hw_points = NumSupportedHardwareWatchpoints();
2515    if (hw_index >= num_hw_points)
2516        return false;
2517
2518    if (Delegate && LoHi[hw_index]) {
2519        // Enable lo and hi watchpoint hardware indexes.
2520        return EnableHardwareWatchpoint0(hw_index, false) &&
2521            EnableHardwareWatchpoint0(LoHi[hw_index], false);
2522    }
2523
2524    m_state.dbg.__wcr[hw_index] |= (nub_addr_t)WCR_ENABLE;
2525    DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM::EnableHardwareWatchpoint( %u ) - WVR%u = 0x%8.8x  WCR%u = 0x%8.8x",
2526                     hw_index,
2527                     hw_index,
2528                     m_state.dbg.__wvr[hw_index],
2529                     hw_index,
2530                     m_state.dbg.__wcr[hw_index]);
2531
2532    kret = SetDBGState();
2533
2534    return (kret == KERN_SUCCESS);
2535}
2536
2537bool
2538DNBArchMachARM::DisableHardwareWatchpoint (uint32_t hw_index)
2539{
2540    return DisableHardwareWatchpoint0(hw_index, true);
2541}
2542bool
2543DNBArchMachARM::DisableHardwareWatchpoint0 (uint32_t hw_index, bool Delegate)
2544{
2545    kern_return_t kret = GetDBGState(false);
2546    if (kret != KERN_SUCCESS)
2547        return false;
2548
2549    const uint32_t num_hw_points = NumSupportedHardwareWatchpoints();
2550    if (hw_index >= num_hw_points)
2551        return false;
2552
2553    if (Delegate && LoHi[hw_index]) {
2554        // Disable lo and hi watchpoint hardware indexes.
2555        return DisableHardwareWatchpoint0(hw_index, false) &&
2556            DisableHardwareWatchpoint0(LoHi[hw_index], false);
2557    }
2558
2559    m_state.dbg.__wcr[hw_index] &= ~((nub_addr_t)WCR_ENABLE);
2560    DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM::DisableHardwareWatchpoint( %u ) - WVR%u = 0x%8.8x  WCR%u = 0x%8.8x",
2561                     hw_index,
2562                     hw_index,
2563                     m_state.dbg.__wvr[hw_index],
2564                     hw_index,
2565                     m_state.dbg.__wcr[hw_index]);
2566
2567    kret = SetDBGState();
2568
2569    return (kret == KERN_SUCCESS);
2570}
2571
2572// {0} -> __bvr[16], {0} -> __bcr[16], {0} --> __wvr[16], {0} -> __wcr{16}
2573DNBArchMachARM::DBG DNBArchMachARM::Global_Debug_State = {{0},{0},{0},{0}};
2574bool DNBArchMachARM::Valid_Global_Debug_State = false;
2575
2576// Use this callback from MachThread, which in turn was called from MachThreadList, to update
2577// the global view of the hardware watchpoint state, so that when new thread comes along, they
2578// get to inherit the existing hardware watchpoint state.
2579void
2580DNBArchMachARM::HardwareWatchpointStateChanged ()
2581{
2582    Global_Debug_State = m_state.dbg;
2583    Valid_Global_Debug_State = true;
2584}
2585
2586// Returns -1 if the trailing bit patterns are not one of:
2587// { 0b???1, 0b??10, 0b?100, 0b1000 }.
2588static inline
2589int32_t
2590LowestBitSet(uint32_t val)
2591{
2592    for (unsigned i = 0; i < 4; ++i) {
2593        if (bit(val, i))
2594            return i;
2595    }
2596    return -1;
2597}
2598
2599// Iterate through the debug registers; return the index of the first watchpoint whose address matches.
2600// As a side effect, the starting address as understood by the debugger is returned which could be
2601// different from 'addr' passed as an in/out argument.
2602uint32_t
2603DNBArchMachARM::GetHardwareWatchpointHit(nub_addr_t &addr)
2604{
2605    // Read the debug state
2606    kern_return_t kret = GetDBGState(true);
2607    //DumpDBGState(m_state.dbg);
2608    DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM::GetHardwareWatchpointHit() GetDBGState() => 0x%8.8x.", kret);
2609    DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM::GetHardwareWatchpointHit() addr = 0x%llx", (uint64_t)addr);
2610
2611    // This is the watchpoint value to match against, i.e., word address.
2612    nub_addr_t wp_val = addr & ~((nub_addr_t)3);
2613    if (kret == KERN_SUCCESS)
2614    {
2615        DBG &debug_state = m_state.dbg;
2616        uint32_t i, num = NumSupportedHardwareWatchpoints();
2617        for (i = 0; i < num; ++i)
2618        {
2619            nub_addr_t wp_addr = GetWatchAddress(debug_state, i);
2620            DNBLogThreadedIf(LOG_WATCHPOINTS,
2621                             "DNBArchMachARM::GetHardwareWatchpointHit() slot: %u (addr = 0x%llx).",
2622                             i, (uint64_t)wp_addr);
2623            if (wp_val == wp_addr) {
2624                uint32_t byte_mask = bits(debug_state.__wcr[i], 8, 5);
2625
2626                // Sanity check the byte_mask, first.
2627                if (LowestBitSet(byte_mask) < 0)
2628                    continue;
2629
2630                // Compute the starting address (from the point of view of the debugger).
2631                addr = wp_addr + LowestBitSet(byte_mask);
2632                return i;
2633            }
2634        }
2635    }
2636    return INVALID_NUB_HW_INDEX;
2637}
2638
2639// ThreadWillResume() calls this to clear bits[5:2] (Method of entry bits) of
2640// the Debug Status and Control Register (DSCR).
2641//
2642// b0010 = a watchpoint occurred
2643// b0000 is the reset value
2644void
2645DNBArchMachARM::ClearWatchpointOccurred()
2646{
2647    uint32_t register_DBGDSCR;
2648    asm("mrc p14, 0, %0, c0, c1, 0" : "=r" (register_DBGDSCR));
2649    if (bits(register_DBGDSCR, 5, 2) == WATCHPOINT_OCCURRED)
2650    {
2651        uint32_t mask = ~(0xF << 2);
2652        register_DBGDSCR &= mask;
2653        asm("mcr p14, 0, %0, c0, c1, 0" : "=r" (register_DBGDSCR));
2654    }
2655    return;
2656}
2657
2658// NotifyException() calls this to double check that a watchpoint has occurred
2659// by inspecting the bits[5:2] field of the Debug Status and Control Register
2660// (DSCR).
2661//
2662// b0010 = a watchpoint occurred
2663bool
2664DNBArchMachARM::HasWatchpointOccurred()
2665{
2666    uint32_t register_DBGDSCR;
2667    asm("mrc p14, 0, %0, c0, c1, 0" : "=r" (register_DBGDSCR));
2668    return (bits(register_DBGDSCR, 5, 2) == WATCHPOINT_OCCURRED);
2669}
2670
2671bool
2672DNBArchMachARM::IsWatchpointEnabled(const DBG &debug_state, uint32_t hw_index)
2673{
2674    // Watchpoint Control Registers, bitfield definitions
2675    // ...
2676    // Bits    Value    Description
2677    // [0]     0        Watchpoint disabled
2678    //         1        Watchpoint enabled.
2679    return (debug_state.__wcr[hw_index] & 1u);
2680}
2681
2682nub_addr_t
2683DNBArchMachARM::GetWatchAddress(const DBG &debug_state, uint32_t hw_index)
2684{
2685    // Watchpoint Value Registers, bitfield definitions
2686    // Bits        Description
2687    // [31:2]      Watchpoint value (word address, i.e., 4-byte aligned)
2688    // [1:0]       RAZ/SBZP
2689    return bits(debug_state.__wvr[hw_index], 31, 0);
2690}
2691
2692//----------------------------------------------------------------------
2693// Register information defintions for 32 bit ARMV6.
2694//----------------------------------------------------------------------
2695enum gpr_regnums
2696{
2697    gpr_r0 = 0,
2698    gpr_r1,
2699    gpr_r2,
2700    gpr_r3,
2701    gpr_r4,
2702    gpr_r5,
2703    gpr_r6,
2704    gpr_r7,
2705    gpr_r8,
2706    gpr_r9,
2707    gpr_r10,
2708    gpr_r11,
2709    gpr_r12,
2710    gpr_sp,
2711    gpr_lr,
2712    gpr_pc,
2713    gpr_cpsr
2714};
2715
2716enum
2717{
2718    vfp_s0 = 0,
2719    vfp_s1,
2720    vfp_s2,
2721    vfp_s3,
2722    vfp_s4,
2723    vfp_s5,
2724    vfp_s6,
2725    vfp_s7,
2726    vfp_s8,
2727    vfp_s9,
2728    vfp_s10,
2729    vfp_s11,
2730    vfp_s12,
2731    vfp_s13,
2732    vfp_s14,
2733    vfp_s15,
2734    vfp_s16,
2735    vfp_s17,
2736    vfp_s18,
2737    vfp_s19,
2738    vfp_s20,
2739    vfp_s21,
2740    vfp_s22,
2741    vfp_s23,
2742    vfp_s24,
2743    vfp_s25,
2744    vfp_s26,
2745    vfp_s27,
2746    vfp_s28,
2747    vfp_s29,
2748    vfp_s30,
2749    vfp_s31,
2750    vfp_d0,
2751    vfp_d1,
2752    vfp_d2,
2753    vfp_d3,
2754    vfp_d4,
2755    vfp_d5,
2756    vfp_d6,
2757    vfp_d7,
2758    vfp_d8,
2759    vfp_d9,
2760    vfp_d10,
2761    vfp_d11,
2762    vfp_d12,
2763    vfp_d13,
2764    vfp_d14,
2765    vfp_d15,
2766    vfp_d16,
2767    vfp_d17,
2768    vfp_d18,
2769    vfp_d19,
2770    vfp_d20,
2771    vfp_d21,
2772    vfp_d22,
2773    vfp_d23,
2774    vfp_d24,
2775    vfp_d25,
2776    vfp_d26,
2777    vfp_d27,
2778    vfp_d28,
2779    vfp_d29,
2780    vfp_d30,
2781    vfp_d31,
2782    vfp_fpscr
2783};
2784
2785enum
2786{
2787    exc_exception,
2788	exc_fsr,
2789	exc_far,
2790};
2791
2792enum
2793{
2794    gdb_r0 = 0,
2795    gdb_r1,
2796    gdb_r2,
2797    gdb_r3,
2798    gdb_r4,
2799    gdb_r5,
2800    gdb_r6,
2801    gdb_r7,
2802    gdb_r8,
2803    gdb_r9,
2804    gdb_r10,
2805    gdb_r11,
2806    gdb_r12,
2807    gdb_sp,
2808    gdb_lr,
2809    gdb_pc,
2810    gdb_f0,
2811    gdb_f1,
2812    gdb_f2,
2813    gdb_f3,
2814    gdb_f4,
2815    gdb_f5,
2816    gdb_f6,
2817    gdb_f7,
2818    gdb_f8,
2819    gdb_cpsr,
2820    gdb_s0,
2821    gdb_s1,
2822    gdb_s2,
2823    gdb_s3,
2824    gdb_s4,
2825    gdb_s5,
2826    gdb_s6,
2827    gdb_s7,
2828    gdb_s8,
2829    gdb_s9,
2830    gdb_s10,
2831    gdb_s11,
2832    gdb_s12,
2833    gdb_s13,
2834    gdb_s14,
2835    gdb_s15,
2836    gdb_s16,
2837    gdb_s17,
2838    gdb_s18,
2839    gdb_s19,
2840    gdb_s20,
2841    gdb_s21,
2842    gdb_s22,
2843    gdb_s23,
2844    gdb_s24,
2845    gdb_s25,
2846    gdb_s26,
2847    gdb_s27,
2848    gdb_s28,
2849    gdb_s29,
2850    gdb_s30,
2851    gdb_s31,
2852    gdb_fpscr,
2853    gdb_d0,
2854    gdb_d1,
2855    gdb_d2,
2856    gdb_d3,
2857    gdb_d4,
2858    gdb_d5,
2859    gdb_d6,
2860    gdb_d7,
2861    gdb_d8,
2862    gdb_d9,
2863    gdb_d10,
2864    gdb_d11,
2865    gdb_d12,
2866    gdb_d13,
2867    gdb_d14,
2868    gdb_d15
2869};
2870
2871#define GPR_OFFSET_IDX(idx) (offsetof (DNBArchMachARM::GPR, __r[idx]))
2872#define GPR_OFFSET_NAME(reg) (offsetof (DNBArchMachARM::GPR, __##reg))
2873#define VFP_S_OFFSET_IDX(idx) (offsetof (DNBArchMachARM::FPU, __r[(idx)]) + offsetof (DNBArchMachARM::Context, vfp))
2874#define VFP_D_OFFSET_IDX(idx) (VFP_S_OFFSET_IDX ((idx) * 2))
2875#define VFP_OFFSET_NAME(reg) (offsetof (DNBArchMachARM::FPU, __##reg) + offsetof (DNBArchMachARM::Context, vfp))
2876#define EXC_OFFSET(reg)      (offsetof (DNBArchMachARM::EXC, __##reg)  + offsetof (DNBArchMachARM::Context, exc))
2877
2878// These macros will auto define the register name, alt name, register size,
2879// register offset, encoding, format and native register. This ensures that
2880// the register state structures are defined correctly and have the correct
2881// sizes and offsets.
2882#define DEFINE_GPR_IDX(idx, reg, alt, gen) { e_regSetGPR, gpr_##reg, #reg, alt, Uint, Hex, 4, GPR_OFFSET_IDX(idx), gcc_##reg, dwarf_##reg, gen, gdb_##reg }
2883#define DEFINE_GPR_NAME(reg, alt, gen) { e_regSetGPR, gpr_##reg, #reg, alt, Uint, Hex, 4, GPR_OFFSET_NAME(reg), gcc_##reg, dwarf_##reg, gen, gdb_##reg }
2884//#define FLOAT_FORMAT Float
2885#define FLOAT_FORMAT Hex
2886#define DEFINE_VFP_S_IDX(idx) { e_regSetVFP, vfp_s##idx, "s" #idx, NULL, IEEE754, FLOAT_FORMAT, 4, VFP_S_OFFSET_IDX(idx), INVALID_NUB_REGNUM, dwarf_s##idx, INVALID_NUB_REGNUM, gdb_s##idx }
2887//#define DEFINE_VFP_D_IDX(idx) { e_regSetVFP, vfp_d##idx, "d" #idx, NULL, IEEE754, Float, 8, VFP_D_OFFSET_IDX(idx), INVALID_NUB_REGNUM, dwarf_d##idx, INVALID_NUB_REGNUM, gdb_d##idx }
2888#define DEFINE_VFP_D_IDX(idx) { e_regSetVFP, vfp_d##idx, "d" #idx, NULL, IEEE754, FLOAT_FORMAT, 8, VFP_D_OFFSET_IDX(idx), INVALID_NUB_REGNUM, dwarf_d##idx, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM }
2889
2890// General purpose registers
2891const DNBRegisterInfo
2892DNBArchMachARM::g_gpr_registers[] =
2893{
2894    DEFINE_GPR_IDX ( 0,  r0,"arg1", GENERIC_REGNUM_ARG1  ),
2895    DEFINE_GPR_IDX ( 1,  r1,"arg2", GENERIC_REGNUM_ARG2  ),
2896    DEFINE_GPR_IDX ( 2,  r2,"arg3", GENERIC_REGNUM_ARG3  ),
2897    DEFINE_GPR_IDX ( 3,  r3,"arg4", GENERIC_REGNUM_ARG4  ),
2898    DEFINE_GPR_IDX ( 4,  r4,  NULL, INVALID_NUB_REGNUM   ),
2899    DEFINE_GPR_IDX ( 5,  r5,  NULL, INVALID_NUB_REGNUM   ),
2900    DEFINE_GPR_IDX ( 6,  r6,  NULL, INVALID_NUB_REGNUM   ),
2901    DEFINE_GPR_IDX ( 7,  r7,  "fp", GENERIC_REGNUM_FP    ),
2902    DEFINE_GPR_IDX ( 8,  r8,  NULL, INVALID_NUB_REGNUM   ),
2903    DEFINE_GPR_IDX ( 9,  r9,  NULL, INVALID_NUB_REGNUM   ),
2904    DEFINE_GPR_IDX (10, r10,  NULL, INVALID_NUB_REGNUM   ),
2905    DEFINE_GPR_IDX (11, r11,  NULL, INVALID_NUB_REGNUM   ),
2906    DEFINE_GPR_IDX (12, r12,  NULL, INVALID_NUB_REGNUM   ),
2907    DEFINE_GPR_NAME (sp, "r13", GENERIC_REGNUM_SP    ),
2908    DEFINE_GPR_NAME (lr, "r14", GENERIC_REGNUM_RA    ),
2909    DEFINE_GPR_NAME (pc, "r15", GENERIC_REGNUM_PC    ),
2910    DEFINE_GPR_NAME (cpsr, "flags", GENERIC_REGNUM_FLAGS )
2911};
2912
2913// Floating point registers
2914const DNBRegisterInfo
2915DNBArchMachARM::g_vfp_registers[] =
2916{
2917    DEFINE_VFP_S_IDX ( 0),
2918    DEFINE_VFP_S_IDX ( 1),
2919    DEFINE_VFP_S_IDX ( 2),
2920    DEFINE_VFP_S_IDX ( 3),
2921    DEFINE_VFP_S_IDX ( 4),
2922    DEFINE_VFP_S_IDX ( 5),
2923    DEFINE_VFP_S_IDX ( 6),
2924    DEFINE_VFP_S_IDX ( 7),
2925    DEFINE_VFP_S_IDX ( 8),
2926    DEFINE_VFP_S_IDX ( 9),
2927    DEFINE_VFP_S_IDX (10),
2928    DEFINE_VFP_S_IDX (11),
2929    DEFINE_VFP_S_IDX (12),
2930    DEFINE_VFP_S_IDX (13),
2931    DEFINE_VFP_S_IDX (14),
2932    DEFINE_VFP_S_IDX (15),
2933    DEFINE_VFP_S_IDX (16),
2934    DEFINE_VFP_S_IDX (17),
2935    DEFINE_VFP_S_IDX (18),
2936    DEFINE_VFP_S_IDX (19),
2937    DEFINE_VFP_S_IDX (20),
2938    DEFINE_VFP_S_IDX (21),
2939    DEFINE_VFP_S_IDX (22),
2940    DEFINE_VFP_S_IDX (23),
2941    DEFINE_VFP_S_IDX (24),
2942    DEFINE_VFP_S_IDX (25),
2943    DEFINE_VFP_S_IDX (26),
2944    DEFINE_VFP_S_IDX (27),
2945    DEFINE_VFP_S_IDX (28),
2946    DEFINE_VFP_S_IDX (29),
2947    DEFINE_VFP_S_IDX (30),
2948    DEFINE_VFP_S_IDX (31),
2949    DEFINE_VFP_D_IDX (0),
2950    DEFINE_VFP_D_IDX (1),
2951    DEFINE_VFP_D_IDX (2),
2952    DEFINE_VFP_D_IDX (3),
2953    DEFINE_VFP_D_IDX (4),
2954    DEFINE_VFP_D_IDX (5),
2955    DEFINE_VFP_D_IDX (6),
2956    DEFINE_VFP_D_IDX (7),
2957    DEFINE_VFP_D_IDX (8),
2958    DEFINE_VFP_D_IDX (9),
2959    DEFINE_VFP_D_IDX (10),
2960    DEFINE_VFP_D_IDX (11),
2961    DEFINE_VFP_D_IDX (12),
2962    DEFINE_VFP_D_IDX (13),
2963    DEFINE_VFP_D_IDX (14),
2964    DEFINE_VFP_D_IDX (15),
2965    DEFINE_VFP_D_IDX (16),
2966    DEFINE_VFP_D_IDX (17),
2967    DEFINE_VFP_D_IDX (18),
2968    DEFINE_VFP_D_IDX (19),
2969    DEFINE_VFP_D_IDX (20),
2970    DEFINE_VFP_D_IDX (21),
2971    DEFINE_VFP_D_IDX (22),
2972    DEFINE_VFP_D_IDX (23),
2973    DEFINE_VFP_D_IDX (24),
2974    DEFINE_VFP_D_IDX (25),
2975    DEFINE_VFP_D_IDX (26),
2976    DEFINE_VFP_D_IDX (27),
2977    DEFINE_VFP_D_IDX (28),
2978    DEFINE_VFP_D_IDX (29),
2979    DEFINE_VFP_D_IDX (30),
2980    DEFINE_VFP_D_IDX (31),
2981    { e_regSetVFP, vfp_fpscr, "fpscr", NULL, Uint, Hex, 4, VFP_OFFSET_NAME(fpscr), INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, gdb_fpscr }
2982};
2983
2984// Exception registers
2985
2986const DNBRegisterInfo
2987DNBArchMachARM::g_exc_registers[] =
2988{
2989  { e_regSetVFP, exc_exception  , "exception"   , NULL, Uint, Hex, 4, EXC_OFFSET(exception) , INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM },
2990  { e_regSetVFP, exc_fsr        , "fsr"         , NULL, Uint, Hex, 4, EXC_OFFSET(fsr)       , INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM },
2991  { e_regSetVFP, exc_far        , "far"         , NULL, Uint, Hex, 4, EXC_OFFSET(far)       , INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM }
2992};
2993
2994// Number of registers in each register set
2995const size_t DNBArchMachARM::k_num_gpr_registers = sizeof(g_gpr_registers)/sizeof(DNBRegisterInfo);
2996const size_t DNBArchMachARM::k_num_vfp_registers = sizeof(g_vfp_registers)/sizeof(DNBRegisterInfo);
2997const size_t DNBArchMachARM::k_num_exc_registers = sizeof(g_exc_registers)/sizeof(DNBRegisterInfo);
2998const size_t DNBArchMachARM::k_num_all_registers = k_num_gpr_registers + k_num_vfp_registers + k_num_exc_registers;
2999
3000//----------------------------------------------------------------------
3001// Register set definitions. The first definitions at register set index
3002// of zero is for all registers, followed by other registers sets. The
3003// register information for the all register set need not be filled in.
3004//----------------------------------------------------------------------
3005const DNBRegisterSetInfo
3006DNBArchMachARM::g_reg_sets[] =
3007{
3008    { "ARM Registers",              NULL,               k_num_all_registers     },
3009    { "General Purpose Registers",  g_gpr_registers,    k_num_gpr_registers     },
3010    { "Floating Point Registers",   g_vfp_registers,    k_num_vfp_registers     },
3011    { "Exception State Registers",  g_exc_registers,    k_num_exc_registers     }
3012};
3013// Total number of register sets for this architecture
3014const size_t DNBArchMachARM::k_num_register_sets = sizeof(g_reg_sets)/sizeof(DNBRegisterSetInfo);
3015
3016
3017const DNBRegisterSetInfo *
3018DNBArchMachARM::GetRegisterSetInfo(nub_size_t *num_reg_sets)
3019{
3020    *num_reg_sets = k_num_register_sets;
3021    return g_reg_sets;
3022}
3023
3024bool
3025DNBArchMachARM::GetRegisterValue(int set, int reg, DNBRegisterValue *value)
3026{
3027    if (set == REGISTER_SET_GENERIC)
3028    {
3029        switch (reg)
3030        {
3031        case GENERIC_REGNUM_PC:     // Program Counter
3032            set = e_regSetGPR;
3033            reg = gpr_pc;
3034            break;
3035
3036        case GENERIC_REGNUM_SP:     // Stack Pointer
3037            set = e_regSetGPR;
3038            reg = gpr_sp;
3039            break;
3040
3041        case GENERIC_REGNUM_FP:     // Frame Pointer
3042            set = e_regSetGPR;
3043            reg = gpr_r7;   // is this the right reg?
3044            break;
3045
3046        case GENERIC_REGNUM_RA:     // Return Address
3047            set = e_regSetGPR;
3048            reg = gpr_lr;
3049            break;
3050
3051        case GENERIC_REGNUM_FLAGS:  // Processor flags register
3052            set = e_regSetGPR;
3053            reg = gpr_cpsr;
3054            break;
3055
3056        default:
3057            return false;
3058        }
3059    }
3060
3061    if (GetRegisterState(set, false) != KERN_SUCCESS)
3062        return false;
3063
3064    const DNBRegisterInfo *regInfo = m_thread->GetRegisterInfo(set, reg);
3065    if (regInfo)
3066    {
3067        value->info = *regInfo;
3068        switch (set)
3069        {
3070        case e_regSetGPR:
3071            if (reg < k_num_gpr_registers)
3072            {
3073                value->value.uint32 = m_state.context.gpr.__r[reg];
3074                return true;
3075            }
3076            break;
3077
3078        case e_regSetVFP:
3079            if (reg <= vfp_s31)
3080            {
3081                value->value.uint32 = m_state.context.vfp.__r[reg];
3082                return true;
3083            }
3084            else if (reg <= vfp_d31)
3085            {
3086                uint32_t d_reg_idx = reg - vfp_d0;
3087                uint32_t s_reg_idx = d_reg_idx * 2;
3088                value->value.v_sint32[0] = m_state.context.vfp.__r[s_reg_idx + 0];
3089                value->value.v_sint32[1] = m_state.context.vfp.__r[s_reg_idx + 1];
3090                return true;
3091            }
3092            else if (reg == vfp_fpscr)
3093            {
3094                value->value.uint32 = m_state.context.vfp.__fpscr;
3095                return true;
3096            }
3097            break;
3098
3099        case e_regSetEXC:
3100            if (reg < k_num_exc_registers)
3101            {
3102                value->value.uint32 = (&m_state.context.exc.__exception)[reg];
3103                return true;
3104            }
3105            break;
3106        }
3107    }
3108    return false;
3109}
3110
3111bool
3112DNBArchMachARM::SetRegisterValue(int set, int reg, const DNBRegisterValue *value)
3113{
3114    if (set == REGISTER_SET_GENERIC)
3115    {
3116        switch (reg)
3117        {
3118        case GENERIC_REGNUM_PC:     // Program Counter
3119            set = e_regSetGPR;
3120            reg = gpr_pc;
3121            break;
3122
3123        case GENERIC_REGNUM_SP:     // Stack Pointer
3124            set = e_regSetGPR;
3125            reg = gpr_sp;
3126            break;
3127
3128        case GENERIC_REGNUM_FP:     // Frame Pointer
3129            set = e_regSetGPR;
3130            reg = gpr_r7;
3131            break;
3132
3133        case GENERIC_REGNUM_RA:     // Return Address
3134            set = e_regSetGPR;
3135            reg = gpr_lr;
3136            break;
3137
3138        case GENERIC_REGNUM_FLAGS:  // Processor flags register
3139            set = e_regSetGPR;
3140            reg = gpr_cpsr;
3141            break;
3142
3143        default:
3144            return false;
3145        }
3146    }
3147
3148    if (GetRegisterState(set, false) != KERN_SUCCESS)
3149        return false;
3150
3151    bool success = false;
3152    const DNBRegisterInfo *regInfo = m_thread->GetRegisterInfo(set, reg);
3153    if (regInfo)
3154    {
3155        switch (set)
3156        {
3157        case e_regSetGPR:
3158            if (reg < k_num_gpr_registers)
3159            {
3160                m_state.context.gpr.__r[reg] = value->value.uint32;
3161                success = true;
3162            }
3163            break;
3164
3165        case e_regSetVFP:
3166            if (reg <= vfp_s31)
3167            {
3168                m_state.context.vfp.__r[reg] = value->value.uint32;
3169                success = true;
3170            }
3171            else if (reg <= vfp_d31)
3172            {
3173                uint32_t d_reg_idx = reg - vfp_d0;
3174                uint32_t s_reg_idx = d_reg_idx * 2;
3175                m_state.context.vfp.__r[s_reg_idx + 0] = value->value.v_sint32[0];
3176                m_state.context.vfp.__r[s_reg_idx + 1] = value->value.v_sint32[1];
3177                success = true;
3178            }
3179            else if (reg == vfp_fpscr)
3180            {
3181                m_state.context.vfp.__fpscr = value->value.uint32;
3182                success = true;
3183            }
3184            break;
3185
3186        case e_regSetEXC:
3187            if (reg < k_num_exc_registers)
3188            {
3189                (&m_state.context.exc.__exception)[reg] = value->value.uint32;
3190                success = true;
3191            }
3192            break;
3193        }
3194
3195    }
3196    if (success)
3197        return SetRegisterState(set) == KERN_SUCCESS;
3198    return false;
3199}
3200
3201kern_return_t
3202DNBArchMachARM::GetRegisterState(int set, bool force)
3203{
3204    switch (set)
3205    {
3206    case e_regSetALL:   return GetGPRState(force) |
3207                               GetVFPState(force) |
3208                               GetEXCState(force) |
3209                               GetDBGState(force);
3210    case e_regSetGPR:   return GetGPRState(force);
3211    case e_regSetVFP:   return GetVFPState(force);
3212    case e_regSetEXC:   return GetEXCState(force);
3213    case e_regSetDBG:   return GetDBGState(force);
3214    default: break;
3215    }
3216    return KERN_INVALID_ARGUMENT;
3217}
3218
3219kern_return_t
3220DNBArchMachARM::SetRegisterState(int set)
3221{
3222    // Make sure we have a valid context to set.
3223    kern_return_t err = GetRegisterState(set, false);
3224    if (err != KERN_SUCCESS)
3225        return err;
3226
3227    switch (set)
3228    {
3229    case e_regSetALL:   return SetGPRState() |
3230                               SetVFPState() |
3231                               SetEXCState() |
3232                               SetDBGState();
3233    case e_regSetGPR:   return SetGPRState();
3234    case e_regSetVFP:   return SetVFPState();
3235    case e_regSetEXC:   return SetEXCState();
3236    case e_regSetDBG:   return SetDBGState();
3237    default: break;
3238    }
3239    return KERN_INVALID_ARGUMENT;
3240}
3241
3242bool
3243DNBArchMachARM::RegisterSetStateIsValid (int set) const
3244{
3245    return m_state.RegsAreValid(set);
3246}
3247
3248
3249nub_size_t
3250DNBArchMachARM::GetRegisterContext (void *buf, nub_size_t buf_len)
3251{
3252    nub_size_t size = sizeof (m_state.context);
3253
3254    if (buf && buf_len)
3255    {
3256        if (size > buf_len)
3257            size = buf_len;
3258
3259        bool force = false;
3260        if (GetGPRState(force) | GetVFPState(force) | GetEXCState(force))
3261            return 0;
3262        ::memcpy (buf, &m_state.context, size);
3263    }
3264    DNBLogThreadedIf (LOG_THREAD, "DNBArchMachARM::GetRegisterContext (buf = %p, len = %zu) => %zu", buf, buf_len, size);
3265    // Return the size of the register context even if NULL was passed in
3266    return size;
3267}
3268
3269nub_size_t
3270DNBArchMachARM::SetRegisterContext (const void *buf, nub_size_t buf_len)
3271{
3272    nub_size_t size = sizeof (m_state.context);
3273    if (buf == NULL || buf_len == 0)
3274        size = 0;
3275
3276    if (size)
3277    {
3278        if (size > buf_len)
3279            size = buf_len;
3280
3281        ::memcpy (&m_state.context, buf, size);
3282        SetGPRState();
3283        SetVFPState();
3284        SetEXCState();
3285    }
3286    DNBLogThreadedIf (LOG_THREAD, "DNBArchMachARM::SetRegisterContext (buf = %p, len = %zu) => %zu", buf, buf_len, size);
3287    return size;
3288}
3289
3290
3291#endif    // #if defined (__arm__)
3292
3293