DNBArchImpl.cpp revision b649f7f34951e7495b33dbb4c2e240866941bb37
1//===-- DNBArchImpl.cpp -----------------------------------------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  Created by Greg Clayton on 6/25/07.
11//
12//===----------------------------------------------------------------------===//
13
14#if defined (__arm__)
15
16#include "MacOSX/arm/DNBArchImpl.h"
17#include "MacOSX/MachProcess.h"
18#include "MacOSX/MachThread.h"
19#include "DNBBreakpoint.h"
20#include "DNBLog.h"
21#include "DNBRegisterInfo.h"
22#include "DNB.h"
23#include "ARM_GCC_Registers.h"
24#include "ARM_DWARF_Registers.h"
25
26#include <sys/sysctl.h>
27
28// BCR address match type
29#define BCR_M_IMVA_MATCH        ((uint32_t)(0u << 21))
30#define BCR_M_CONTEXT_ID_MATCH  ((uint32_t)(1u << 21))
31#define BCR_M_IMVA_MISMATCH     ((uint32_t)(2u << 21))
32#define BCR_M_RESERVED          ((uint32_t)(3u << 21))
33
34// Link a BVR/BCR or WVR/WCR pair to another
35#define E_ENABLE_LINKING        ((uint32_t)(1u << 20))
36
37// Byte Address Select
38#define BAS_IMVA_PLUS_0         ((uint32_t)(1u << 5))
39#define BAS_IMVA_PLUS_1         ((uint32_t)(1u << 6))
40#define BAS_IMVA_PLUS_2         ((uint32_t)(1u << 7))
41#define BAS_IMVA_PLUS_3         ((uint32_t)(1u << 8))
42#define BAS_IMVA_0_1            ((uint32_t)(3u << 5))
43#define BAS_IMVA_2_3            ((uint32_t)(3u << 7))
44#define BAS_IMVA_ALL            ((uint32_t)(0xfu << 5))
45
46// Break only in priveleged or user mode
47#define S_RSVD                  ((uint32_t)(0u << 1))
48#define S_PRIV                  ((uint32_t)(1u << 1))
49#define S_USER                  ((uint32_t)(2u << 1))
50#define S_PRIV_USER             ((S_PRIV) | (S_USER))
51
52#define BCR_ENABLE              ((uint32_t)(1u))
53#define WCR_ENABLE              ((uint32_t)(1u))
54
55// Watchpoint load/store
56#define WCR_LOAD                ((uint32_t)(1u << 3))
57#define WCR_STORE               ((uint32_t)(1u << 4))
58
59// Definitions for the Debug Status and Control Register fields:
60// [5:2] => Method of debug entry
61//#define WATCHPOINT_OCCURRED     ((uint32_t)(2u))
62// I'm seeing this, instead.
63#define WATCHPOINT_OCCURRED     ((uint32_t)(10u))
64
65static const uint8_t g_arm_breakpoint_opcode[] = { 0xFE, 0xDE, 0xFF, 0xE7 };
66static const uint8_t g_thumb_breakpooint_opcode[] = { 0xFE, 0xDE };
67
68// ARM constants used during decoding
69#define REG_RD          0
70#define LDM_REGLIST     1
71#define PC_REG          15
72#define PC_REGLIST_BIT  0x8000
73
74// ARM conditions
75#define COND_EQ     0x0
76#define COND_NE     0x1
77#define COND_CS     0x2
78#define COND_HS     0x2
79#define COND_CC     0x3
80#define COND_LO     0x3
81#define COND_MI     0x4
82#define COND_PL     0x5
83#define COND_VS     0x6
84#define COND_VC     0x7
85#define COND_HI     0x8
86#define COND_LS     0x9
87#define COND_GE     0xA
88#define COND_LT     0xB
89#define COND_GT     0xC
90#define COND_LE     0xD
91#define COND_AL     0xE
92#define COND_UNCOND 0xF
93
94#define MASK_CPSR_T (1u << 5)
95#define MASK_CPSR_J (1u << 24)
96
97#define MNEMONIC_STRING_SIZE 32
98#define OPERAND_STRING_SIZE 128
99
100
101void
102DNBArchMachARM::Initialize()
103{
104    DNBArchPluginInfo arch_plugin_info =
105    {
106        CPU_TYPE_ARM,
107        DNBArchMachARM::Create,
108        DNBArchMachARM::GetRegisterSetInfo,
109        DNBArchMachARM::SoftwareBreakpointOpcode
110    };
111
112    // Register this arch plug-in with the main protocol class
113    DNBArchProtocol::RegisterArchPlugin (arch_plugin_info);
114}
115
116
117DNBArchProtocol *
118DNBArchMachARM::Create (MachThread *thread)
119{
120    DNBArchMachARM *obj = new DNBArchMachARM (thread);
121
122    // When new thread comes along, it tries to inherit from the global debug state, if it is valid.
123    if (Valid_Global_Debug_State)
124    {
125        obj->m_state.dbg = Global_Debug_State;
126        kern_return_t kret = obj->SetDBGState();
127        DNBLogThreadedIf(LOG_WATCHPOINTS,
128                         "DNBArchMachARM::Create() Inherit and SetDBGState() => 0x%8.8x.", kret);
129    }
130    return obj;
131}
132
133const uint8_t * const
134DNBArchMachARM::SoftwareBreakpointOpcode (nub_size_t byte_size)
135{
136    switch (byte_size)
137    {
138    case 2: return g_thumb_breakpooint_opcode;
139    case 4: return g_arm_breakpoint_opcode;
140    }
141    return NULL;
142}
143
144uint32_t
145DNBArchMachARM::GetCPUType()
146{
147    return CPU_TYPE_ARM;
148}
149
150uint64_t
151DNBArchMachARM::GetPC(uint64_t failValue)
152{
153    // Get program counter
154    if (GetGPRState(false) == KERN_SUCCESS)
155        return m_state.context.gpr.__pc;
156    return failValue;
157}
158
159kern_return_t
160DNBArchMachARM::SetPC(uint64_t value)
161{
162    // Get program counter
163    kern_return_t err = GetGPRState(false);
164    if (err == KERN_SUCCESS)
165    {
166        m_state.context.gpr.__pc = value;
167        err = SetGPRState();
168    }
169    return err == KERN_SUCCESS;
170}
171
172uint64_t
173DNBArchMachARM::GetSP(uint64_t failValue)
174{
175    // Get stack pointer
176    if (GetGPRState(false) == KERN_SUCCESS)
177        return m_state.context.gpr.__sp;
178    return failValue;
179}
180
181kern_return_t
182DNBArchMachARM::GetGPRState(bool force)
183{
184    int set = e_regSetGPR;
185    // Check if we have valid cached registers
186    if (!force && m_state.GetError(set, Read) == KERN_SUCCESS)
187        return KERN_SUCCESS;
188
189    // Read the registers from our thread
190    mach_msg_type_number_t count = ARM_THREAD_STATE_COUNT;
191    kern_return_t kret = ::thread_get_state(m_thread->MachPortNumber(), ARM_THREAD_STATE, (thread_state_t)&m_state.context.gpr, &count);
192    uint32_t *r = &m_state.context.gpr.__r[0];
193    DNBLogThreadedIf(LOG_THREAD, "thread_get_state(0x%4.4x, %u, &gpr, %u) => 0x%8.8x (count = %u) regs r0=%8.8x r1=%8.8x r2=%8.8x r3=%8.8x r4=%8.8x r5=%8.8x r6=%8.8x r7=%8.8x r8=%8.8x r9=%8.8x r10=%8.8x r11=%8.8x s12=%8.8x sp=%8.8x lr=%8.8x pc=%8.8x cpsr=%8.8x",
194                     m_thread->MachPortNumber(),
195                     ARM_THREAD_STATE,
196                     ARM_THREAD_STATE_COUNT,
197                     kret,
198                     count,
199                     r[0],
200                     r[1],
201                     r[2],
202                     r[3],
203                     r[4],
204                     r[5],
205                     r[6],
206                     r[7],
207                     r[8],
208                     r[9],
209                     r[10],
210                     r[11],
211                     r[12],
212                     r[13],
213                     r[14],
214                     r[15],
215                     r[16]);
216    m_state.SetError(set, Read, kret);
217    return kret;
218}
219
220kern_return_t
221DNBArchMachARM::GetVFPState(bool force)
222{
223    int set = e_regSetVFP;
224    // Check if we have valid cached registers
225    if (!force && m_state.GetError(set, Read) == KERN_SUCCESS)
226        return KERN_SUCCESS;
227
228    // Read the registers from our thread
229    mach_msg_type_number_t count = ARM_VFP_STATE_COUNT;
230    kern_return_t kret = ::thread_get_state(m_thread->MachPortNumber(), ARM_VFP_STATE, (thread_state_t)&m_state.context.vfp, &count);
231    if (DNBLogEnabledForAny (LOG_THREAD))
232    {
233        uint32_t *r = &m_state.context.vfp.__r[0];
234        DNBLogThreaded ("thread_get_state(0x%4.4x, %u, &gpr, %u) => 0x%8.8x (count => %u)",
235                        m_thread->MachPortNumber(),
236                        ARM_THREAD_STATE,
237                        ARM_THREAD_STATE_COUNT,
238                        kret,
239                        count);
240        DNBLogThreaded("   s0=%8.8x  s1=%8.8x  s2=%8.8x  s3=%8.8x  s4=%8.8x  s5=%8.8x  s6=%8.8x  s7=%8.8x",r[ 0],r[ 1],r[ 2],r[ 3],r[ 4],r[ 5],r[ 6],r[ 7]);
241        DNBLogThreaded("   s8=%8.8x  s9=%8.8x s10=%8.8x s11=%8.8x s12=%8.8x s13=%8.8x s14=%8.8x s15=%8.8x",r[ 8],r[ 9],r[10],r[11],r[12],r[13],r[14],r[15]);
242        DNBLogThreaded("  s16=%8.8x s17=%8.8x s18=%8.8x s19=%8.8x s20=%8.8x s21=%8.8x s22=%8.8x s23=%8.8x",r[16],r[17],r[18],r[19],r[20],r[21],r[22],r[23]);
243        DNBLogThreaded("  s24=%8.8x s25=%8.8x s26=%8.8x s27=%8.8x s28=%8.8x s29=%8.8x s30=%8.8x s31=%8.8x",r[24],r[25],r[26],r[27],r[28],r[29],r[30],r[31]);
244        DNBLogThreaded("  s32=%8.8x s33=%8.8x s34=%8.8x s35=%8.8x s36=%8.8x s37=%8.8x s38=%8.8x s39=%8.8x",r[32],r[33],r[34],r[35],r[36],r[37],r[38],r[39]);
245        DNBLogThreaded("  s40=%8.8x s41=%8.8x s42=%8.8x s43=%8.8x s44=%8.8x s45=%8.8x s46=%8.8x s47=%8.8x",r[40],r[41],r[42],r[43],r[44],r[45],r[46],r[47]);
246        DNBLogThreaded("  s48=%8.8x s49=%8.8x s50=%8.8x s51=%8.8x s52=%8.8x s53=%8.8x s54=%8.8x s55=%8.8x",r[48],r[49],r[50],r[51],r[52],r[53],r[54],r[55]);
247        DNBLogThreaded("  s56=%8.8x s57=%8.8x s58=%8.8x s59=%8.8x s60=%8.8x s61=%8.8x s62=%8.8x s63=%8.8x fpscr=%8.8x",r[56],r[57],r[58],r[59],r[60],r[61],r[62],r[63],r[64]);
248    }
249    m_state.SetError(set, Read, kret);
250    return kret;
251}
252
253kern_return_t
254DNBArchMachARM::GetEXCState(bool force)
255{
256    int set = e_regSetEXC;
257    // Check if we have valid cached registers
258    if (!force && m_state.GetError(set, Read) == KERN_SUCCESS)
259        return KERN_SUCCESS;
260
261    // Read the registers from our thread
262    mach_msg_type_number_t count = ARM_EXCEPTION_STATE_COUNT;
263    kern_return_t kret = ::thread_get_state(m_thread->MachPortNumber(), ARM_EXCEPTION_STATE, (thread_state_t)&m_state.context.exc, &count);
264    m_state.SetError(set, Read, kret);
265    return kret;
266}
267
268static void
269DumpDBGState(const DNBArchMachARM::DBG& dbg)
270{
271    uint32_t i = 0;
272    for (i=0; i<16; i++) {
273        DNBLogThreadedIf(LOG_STEP, "BVR%-2u/BCR%-2u = { 0x%8.8x, 0x%8.8x } WVR%-2u/WCR%-2u = { 0x%8.8x, 0x%8.8x }",
274            i, i, dbg.__bvr[i], dbg.__bcr[i],
275            i, i, dbg.__wvr[i], dbg.__wcr[i]);
276    }
277}
278
279kern_return_t
280DNBArchMachARM::GetDBGState(bool force)
281{
282    int set = e_regSetDBG;
283
284    // Check if we have valid cached registers
285    if (!force && m_state.GetError(set, Read) == KERN_SUCCESS)
286        return KERN_SUCCESS;
287
288    // Read the registers from our thread
289    mach_msg_type_number_t count = ARM_DEBUG_STATE_COUNT;
290    kern_return_t kret = ::thread_get_state(m_thread->MachPortNumber(), ARM_DEBUG_STATE, (thread_state_t)&m_state.dbg, &count);
291    m_state.SetError(set, Read, kret);
292    return kret;
293}
294
295kern_return_t
296DNBArchMachARM::SetGPRState()
297{
298    int set = e_regSetGPR;
299    kern_return_t kret = ::thread_set_state(m_thread->MachPortNumber(), ARM_THREAD_STATE, (thread_state_t)&m_state.context.gpr, ARM_THREAD_STATE_COUNT);
300    m_state.SetError(set, Write, kret);         // Set the current write error for this register set
301    m_state.InvalidateRegisterSetState(set);    // Invalidate the current register state in case registers are read back differently
302    return kret;                                // Return the error code
303}
304
305kern_return_t
306DNBArchMachARM::SetVFPState()
307{
308    int set = e_regSetVFP;
309    kern_return_t kret = ::thread_set_state (m_thread->MachPortNumber(), ARM_VFP_STATE, (thread_state_t)&m_state.context.vfp, ARM_VFP_STATE_COUNT);
310    m_state.SetError(set, Write, kret);         // Set the current write error for this register set
311    m_state.InvalidateRegisterSetState(set);    // Invalidate the current register state in case registers are read back differently
312    return kret;                                // Return the error code
313}
314
315kern_return_t
316DNBArchMachARM::SetEXCState()
317{
318    int set = e_regSetEXC;
319    kern_return_t kret = ::thread_set_state (m_thread->MachPortNumber(), ARM_EXCEPTION_STATE, (thread_state_t)&m_state.context.exc, ARM_EXCEPTION_STATE_COUNT);
320    m_state.SetError(set, Write, kret);         // Set the current write error for this register set
321    m_state.InvalidateRegisterSetState(set);    // Invalidate the current register state in case registers are read back differently
322    return kret;                                // Return the error code
323}
324
325kern_return_t
326DNBArchMachARM::SetDBGState()
327{
328    int set = e_regSetDBG;
329    kern_return_t kret = ::thread_set_state (m_thread->MachPortNumber(), ARM_DEBUG_STATE, (thread_state_t)&m_state.dbg, ARM_DEBUG_STATE_COUNT);
330    m_state.SetError(set, Write, kret);         // Set the current write error for this register set
331    m_state.InvalidateRegisterSetState(set);    // Invalidate the current register state in case registers are read back differently
332    return kret;                                // Return the error code
333}
334
335void
336DNBArchMachARM::ThreadWillResume()
337{
338    // Do we need to step this thread? If so, let the mach thread tell us so.
339    if (m_thread->IsStepping())
340    {
341        // This is the primary thread, let the arch do anything it needs
342        if (NumSupportedHardwareBreakpoints() > 0)
343        {
344            if (EnableHardwareSingleStep(true) != KERN_SUCCESS)
345            {
346                DNBLogThreaded("DNBArchMachARM::ThreadWillResume() failed to enable hardware single step");
347            }
348        }
349    }
350
351    // Disable the triggered watchpoint temporarily before we resume.
352    // Plus, we try to enable hardware single step to execute past the instruction which triggered our watchpoint.
353    if (m_watchpoint_did_occur)
354    {
355        if (m_watchpoint_hw_index >= 0)
356        {
357            kern_return_t kret = GetDBGState(false);
358            if (kret == KERN_SUCCESS && !IsWatchpointEnabled(m_state.dbg, m_watchpoint_hw_index)) {
359                // The watchpoint might have been disabled by the user.  We don't need to do anything at all
360                // to enable hardware single stepping.
361                m_watchpoint_did_occur = false;
362                m_watchpoint_hw_index = -1;
363                return;
364            }
365
366            DisableHardwareWatchpoint0(m_watchpoint_hw_index, true);
367            DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM::ThreadWillResume() DisableHardwareWatchpoint(%d) called",
368                             m_watchpoint_hw_index);
369
370            // Enable hardware single step to move past the watchpoint-triggering instruction.
371            m_watchpoint_resume_single_step_enabled = (EnableHardwareSingleStep(true) == KERN_SUCCESS);
372
373            // If we are not able to enable single step to move past the watchpoint-triggering instruction,
374            // at least we should reset the two watchpoint member variables so that the next time around
375            // this callback function is invoked, the enclosing logical branch is skipped.
376            if (!m_watchpoint_resume_single_step_enabled) {
377                // Reset the two watchpoint member variables.
378                m_watchpoint_did_occur = false;
379                m_watchpoint_hw_index = -1;
380                DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM::ThreadWillResume() failed to enable single step");
381            }
382            else
383                DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM::ThreadWillResume() succeeded to enable single step");
384        }
385    }
386}
387
388bool
389DNBArchMachARM::ThreadDidStop()
390{
391    bool success = true;
392
393    m_state.InvalidateRegisterSetState (e_regSetALL);
394
395    if (m_watchpoint_resume_single_step_enabled)
396    {
397        // Great!  We now disable the hardware single step as well as re-enable the hardware watchpoint.
398        // See also ThreadWillResume().
399        if (EnableHardwareSingleStep(false) == KERN_SUCCESS)
400        {
401            if (m_watchpoint_did_occur && m_watchpoint_hw_index >= 0)
402            {
403                EnableHardwareWatchpoint0(m_watchpoint_hw_index, true);
404                m_watchpoint_resume_single_step_enabled = false;
405                m_watchpoint_did_occur = false;
406                m_watchpoint_hw_index = -1;
407            }
408            else
409            {
410                DNBLogError("internal error detected: m_watchpoint_resume_step_enabled is true but (m_watchpoint_did_occur && m_watchpoint_hw_index >= 0) does not hold!");
411            }
412        }
413        else
414        {
415            DNBLogError("internal error detected: m_watchpoint_resume_step_enabled is true but unable to disable single step!");
416        }
417    }
418
419    // Are we stepping a single instruction?
420    if (GetGPRState(true) == KERN_SUCCESS)
421    {
422        // We are single stepping, was this the primary thread?
423        if (m_thread->IsStepping())
424        {
425            // Are we software single stepping?
426            if (NUB_BREAK_ID_IS_VALID(m_sw_single_step_break_id) || m_sw_single_step_itblock_break_count)
427            {
428                // Remove any software single stepping breakpoints that we have set
429
430                // Do we have a normal software single step breakpoint?
431                if (NUB_BREAK_ID_IS_VALID(m_sw_single_step_break_id))
432                {
433                    DNBLogThreadedIf(LOG_STEP, "%s: removing software single step breakpoint (breakID=%d)", __FUNCTION__, m_sw_single_step_break_id);
434                    success = m_thread->Process()->DisableBreakpoint(m_sw_single_step_break_id, true);
435                    m_sw_single_step_break_id = INVALID_NUB_BREAK_ID;
436                }
437
438                // Do we have any Thumb IT breakpoints?
439                if (m_sw_single_step_itblock_break_count > 0)
440                {
441                    // See if we hit one of our Thumb IT breakpoints?
442                    DNBBreakpoint *step_bp = m_thread->Process()->Breakpoints().FindByAddress(m_state.context.gpr.__pc);
443
444                    if (step_bp)
445                    {
446                        // We did hit our breakpoint, tell the breakpoint it was
447                        // hit so that it can run its callback routine and fixup
448                        // the PC.
449                        DNBLogThreadedIf(LOG_STEP, "%s: IT software single step breakpoint hit (breakID=%u)", __FUNCTION__, step_bp->GetID());
450                        step_bp->BreakpointHit(m_thread->Process()->ProcessID(), m_thread->ThreadID());
451                    }
452
453                    // Remove all Thumb IT breakpoints
454                    for (int i = 0; i < m_sw_single_step_itblock_break_count; i++)
455                    {
456                        if (NUB_BREAK_ID_IS_VALID(m_sw_single_step_itblock_break_id[i]))
457                        {
458                            DNBLogThreadedIf(LOG_STEP, "%s: removing IT software single step breakpoint (breakID=%d)", __FUNCTION__, m_sw_single_step_itblock_break_id[i]);
459                            success = m_thread->Process()->DisableBreakpoint(m_sw_single_step_itblock_break_id[i], true);
460                            m_sw_single_step_itblock_break_id[i] = INVALID_NUB_BREAK_ID;
461                        }
462                    }
463                    m_sw_single_step_itblock_break_count = 0;
464
465                }
466
467            }
468            else
469                success = EnableHardwareSingleStep(false) == KERN_SUCCESS;
470        }
471        else
472        {
473            // The MachThread will automatically restore the suspend count
474            // in ThreadDidStop(), so we don't need to do anything here if
475            // we weren't the primary thread the last time
476        }
477    }
478    return success;
479}
480
481bool
482DNBArchMachARM::NotifyException(MachException::Data& exc)
483{
484    switch (exc.exc_type)
485    {
486        default:
487            break;
488        case EXC_BREAKPOINT:
489            if (exc.exc_data.size() == 2 && exc.exc_data[0] == EXC_ARM_DA_DEBUG)
490            {
491                // exc_code = EXC_ARM_DA_DEBUG
492                //
493                // Check whether this corresponds to a watchpoint hit event.
494                // If yes, retrieve the exc_sub_code as the data break address.
495                if (!HasWatchpointOccurred())
496                    break;
497
498                // The data break address is passed as exc_data[1].
499                nub_addr_t addr = exc.exc_data[1];
500                // Find the hardware index with the side effect of possibly massaging the
501                // addr to return the starting address as seen from the debugger side.
502                uint32_t hw_index = GetHardwareWatchpointHit(addr);
503                if (hw_index != INVALID_NUB_HW_INDEX)
504                {
505                    m_watchpoint_did_occur = true;
506                    m_watchpoint_hw_index = hw_index;
507                    exc.exc_data[1] = addr;
508                    // Piggyback the hw_index in the exc.data.
509                    exc.exc_data.push_back(hw_index);
510                }
511
512                return true;
513            }
514            break;
515    }
516    return false;
517}
518
519bool
520DNBArchMachARM::StepNotComplete ()
521{
522    if (m_hw_single_chained_step_addr != INVALID_NUB_ADDRESS)
523    {
524        kern_return_t kret = KERN_INVALID_ARGUMENT;
525        kret = GetGPRState(false);
526        if (kret == KERN_SUCCESS)
527        {
528            if (m_state.context.gpr.__pc == m_hw_single_chained_step_addr)
529            {
530                DNBLogThreadedIf(LOG_STEP, "Need to step some more at 0x%8.8x", m_hw_single_chained_step_addr);
531                return true;
532            }
533        }
534    }
535
536    m_hw_single_chained_step_addr = INVALID_NUB_ADDRESS;
537    return false;
538}
539
540
541// Set the single step bit in the processor status register.
542kern_return_t
543DNBArchMachARM::EnableHardwareSingleStep (bool enable)
544{
545    DNBError err;
546    DNBLogThreadedIf(LOG_STEP, "%s( enable = %d )", __FUNCTION__, enable);
547
548    err = GetGPRState(false);
549
550    if (err.Fail())
551    {
552        err.LogThreaded("%s: failed to read the GPR registers", __FUNCTION__);
553        return err.Error();
554    }
555
556    err = GetDBGState(false);
557
558    if (err.Fail())
559    {
560        err.LogThreaded("%s: failed to read the DBG registers", __FUNCTION__);
561        return err.Error();
562    }
563
564    const uint32_t i = 0;
565    if (enable)
566    {
567        m_hw_single_chained_step_addr = INVALID_NUB_ADDRESS;
568
569        // Save our previous state
570        m_dbg_save = m_state.dbg;
571        // Set a breakpoint that will stop when the PC doesn't match the current one!
572        m_state.dbg.__bvr[i] = m_state.context.gpr.__pc & 0xFFFFFFFCu;      // Set the current PC as the breakpoint address
573        m_state.dbg.__bcr[i] = BCR_M_IMVA_MISMATCH |    // Stop on address mismatch
574                               S_USER |                 // Stop only in user mode
575                               BCR_ENABLE;              // Enable this breakpoint
576        if (m_state.context.gpr.__cpsr & 0x20)
577        {
578            // Thumb breakpoint
579            if (m_state.context.gpr.__pc & 2)
580                m_state.dbg.__bcr[i] |= BAS_IMVA_2_3;
581            else
582                m_state.dbg.__bcr[i] |= BAS_IMVA_0_1;
583
584            uint16_t opcode;
585            if (sizeof(opcode) == m_thread->Process()->Task().ReadMemory(m_state.context.gpr.__pc, sizeof(opcode), &opcode))
586            {
587                if (((opcode & 0xE000) == 0xE000) && opcode & 0x1800)
588                {
589                    // 32 bit thumb opcode...
590                    if (m_state.context.gpr.__pc & 2)
591                    {
592                        // We can't take care of a 32 bit thumb instruction single step
593                        // with just IVA mismatching. We will need to chain an extra
594                        // hardware single step in order to complete this single step...
595                        m_hw_single_chained_step_addr = m_state.context.gpr.__pc + 2;
596                    }
597                    else
598                    {
599                        // Extend the number of bits to ignore for the mismatch
600                        m_state.dbg.__bcr[i] |= BAS_IMVA_ALL;
601                    }
602                }
603            }
604        }
605        else
606        {
607            // ARM breakpoint
608            m_state.dbg.__bcr[i] |= BAS_IMVA_ALL; // Stop when any address bits change
609        }
610
611        DNBLogThreadedIf(LOG_STEP, "%s: BVR%u=0x%8.8x  BCR%u=0x%8.8x", __FUNCTION__, i, m_state.dbg.__bvr[i], i, m_state.dbg.__bcr[i]);
612
613        for (uint32_t j=i+1; j<16; ++j)
614        {
615            // Disable all others
616            m_state.dbg.__bvr[j] = 0;
617            m_state.dbg.__bcr[j] = 0;
618        }
619    }
620    else
621    {
622        // Just restore the state we had before we did single stepping
623        m_state.dbg = m_dbg_save;
624    }
625
626    return SetDBGState();
627}
628
629// return 1 if bit "BIT" is set in "value"
630static inline uint32_t bit(uint32_t value, uint32_t bit)
631{
632    return (value >> bit) & 1u;
633}
634
635// return the bitfield "value[msbit:lsbit]".
636static inline uint32_t bits(uint32_t value, uint32_t msbit, uint32_t lsbit)
637{
638    assert(msbit >= lsbit);
639    uint32_t shift_left = sizeof(value) * 8 - 1 - msbit;
640    value <<= shift_left;           // shift anything above the msbit off of the unsigned edge
641    value >>= (shift_left + lsbit); // shift it back again down to the lsbit (including undoing any shift from above)
642    return value;                   // return our result
643}
644
645bool
646DNBArchMachARM::ConditionPassed(uint8_t condition, uint32_t cpsr)
647{
648    uint32_t cpsr_n = bit(cpsr, 31); // Negative condition code flag
649    uint32_t cpsr_z = bit(cpsr, 30); // Zero condition code flag
650    uint32_t cpsr_c = bit(cpsr, 29); // Carry condition code flag
651    uint32_t cpsr_v = bit(cpsr, 28); // Overflow condition code flag
652
653    switch (condition) {
654        case COND_EQ: // (0x0)
655            if (cpsr_z == 1) return true;
656            break;
657        case COND_NE: // (0x1)
658            if (cpsr_z == 0) return true;
659            break;
660        case COND_CS: // (0x2)
661            if (cpsr_c == 1) return true;
662            break;
663        case COND_CC: // (0x3)
664            if (cpsr_c == 0) return true;
665            break;
666        case COND_MI: // (0x4)
667            if (cpsr_n == 1) return true;
668            break;
669        case COND_PL: // (0x5)
670            if (cpsr_n == 0) return true;
671            break;
672        case COND_VS: // (0x6)
673            if (cpsr_v == 1) return true;
674            break;
675        case COND_VC: // (0x7)
676            if (cpsr_v == 0) return true;
677            break;
678        case COND_HI: // (0x8)
679            if ((cpsr_c == 1) && (cpsr_z == 0)) return true;
680            break;
681        case COND_LS: // (0x9)
682            if ((cpsr_c == 0) || (cpsr_z == 1)) return true;
683            break;
684        case COND_GE: // (0xA)
685            if (cpsr_n == cpsr_v) return true;
686            break;
687        case COND_LT: // (0xB)
688            if (cpsr_n != cpsr_v) return true;
689            break;
690        case COND_GT: // (0xC)
691            if ((cpsr_z == 0) && (cpsr_n == cpsr_v)) return true;
692            break;
693        case COND_LE: // (0xD)
694            if ((cpsr_z == 1) || (cpsr_n != cpsr_v)) return true;
695            break;
696        default:
697            return true;
698            break;
699    }
700
701    return false;
702}
703
704nub_bool_t
705DNBArchMachARM::BreakpointHit (nub_process_t pid, nub_thread_t tid, nub_break_t breakID, void *baton)
706{
707    nub_addr_t bkpt_pc = (nub_addr_t)baton;
708    DNBLogThreadedIf(LOG_STEP | LOG_VERBOSE, "%s(pid = %i, tid = %4.4x, breakID = %u, baton = %p): Setting PC to 0x%8.8x", __FUNCTION__, pid, tid, breakID, baton, bkpt_pc);
709
710    DNBRegisterValue pc_value;
711    DNBThreadGetRegisterValueByID (pid, tid, REGISTER_SET_GENERIC, GENERIC_REGNUM_PC, &pc_value);
712    pc_value.value.uint32 = bkpt_pc;
713    return DNBThreadSetRegisterValueByID (pid, tid, REGISTER_SET_GENERIC, GENERIC_REGNUM_PC, &pc_value);
714}
715
716uint32_t
717DNBArchMachARM::NumSupportedHardwareBreakpoints()
718{
719    // Set the init value to something that will let us know that we need to
720    // autodetect how many breakpoints are supported dynamically...
721    static uint32_t g_num_supported_hw_breakpoints = UINT_MAX;
722    if (g_num_supported_hw_breakpoints == UINT_MAX)
723    {
724        // Set this to zero in case we can't tell if there are any HW breakpoints
725        g_num_supported_hw_breakpoints = 0;
726
727        size_t len;
728        uint32_t n = 0;
729        len = sizeof (n);
730        if (::sysctlbyname("hw.optional.breakpoint", &n, &len, NULL, 0) == 0)
731        {
732            g_num_supported_hw_breakpoints = n;
733            DNBLogThreadedIf(LOG_THREAD, "hw.optional.breakpoint=%u", n);
734        }
735        else
736        {
737            // Read the DBGDIDR to get the number of available hardware breakpoints
738            // However, in some of our current armv7 processors, hardware
739            // breakpoints/watchpoints were not properly connected. So detect those
740            // cases using a field in a sysctl. For now we are using "hw.cpusubtype"
741            // field to distinguish CPU architectures. This is a hack until we can
742            // get <rdar://problem/6372672> fixed, at which point we will switch to
743            // using a different sysctl string that will tell us how many BRPs
744            // are available to us directly without having to read DBGDIDR.
745            uint32_t register_DBGDIDR;
746
747            asm("mrc p14, 0, %0, c0, c0, 0" : "=r" (register_DBGDIDR));
748            uint32_t numBRPs = bits(register_DBGDIDR, 27, 24);
749            // Zero is reserved for the BRP count, so don't increment it if it is zero
750            if (numBRPs > 0)
751                numBRPs++;
752            DNBLogThreadedIf(LOG_THREAD, "DBGDIDR=0x%8.8x (number BRP pairs = %u)", register_DBGDIDR, numBRPs);
753
754            if (numBRPs > 0)
755            {
756                uint32_t cpusubtype;
757                len = sizeof(cpusubtype);
758                // TODO: remove this hack and change to using hw.optional.xx when implmented
759                if (::sysctlbyname("hw.cpusubtype", &cpusubtype, &len, NULL, 0) == 0)
760                {
761                    DNBLogThreadedIf(LOG_THREAD, "hw.cpusubtype=%d", cpusubtype);
762                    if (cpusubtype == CPU_SUBTYPE_ARM_V7)
763                        DNBLogThreadedIf(LOG_THREAD, "Hardware breakpoints disabled for armv7 (rdar://problem/6372672)");
764                    else
765                        g_num_supported_hw_breakpoints = numBRPs;
766                }
767            }
768        }
769    }
770    return g_num_supported_hw_breakpoints;
771}
772
773
774uint32_t
775DNBArchMachARM::NumSupportedHardwareWatchpoints()
776{
777    // Set the init value to something that will let us know that we need to
778    // autodetect how many watchpoints are supported dynamically...
779    static uint32_t g_num_supported_hw_watchpoints = UINT_MAX;
780    if (g_num_supported_hw_watchpoints == UINT_MAX)
781    {
782        // Set this to zero in case we can't tell if there are any HW breakpoints
783        g_num_supported_hw_watchpoints = 0;
784
785
786        size_t len;
787        uint32_t n = 0;
788        len = sizeof (n);
789        if (::sysctlbyname("hw.optional.watchpoint", &n, &len, NULL, 0) == 0)
790        {
791            g_num_supported_hw_watchpoints = n;
792            DNBLogThreadedIf(LOG_THREAD, "hw.optional.watchpoint=%u", n);
793        }
794        else
795        {
796            // Read the DBGDIDR to get the number of available hardware breakpoints
797            // However, in some of our current armv7 processors, hardware
798            // breakpoints/watchpoints were not properly connected. So detect those
799            // cases using a field in a sysctl. For now we are using "hw.cpusubtype"
800            // field to distinguish CPU architectures. This is a hack until we can
801            // get <rdar://problem/6372672> fixed, at which point we will switch to
802            // using a different sysctl string that will tell us how many WRPs
803            // are available to us directly without having to read DBGDIDR.
804
805            uint32_t register_DBGDIDR;
806            asm("mrc p14, 0, %0, c0, c0, 0" : "=r" (register_DBGDIDR));
807            uint32_t numWRPs = bits(register_DBGDIDR, 31, 28) + 1;
808            DNBLogThreadedIf(LOG_THREAD, "DBGDIDR=0x%8.8x (number WRP pairs = %u)", register_DBGDIDR, numWRPs);
809
810            if (numWRPs > 0)
811            {
812                uint32_t cpusubtype;
813                size_t len;
814                len = sizeof(cpusubtype);
815                // TODO: remove this hack and change to using hw.optional.xx when implmented
816                if (::sysctlbyname("hw.cpusubtype", &cpusubtype, &len, NULL, 0) == 0)
817                {
818                    DNBLogThreadedIf(LOG_THREAD, "hw.cpusubtype=0x%d", cpusubtype);
819
820                    if (cpusubtype == CPU_SUBTYPE_ARM_V7)
821                        DNBLogThreadedIf(LOG_THREAD, "Hardware watchpoints disabled for armv7 (rdar://problem/6372672)");
822                    else
823                        g_num_supported_hw_watchpoints = numWRPs;
824                }
825            }
826        }
827    }
828    return g_num_supported_hw_watchpoints;
829}
830
831
832uint32_t
833DNBArchMachARM::EnableHardwareBreakpoint (nub_addr_t addr, nub_size_t size)
834{
835    // Make sure our address isn't bogus
836    if (addr & 1)
837        return INVALID_NUB_HW_INDEX;
838
839    kern_return_t kret = GetDBGState(false);
840
841    if (kret == KERN_SUCCESS)
842    {
843        const uint32_t num_hw_breakpoints = NumSupportedHardwareBreakpoints();
844        uint32_t i;
845        for (i=0; i<num_hw_breakpoints; ++i)
846        {
847            if ((m_state.dbg.__bcr[i] & BCR_ENABLE) == 0)
848                break; // We found an available hw breakpoint slot (in i)
849        }
850
851        // See if we found an available hw breakpoint slot above
852        if (i < num_hw_breakpoints)
853        {
854            // Make sure bits 1:0 are clear in our address
855            m_state.dbg.__bvr[i] = addr & ~((nub_addr_t)3);
856
857            if (size == 2 || addr & 2)
858            {
859                uint32_t byte_addr_select = (addr & 2) ? BAS_IMVA_2_3 : BAS_IMVA_0_1;
860
861                // We have a thumb breakpoint
862                // We have an ARM breakpoint
863                m_state.dbg.__bcr[i] =  BCR_M_IMVA_MATCH |  // Stop on address mismatch
864                                        byte_addr_select |  // Set the correct byte address select so we only trigger on the correct opcode
865                                        S_USER |            // Which modes should this breakpoint stop in?
866                                        BCR_ENABLE;         // Enable this hardware breakpoint
867                DNBLogThreadedIf (LOG_BREAKPOINTS, "DNBArchMachARM::EnableHardwareBreakpoint( addr = 0x%8.8llx, size = %llu ) - BVR%u/BCR%u = 0x%8.8x / 0x%8.8x (Thumb)",
868                                  (uint64_t)addr,
869                                  (uint64_t)size,
870                                  i,
871                                  i,
872                                  m_state.dbg.__bvr[i],
873                                  m_state.dbg.__bcr[i]);
874            }
875            else if (size == 4)
876            {
877                // We have an ARM breakpoint
878                m_state.dbg.__bcr[i] =  BCR_M_IMVA_MATCH |  // Stop on address mismatch
879                                        BAS_IMVA_ALL |      // Stop on any of the four bytes following the IMVA
880                                        S_USER |            // Which modes should this breakpoint stop in?
881                                        BCR_ENABLE;         // Enable this hardware breakpoint
882                DNBLogThreadedIf (LOG_BREAKPOINTS, "DNBArchMachARM::EnableHardwareBreakpoint( addr = 0x%8.8llx, size = %llu ) - BVR%u/BCR%u = 0x%8.8x / 0x%8.8x (ARM)",
883                                  (uint64_t)addr,
884                                  (uint64_t)size,
885                                  i,
886                                  i,
887                                  m_state.dbg.__bvr[i],
888                                  m_state.dbg.__bcr[i]);
889            }
890
891            kret = SetDBGState();
892            DNBLogThreadedIf(LOG_BREAKPOINTS, "DNBArchMachARM::EnableHardwareBreakpoint() SetDBGState() => 0x%8.8x.", kret);
893
894            if (kret == KERN_SUCCESS)
895                return i;
896        }
897        else
898        {
899            DNBLogThreadedIf (LOG_BREAKPOINTS, "DNBArchMachARM::EnableHardwareBreakpoint(addr = 0x%8.8llx, size = %llu) => all hardware breakpoint resources are being used.", (uint64_t)addr, (uint64_t)size);
900        }
901    }
902
903    return INVALID_NUB_HW_INDEX;
904}
905
906bool
907DNBArchMachARM::DisableHardwareBreakpoint (uint32_t hw_index)
908{
909    kern_return_t kret = GetDBGState(false);
910
911    const uint32_t num_hw_points = NumSupportedHardwareBreakpoints();
912    if (kret == KERN_SUCCESS)
913    {
914        if (hw_index < num_hw_points)
915        {
916            m_state.dbg.__bcr[hw_index] = 0;
917            DNBLogThreadedIf(LOG_BREAKPOINTS, "DNBArchMachARM::SetHardwareBreakpoint( %u ) - BVR%u = 0x%8.8x  BCR%u = 0x%8.8x",
918                    hw_index,
919                    hw_index,
920                    m_state.dbg.__bvr[hw_index],
921                    hw_index,
922                    m_state.dbg.__bcr[hw_index]);
923
924            kret = SetDBGState();
925
926            if (kret == KERN_SUCCESS)
927                return true;
928        }
929    }
930    return false;
931}
932
933// This stores the lo->hi mappings.  It's safe to initialize to all 0's
934// since hi > lo and therefore LoHi[i] cannot be 0.
935static uint32_t LoHi[16] = { 0 };
936
937uint32_t
938DNBArchMachARM::EnableHardwareWatchpoint (nub_addr_t addr, nub_size_t size, bool read, bool write)
939{
940    DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM::EnableHardwareWatchpoint(addr = 0x%8.8llx, size = %llu, read = %u, write = %u)", (uint64_t)addr, (uint64_t)size, read, write);
941
942    const uint32_t num_hw_watchpoints = NumSupportedHardwareWatchpoints();
943
944    // Can't watch zero bytes
945    if (size == 0)
946        return INVALID_NUB_HW_INDEX;
947
948    // We must watch for either read or write
949    if (read == false && write == false)
950        return INVALID_NUB_HW_INDEX;
951
952    // Divide-and-conquer for size == 8.
953    if (size == 8)
954    {
955        uint32_t lo = EnableHardwareWatchpoint(addr, 4, read, write);
956        if (lo == INVALID_NUB_HW_INDEX)
957            return INVALID_NUB_HW_INDEX;
958        uint32_t hi = EnableHardwareWatchpoint(addr+4, 4, read, write);
959        if (hi == INVALID_NUB_HW_INDEX)
960        {
961            DisableHardwareWatchpoint(lo);
962            return INVALID_NUB_HW_INDEX;
963        }
964        // Tag this lo->hi mapping in our database.
965        LoHi[lo] = hi;
966        return lo;
967    }
968
969    // Otherwise, can't watch more than 4 bytes per WVR/WCR pair
970    if (size > 4)
971        return INVALID_NUB_HW_INDEX;
972
973    // We can only watch up to four bytes that follow a 4 byte aligned address
974    // per watchpoint register pair. Since we can only watch until the next 4
975    // byte boundary, we need to make sure we can properly encode this.
976
977    // addr_word_offset = addr % 4, i.e, is in set([0, 1, 2, 3])
978    //
979    //     +---+---+---+---+
980    //     | 0 | 1 | 2 | 3 |
981    //     +---+---+---+---+
982    //     ^
983    //     |
984    // word address (4-byte aligned) = addr & 0xFFFFFFFC => goes into WVR
985    //
986    // examples:
987    // 1. addr_word_offset = 1, size = 1 to watch a uint_8 => byte_mask = (0b0001 << 1) = 0b0010
988    // 2. addr_word_offset = 2, size = 2 to watch a uint_16 => byte_mask = (0b0011 << 2) = 0b1100
989    //
990    // where byte_mask goes into WCR[8:5]
991
992    uint32_t addr_word_offset = addr % 4;
993    DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM::EnableHardwareWatchpoint() - addr_word_offset = 0x%8.8x", addr_word_offset);
994
995    uint32_t byte_mask = ((1u << size) - 1u) << addr_word_offset;
996    DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM::EnableHardwareWatchpoint() - byte_mask = 0x%8.8x", byte_mask);
997    if (byte_mask > 0xfu)
998        return INVALID_NUB_HW_INDEX;
999
1000    // Read the debug state
1001    kern_return_t kret = GetDBGState(false);
1002
1003    if (kret == KERN_SUCCESS)
1004    {
1005        // Check to make sure we have the needed hardware support
1006        uint32_t i = 0;
1007
1008        for (i=0; i<num_hw_watchpoints; ++i)
1009        {
1010            if ((m_state.dbg.__wcr[i] & WCR_ENABLE) == 0)
1011                break; // We found an available hw watchpoint slot (in i)
1012        }
1013
1014        // See if we found an available hw watchpoint slot above
1015        if (i < num_hw_watchpoints)
1016        {
1017            //DumpDBGState(m_state.dbg);
1018
1019            // Make the byte_mask into a valid Byte Address Select mask
1020            uint32_t byte_address_select = byte_mask << 5;
1021            // Make sure bits 1:0 are clear in our address
1022            m_state.dbg.__wvr[i] = addr & ~((nub_addr_t)3);     // DVA (Data Virtual Address)
1023            m_state.dbg.__wcr[i] =  byte_address_select |       // Which bytes that follow the DVA that we will watch
1024                                    S_USER |                    // Stop only in user mode
1025                                    (read ? WCR_LOAD : 0) |     // Stop on read access?
1026                                    (write ? WCR_STORE : 0) |   // Stop on write access?
1027                                    WCR_ENABLE;                 // Enable this watchpoint;
1028
1029            DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM::EnableHardwareWatchpoint() adding watchpoint on address 0x%llx with control register value 0x%x", (uint64_t) m_state.dbg.__wvr[i], (uint32_t) m_state.dbg.__wcr[i]);
1030
1031            kret = SetDBGState();
1032            //DumpDBGState(m_state.dbg);
1033
1034            DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM::EnableHardwareWatchpoint() SetDBGState() => 0x%8.8x.", kret);
1035
1036            if (kret == KERN_SUCCESS)
1037                return i;
1038        }
1039        else
1040        {
1041            DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM::EnableHardwareWatchpoint(): All hardware resources (%u) are in use.", num_hw_watchpoints);
1042        }
1043    }
1044    return INVALID_NUB_HW_INDEX;
1045}
1046
1047bool
1048DNBArchMachARM::EnableHardwareWatchpoint0 (uint32_t hw_index, bool Delegate)
1049{
1050    kern_return_t kret = GetDBGState(false);
1051    if (kret != KERN_SUCCESS)
1052        return false;
1053
1054    const uint32_t num_hw_points = NumSupportedHardwareWatchpoints();
1055    if (hw_index >= num_hw_points)
1056        return false;
1057
1058    if (Delegate && LoHi[hw_index]) {
1059        // Enable lo and hi watchpoint hardware indexes.
1060        return EnableHardwareWatchpoint0(hw_index, false) &&
1061            EnableHardwareWatchpoint0(LoHi[hw_index], false);
1062    }
1063
1064    m_state.dbg.__wcr[hw_index] |= (nub_addr_t)WCR_ENABLE;
1065    DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM::EnableHardwareWatchpoint( %u ) - WVR%u = 0x%8.8x  WCR%u = 0x%8.8x",
1066                     hw_index,
1067                     hw_index,
1068                     m_state.dbg.__wvr[hw_index],
1069                     hw_index,
1070                     m_state.dbg.__wcr[hw_index]);
1071
1072    kret = SetDBGState();
1073
1074    return (kret == KERN_SUCCESS);
1075}
1076
1077bool
1078DNBArchMachARM::DisableHardwareWatchpoint (uint32_t hw_index)
1079{
1080    return DisableHardwareWatchpoint0(hw_index, true);
1081}
1082bool
1083DNBArchMachARM::DisableHardwareWatchpoint0 (uint32_t hw_index, bool Delegate)
1084{
1085    kern_return_t kret = GetDBGState(false);
1086    if (kret != KERN_SUCCESS)
1087        return false;
1088
1089    const uint32_t num_hw_points = NumSupportedHardwareWatchpoints();
1090    if (hw_index >= num_hw_points)
1091        return false;
1092
1093    if (Delegate && LoHi[hw_index]) {
1094        // Disable lo and hi watchpoint hardware indexes.
1095        return DisableHardwareWatchpoint0(hw_index, false) &&
1096            DisableHardwareWatchpoint0(LoHi[hw_index], false);
1097    }
1098
1099    m_state.dbg.__wcr[hw_index] &= ~((nub_addr_t)WCR_ENABLE);
1100    DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM::DisableHardwareWatchpoint( %u ) - WVR%u = 0x%8.8x  WCR%u = 0x%8.8x",
1101                     hw_index,
1102                     hw_index,
1103                     m_state.dbg.__wvr[hw_index],
1104                     hw_index,
1105                     m_state.dbg.__wcr[hw_index]);
1106
1107    kret = SetDBGState();
1108
1109    return (kret == KERN_SUCCESS);
1110}
1111
1112// {0} -> __bvr[16], {0} -> __bcr[16], {0} --> __wvr[16], {0} -> __wcr{16}
1113DNBArchMachARM::DBG DNBArchMachARM::Global_Debug_State = {{0},{0},{0},{0}};
1114bool DNBArchMachARM::Valid_Global_Debug_State = false;
1115
1116// Use this callback from MachThread, which in turn was called from MachThreadList, to update
1117// the global view of the hardware watchpoint state, so that when new thread comes along, they
1118// get to inherit the existing hardware watchpoint state.
1119void
1120DNBArchMachARM::HardwareWatchpointStateChanged ()
1121{
1122    Global_Debug_State = m_state.dbg;
1123    Valid_Global_Debug_State = true;
1124}
1125
1126// Returns -1 if the trailing bit patterns are not one of:
1127// { 0b???1, 0b??10, 0b?100, 0b1000 }.
1128static inline
1129int32_t
1130LowestBitSet(uint32_t val)
1131{
1132    for (unsigned i = 0; i < 4; ++i) {
1133        if (bit(val, i))
1134            return i;
1135    }
1136    return -1;
1137}
1138
1139// Iterate through the debug registers; return the index of the first watchpoint whose address matches.
1140// As a side effect, the starting address as understood by the debugger is returned which could be
1141// different from 'addr' passed as an in/out argument.
1142uint32_t
1143DNBArchMachARM::GetHardwareWatchpointHit(nub_addr_t &addr)
1144{
1145    // Read the debug state
1146    kern_return_t kret = GetDBGState(true);
1147    //DumpDBGState(m_state.dbg);
1148    DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM::GetHardwareWatchpointHit() GetDBGState() => 0x%8.8x.", kret);
1149    DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM::GetHardwareWatchpointHit() addr = 0x%llx", (uint64_t)addr);
1150
1151    // This is the watchpoint value to match against, i.e., word address.
1152    nub_addr_t wp_val = addr & ~((nub_addr_t)3);
1153    if (kret == KERN_SUCCESS)
1154    {
1155        DBG &debug_state = m_state.dbg;
1156        uint32_t i, num = NumSupportedHardwareWatchpoints();
1157        for (i = 0; i < num; ++i)
1158        {
1159            nub_addr_t wp_addr = GetWatchAddress(debug_state, i);
1160            DNBLogThreadedIf(LOG_WATCHPOINTS,
1161                             "DNBArchMachARM::GetHardwareWatchpointHit() slot: %u (addr = 0x%llx).",
1162                             i, (uint64_t)wp_addr);
1163            if (wp_val == wp_addr) {
1164                uint32_t byte_mask = bits(debug_state.__wcr[i], 8, 5);
1165
1166                // Sanity check the byte_mask, first.
1167                if (LowestBitSet(byte_mask) < 0)
1168                    continue;
1169
1170                // Compute the starting address (from the point of view of the debugger).
1171                addr = wp_addr + LowestBitSet(byte_mask);
1172                return i;
1173            }
1174        }
1175    }
1176    return INVALID_NUB_HW_INDEX;
1177}
1178
1179// ThreadWillResume() calls this to clear bits[5:2] (Method of entry bits) of
1180// the Debug Status and Control Register (DSCR).
1181//
1182// b0010 = a watchpoint occurred
1183// b0000 is the reset value
1184void
1185DNBArchMachARM::ClearWatchpointOccurred()
1186{
1187    uint32_t register_DBGDSCR;
1188    asm("mrc p14, 0, %0, c0, c1, 0" : "=r" (register_DBGDSCR));
1189    if (bits(register_DBGDSCR, 5, 2) == WATCHPOINT_OCCURRED)
1190    {
1191        uint32_t mask = ~(0xF << 2);
1192        register_DBGDSCR &= mask;
1193        asm("mcr p14, 0, %0, c0, c1, 0" : "=r" (register_DBGDSCR));
1194    }
1195    return;
1196}
1197
1198// NotifyException() calls this to double check that a watchpoint has occurred
1199// by inspecting the bits[5:2] field of the Debug Status and Control Register
1200// (DSCR).
1201//
1202// b0010 = a watchpoint occurred
1203bool
1204DNBArchMachARM::HasWatchpointOccurred()
1205{
1206    uint32_t register_DBGDSCR;
1207    asm("mrc p14, 0, %0, c0, c1, 0" : "=r" (register_DBGDSCR));
1208    return (bits(register_DBGDSCR, 5, 2) == WATCHPOINT_OCCURRED);
1209}
1210
1211bool
1212DNBArchMachARM::IsWatchpointEnabled(const DBG &debug_state, uint32_t hw_index)
1213{
1214    // Watchpoint Control Registers, bitfield definitions
1215    // ...
1216    // Bits    Value    Description
1217    // [0]     0        Watchpoint disabled
1218    //         1        Watchpoint enabled.
1219    return (debug_state.__wcr[hw_index] & 1u);
1220}
1221
1222nub_addr_t
1223DNBArchMachARM::GetWatchAddress(const DBG &debug_state, uint32_t hw_index)
1224{
1225    // Watchpoint Value Registers, bitfield definitions
1226    // Bits        Description
1227    // [31:2]      Watchpoint value (word address, i.e., 4-byte aligned)
1228    // [1:0]       RAZ/SBZP
1229    return bits(debug_state.__wvr[hw_index], 31, 0);
1230}
1231
1232//----------------------------------------------------------------------
1233// Register information defintions for 32 bit ARMV7.
1234//----------------------------------------------------------------------
1235enum gpr_regnums
1236{
1237    gpr_r0 = 0,
1238    gpr_r1,
1239    gpr_r2,
1240    gpr_r3,
1241    gpr_r4,
1242    gpr_r5,
1243    gpr_r6,
1244    gpr_r7,
1245    gpr_r8,
1246    gpr_r9,
1247    gpr_r10,
1248    gpr_r11,
1249    gpr_r12,
1250    gpr_sp,
1251    gpr_lr,
1252    gpr_pc,
1253    gpr_cpsr
1254};
1255
1256enum
1257{
1258    vfp_s0 = 17, // match the g_gdb_register_map_arm table in RNBRemote.cpp
1259    vfp_s1,
1260    vfp_s2,
1261    vfp_s3,
1262    vfp_s4,
1263    vfp_s5,
1264    vfp_s6,
1265    vfp_s7,
1266    vfp_s8,
1267    vfp_s9,
1268    vfp_s10,
1269    vfp_s11,
1270    vfp_s12,
1271    vfp_s13,
1272    vfp_s14,
1273    vfp_s15,
1274    vfp_s16,
1275    vfp_s17,
1276    vfp_s18,
1277    vfp_s19,
1278    vfp_s20,
1279    vfp_s21,
1280    vfp_s22,
1281    vfp_s23,
1282    vfp_s24,
1283    vfp_s25,
1284    vfp_s26,
1285    vfp_s27,
1286    vfp_s28,
1287    vfp_s29,
1288    vfp_s30,
1289    vfp_s31
1290};
1291
1292enum
1293{
1294    vfp_d0 = 49, // match the g_gdb_register_map_arm table in RNBRemote.cpp
1295    vfp_d1,
1296    vfp_d2,
1297    vfp_d3,
1298    vfp_d4,
1299    vfp_d5,
1300    vfp_d6,
1301    vfp_d7,
1302    vfp_d8,
1303    vfp_d9,
1304    vfp_d10,
1305    vfp_d11,
1306    vfp_d12,
1307    vfp_d13,
1308    vfp_d14,
1309    vfp_d15,
1310    vfp_d16,
1311    vfp_d17,
1312    vfp_d18,
1313    vfp_d19,
1314    vfp_d20,
1315    vfp_d21,
1316    vfp_d22,
1317    vfp_d23,
1318    vfp_d24,
1319    vfp_d25,
1320    vfp_d26,
1321    vfp_d27,
1322    vfp_d28,
1323    vfp_d29,
1324    vfp_d30,
1325    vfp_d31
1326};
1327
1328enum
1329{
1330    vfp_q0 = 81, // match the g_gdb_register_map_arm table in RNBRemote.cpp
1331    vfp_q1,
1332    vfp_q2,
1333    vfp_q3,
1334    vfp_q4,
1335    vfp_q5,
1336    vfp_q6,
1337    vfp_q7,
1338    vfp_q8,
1339    vfp_q9,
1340    vfp_q10,
1341    vfp_q11,
1342    vfp_q12,
1343    vfp_q13,
1344    vfp_q14,
1345    vfp_q15,
1346    vfp_fpscr
1347};
1348
1349enum
1350{
1351    exc_exception,
1352    exc_fsr,
1353    exc_far,
1354};
1355
1356#define GPR_OFFSET_IDX(idx) (offsetof (DNBArchMachARM::GPR, __r[idx]))
1357#define GPR_OFFSET_NAME(reg) (offsetof (DNBArchMachARM::GPR, __##reg))
1358
1359#define EXC_OFFSET(reg)      (offsetof (DNBArchMachARM::EXC, __##reg)  + offsetof (DNBArchMachARM::Context, exc))
1360
1361// These macros will auto define the register name, alt name, register size,
1362// register offset, encoding, format and native register. This ensures that
1363// the register state structures are defined correctly and have the correct
1364// sizes and offsets.
1365#define DEFINE_GPR_IDX(idx, reg, alt, gen) { e_regSetGPR, gpr_##reg, #reg, alt, Uint, Hex, 4, GPR_OFFSET_IDX(idx), gcc_##reg, dwarf_##reg, gen, INVALID_NUB_REGNUM, NULL, NULL}
1366#define DEFINE_GPR_NAME(reg, alt, gen, inval) { e_regSetGPR, gpr_##reg, #reg, alt, Uint, Hex, 4, GPR_OFFSET_NAME(reg), gcc_##reg, dwarf_##reg, gen, INVALID_NUB_REGNUM, NULL, inval}
1367
1368// In case we are debugging to a debug target that the ability to
1369// change into the protected modes with folded registers (ABT, IRQ,
1370// FIQ, SYS, USR, etc..), we should invalidate r8-r14 if the CPSR
1371// gets modified.
1372
1373uint32_t g_invalidate_cpsr[] = {
1374    gpr_r8,
1375    gpr_r9,
1376    gpr_r10,
1377    gpr_r11,
1378    gpr_r12,
1379    gpr_sp,
1380    gpr_lr,
1381    INVALID_NUB_REGNUM };
1382
1383// General purpose registers
1384const DNBRegisterInfo
1385DNBArchMachARM::g_gpr_registers[] =
1386{
1387    DEFINE_GPR_IDX ( 0,  r0,"arg1", GENERIC_REGNUM_ARG1  ),
1388    DEFINE_GPR_IDX ( 1,  r1,"arg2", GENERIC_REGNUM_ARG2  ),
1389    DEFINE_GPR_IDX ( 2,  r2,"arg3", GENERIC_REGNUM_ARG3  ),
1390    DEFINE_GPR_IDX ( 3,  r3,"arg4", GENERIC_REGNUM_ARG4  ),
1391    DEFINE_GPR_IDX ( 4,  r4,  NULL, INVALID_NUB_REGNUM   ),
1392    DEFINE_GPR_IDX ( 5,  r5,  NULL, INVALID_NUB_REGNUM   ),
1393    DEFINE_GPR_IDX ( 6,  r6,  NULL, INVALID_NUB_REGNUM   ),
1394    DEFINE_GPR_IDX ( 7,  r7,  "fp", GENERIC_REGNUM_FP    ),
1395    DEFINE_GPR_IDX ( 8,  r8,  NULL, INVALID_NUB_REGNUM   ),
1396    DEFINE_GPR_IDX ( 9,  r9,  NULL, INVALID_NUB_REGNUM   ),
1397    DEFINE_GPR_IDX (10, r10,  NULL, INVALID_NUB_REGNUM   ),
1398    DEFINE_GPR_IDX (11, r11,  NULL, INVALID_NUB_REGNUM   ),
1399    DEFINE_GPR_IDX (12, r12,  NULL, INVALID_NUB_REGNUM   ),
1400    DEFINE_GPR_NAME (sp, "r13", GENERIC_REGNUM_SP, NULL),
1401    DEFINE_GPR_NAME (lr, "r14", GENERIC_REGNUM_RA, NULL),
1402    DEFINE_GPR_NAME (pc, "r15", GENERIC_REGNUM_PC, NULL),
1403    DEFINE_GPR_NAME (cpsr, "flags", GENERIC_REGNUM_FLAGS, g_invalidate_cpsr)
1404};
1405
1406uint32_t g_contained_q0[] {vfp_q0, INVALID_NUB_REGNUM };
1407uint32_t g_contained_q1[] {vfp_q1, INVALID_NUB_REGNUM };
1408uint32_t g_contained_q2[] {vfp_q2, INVALID_NUB_REGNUM };
1409uint32_t g_contained_q3[] {vfp_q3, INVALID_NUB_REGNUM };
1410uint32_t g_contained_q4[] {vfp_q4, INVALID_NUB_REGNUM };
1411uint32_t g_contained_q5[] {vfp_q5, INVALID_NUB_REGNUM };
1412uint32_t g_contained_q6[] {vfp_q6, INVALID_NUB_REGNUM };
1413uint32_t g_contained_q7[] {vfp_q7, INVALID_NUB_REGNUM };
1414uint32_t g_contained_q8[] {vfp_q8, INVALID_NUB_REGNUM };
1415uint32_t g_contained_q9[] {vfp_q9, INVALID_NUB_REGNUM };
1416uint32_t g_contained_q10[] {vfp_q10, INVALID_NUB_REGNUM };
1417uint32_t g_contained_q11[] {vfp_q11, INVALID_NUB_REGNUM };
1418uint32_t g_contained_q12[] {vfp_q12, INVALID_NUB_REGNUM };
1419uint32_t g_contained_q13[] {vfp_q13, INVALID_NUB_REGNUM };
1420uint32_t g_contained_q14[] {vfp_q14, INVALID_NUB_REGNUM };
1421uint32_t g_contained_q15[] {vfp_q15, INVALID_NUB_REGNUM };
1422
1423uint32_t g_invalidate_q0[]  {vfp_q0,   vfp_d0, vfp_d1,    vfp_s0, vfp_s1, vfp_s2, vfp_s3,        INVALID_NUB_REGNUM };
1424uint32_t g_invalidate_q1[]  {vfp_q1,   vfp_d2, vfp_d3,    vfp_s4, vfp_s5, vfp_s6, vfp_s7,        INVALID_NUB_REGNUM };
1425uint32_t g_invalidate_q2[]  {vfp_q2,   vfp_d4, vfp_d5,    vfp_s8, vfp_s9, vfp_s10, vfp_s11,      INVALID_NUB_REGNUM };
1426uint32_t g_invalidate_q3[]  {vfp_q3,   vfp_d6, vfp_d7,    vfp_s12, vfp_s13, vfp_s14, vfp_s15,    INVALID_NUB_REGNUM };
1427uint32_t g_invalidate_q4[]  {vfp_q4,   vfp_d8, vfp_d9,    vfp_s16, vfp_s17, vfp_s18, vfp_s19,    INVALID_NUB_REGNUM };
1428uint32_t g_invalidate_q5[]  {vfp_q5,   vfp_d10, vfp_d11,  vfp_s20, vfp_s21, vfp_s22, vfp_s23,    INVALID_NUB_REGNUM };
1429uint32_t g_invalidate_q6[]  {vfp_q6,   vfp_d12, vfp_d13,  vfp_s24, vfp_s25, vfp_s26, vfp_s27,    INVALID_NUB_REGNUM };
1430uint32_t g_invalidate_q7[]  {vfp_q7,   vfp_d14, vfp_d15,  vfp_s28, vfp_s29, vfp_s30, vfp_s31,    INVALID_NUB_REGNUM };
1431uint32_t g_invalidate_q8[]  {vfp_q8,   vfp_d16, vfp_d17,  INVALID_NUB_REGNUM };
1432uint32_t g_invalidate_q9[]  {vfp_q9,   vfp_d18, vfp_d19,  INVALID_NUB_REGNUM };
1433uint32_t g_invalidate_q10[] {vfp_q10,  vfp_d20, vfp_d21,  INVALID_NUB_REGNUM };
1434uint32_t g_invalidate_q11[] {vfp_q11,  vfp_d22, vfp_d23,  INVALID_NUB_REGNUM };
1435uint32_t g_invalidate_q12[] {vfp_q12,  vfp_d24, vfp_d25,  INVALID_NUB_REGNUM };
1436uint32_t g_invalidate_q13[] {vfp_q13,  vfp_d26, vfp_d27,  INVALID_NUB_REGNUM };
1437uint32_t g_invalidate_q14[] {vfp_q14,  vfp_d28, vfp_d29,  INVALID_NUB_REGNUM };
1438uint32_t g_invalidate_q15[] {vfp_q15,  vfp_d30, vfp_d31,  INVALID_NUB_REGNUM };
1439
1440#define VFP_S_OFFSET_IDX(idx) (offsetof (DNBArchMachARM::FPU, __r[(idx)]) + offsetof (DNBArchMachARM::Context, vfp))
1441#define VFP_D_OFFSET_IDX(idx) (VFP_S_OFFSET_IDX ((idx) * 2))
1442#define VFP_Q_OFFSET_IDX(idx) (VFP_S_OFFSET_IDX ((idx) * 4))
1443
1444#define VFP_OFFSET_NAME(reg) (offsetof (DNBArchMachARM::FPU, __##reg) + offsetof (DNBArchMachARM::Context, vfp))
1445
1446#define FLOAT_FORMAT Float
1447
1448#define DEFINE_VFP_S_IDX(idx)  e_regSetVFP, vfp_s##idx - vfp_s0, "s" #idx, NULL, IEEE754, FLOAT_FORMAT, 4, VFP_S_OFFSET_IDX(idx), INVALID_NUB_REGNUM, dwarf_s##idx, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM
1449#define DEFINE_VFP_D_IDX(idx)  e_regSetVFP, vfp_d##idx - vfp_s0, "d" #idx, NULL, IEEE754, FLOAT_FORMAT, 8, VFP_D_OFFSET_IDX(idx), INVALID_NUB_REGNUM, dwarf_d##idx, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM
1450#define DEFINE_VFP_Q_IDX(idx)  e_regSetVFP, vfp_q##idx - vfp_s0, "q" #idx, NULL, Vector, VectorOfUInt8, 16, VFP_Q_OFFSET_IDX(idx), INVALID_NUB_REGNUM, dwarf_q##idx, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM
1451
1452// Floating point registers
1453const DNBRegisterInfo
1454DNBArchMachARM::g_vfp_registers[] =
1455{
1456    { DEFINE_VFP_S_IDX ( 0), g_contained_q0, g_invalidate_q0 },
1457    { DEFINE_VFP_S_IDX ( 1), g_contained_q0, g_invalidate_q0 },
1458    { DEFINE_VFP_S_IDX ( 2), g_contained_q0, g_invalidate_q0 },
1459    { DEFINE_VFP_S_IDX ( 3), g_contained_q0, g_invalidate_q0 },
1460    { DEFINE_VFP_S_IDX ( 4), g_contained_q1, g_invalidate_q1 },
1461    { DEFINE_VFP_S_IDX ( 5), g_contained_q1, g_invalidate_q1 },
1462    { DEFINE_VFP_S_IDX ( 6), g_contained_q1, g_invalidate_q1 },
1463    { DEFINE_VFP_S_IDX ( 7), g_contained_q1, g_invalidate_q1 },
1464    { DEFINE_VFP_S_IDX ( 8), g_contained_q2, g_invalidate_q2 },
1465    { DEFINE_VFP_S_IDX ( 9), g_contained_q2, g_invalidate_q2 },
1466    { DEFINE_VFP_S_IDX (10), g_contained_q2, g_invalidate_q2 },
1467    { DEFINE_VFP_S_IDX (11), g_contained_q2, g_invalidate_q2 },
1468    { DEFINE_VFP_S_IDX (12), g_contained_q3, g_invalidate_q3 },
1469    { DEFINE_VFP_S_IDX (13), g_contained_q3, g_invalidate_q3 },
1470    { DEFINE_VFP_S_IDX (14), g_contained_q3, g_invalidate_q3 },
1471    { DEFINE_VFP_S_IDX (15), g_contained_q3, g_invalidate_q3 },
1472    { DEFINE_VFP_S_IDX (16), g_contained_q4, g_invalidate_q4 },
1473    { DEFINE_VFP_S_IDX (17), g_contained_q4, g_invalidate_q4 },
1474    { DEFINE_VFP_S_IDX (18), g_contained_q4, g_invalidate_q4 },
1475    { DEFINE_VFP_S_IDX (19), g_contained_q4, g_invalidate_q4 },
1476    { DEFINE_VFP_S_IDX (20), g_contained_q5, g_invalidate_q5 },
1477    { DEFINE_VFP_S_IDX (21), g_contained_q5, g_invalidate_q5 },
1478    { DEFINE_VFP_S_IDX (22), g_contained_q5, g_invalidate_q5 },
1479    { DEFINE_VFP_S_IDX (23), g_contained_q5, g_invalidate_q5 },
1480    { DEFINE_VFP_S_IDX (24), g_contained_q6, g_invalidate_q6 },
1481    { DEFINE_VFP_S_IDX (25), g_contained_q6, g_invalidate_q6 },
1482    { DEFINE_VFP_S_IDX (26), g_contained_q6, g_invalidate_q6 },
1483    { DEFINE_VFP_S_IDX (27), g_contained_q6, g_invalidate_q6 },
1484    { DEFINE_VFP_S_IDX (28), g_contained_q7, g_invalidate_q7 },
1485    { DEFINE_VFP_S_IDX (29), g_contained_q7, g_invalidate_q7 },
1486    { DEFINE_VFP_S_IDX (30), g_contained_q7, g_invalidate_q7 },
1487    { DEFINE_VFP_S_IDX (31), g_contained_q7, g_invalidate_q7 },
1488
1489    { DEFINE_VFP_D_IDX (0),  g_contained_q0, g_invalidate_q0 },
1490    { DEFINE_VFP_D_IDX (1),  g_contained_q0, g_invalidate_q0 },
1491    { DEFINE_VFP_D_IDX (2),  g_contained_q1, g_invalidate_q1 },
1492    { DEFINE_VFP_D_IDX (3),  g_contained_q1, g_invalidate_q1 },
1493    { DEFINE_VFP_D_IDX (4),  g_contained_q2, g_invalidate_q2 },
1494    { DEFINE_VFP_D_IDX (5),  g_contained_q2, g_invalidate_q2 },
1495    { DEFINE_VFP_D_IDX (6),  g_contained_q3, g_invalidate_q3 },
1496    { DEFINE_VFP_D_IDX (7),  g_contained_q3, g_invalidate_q3 },
1497    { DEFINE_VFP_D_IDX (8),  g_contained_q4, g_invalidate_q4 },
1498    { DEFINE_VFP_D_IDX (9),  g_contained_q4, g_invalidate_q4 },
1499    { DEFINE_VFP_D_IDX (10), g_contained_q5, g_invalidate_q5 },
1500    { DEFINE_VFP_D_IDX (11), g_contained_q5, g_invalidate_q5 },
1501    { DEFINE_VFP_D_IDX (12), g_contained_q6, g_invalidate_q6 },
1502    { DEFINE_VFP_D_IDX (13), g_contained_q6, g_invalidate_q6 },
1503    { DEFINE_VFP_D_IDX (14), g_contained_q7, g_invalidate_q7 },
1504    { DEFINE_VFP_D_IDX (15), g_contained_q7, g_invalidate_q7 },
1505    { DEFINE_VFP_D_IDX (16), g_contained_q8, g_invalidate_q8 },
1506    { DEFINE_VFP_D_IDX (17), g_contained_q8, g_invalidate_q8 },
1507    { DEFINE_VFP_D_IDX (18), g_contained_q9, g_invalidate_q9 },
1508    { DEFINE_VFP_D_IDX (19), g_contained_q9, g_invalidate_q9 },
1509    { DEFINE_VFP_D_IDX (20), g_contained_q10, g_invalidate_q10 },
1510    { DEFINE_VFP_D_IDX (21), g_contained_q10, g_invalidate_q10 },
1511    { DEFINE_VFP_D_IDX (22), g_contained_q11, g_invalidate_q11 },
1512    { DEFINE_VFP_D_IDX (23), g_contained_q11, g_invalidate_q11 },
1513    { DEFINE_VFP_D_IDX (24), g_contained_q12, g_invalidate_q12 },
1514    { DEFINE_VFP_D_IDX (25), g_contained_q12, g_invalidate_q12 },
1515    { DEFINE_VFP_D_IDX (26), g_contained_q13, g_invalidate_q13 },
1516    { DEFINE_VFP_D_IDX (27), g_contained_q13, g_invalidate_q13 },
1517    { DEFINE_VFP_D_IDX (28), g_contained_q14, g_invalidate_q14 },
1518    { DEFINE_VFP_D_IDX (29), g_contained_q14, g_invalidate_q14 },
1519    { DEFINE_VFP_D_IDX (30), g_contained_q15, g_invalidate_q15 },
1520    { DEFINE_VFP_D_IDX (31), g_contained_q15, g_invalidate_q15 },
1521
1522    { DEFINE_VFP_Q_IDX (0),  NULL,            g_invalidate_q0 },
1523    { DEFINE_VFP_Q_IDX (1),  NULL,            g_invalidate_q1 },
1524    { DEFINE_VFP_Q_IDX (2),  NULL,            g_invalidate_q2 },
1525    { DEFINE_VFP_Q_IDX (3),  NULL,            g_invalidate_q3 },
1526    { DEFINE_VFP_Q_IDX (4),  NULL,            g_invalidate_q4 },
1527    { DEFINE_VFP_Q_IDX (5),  NULL,            g_invalidate_q5 },
1528    { DEFINE_VFP_Q_IDX (6),  NULL,            g_invalidate_q6 },
1529    { DEFINE_VFP_Q_IDX (7),  NULL,            g_invalidate_q7 },
1530    { DEFINE_VFP_Q_IDX (8),  NULL,            g_invalidate_q8 },
1531    { DEFINE_VFP_Q_IDX (9),  NULL,            g_invalidate_q9 },
1532    { DEFINE_VFP_Q_IDX (10),  NULL,           g_invalidate_q10 },
1533    { DEFINE_VFP_Q_IDX (11),  NULL,           g_invalidate_q11 },
1534    { DEFINE_VFP_Q_IDX (12),  NULL,           g_invalidate_q12 },
1535    { DEFINE_VFP_Q_IDX (13),  NULL,           g_invalidate_q13 },
1536    { DEFINE_VFP_Q_IDX (14),  NULL,           g_invalidate_q14 },
1537    { DEFINE_VFP_Q_IDX (15),  NULL,           g_invalidate_q15 },
1538
1539    { e_regSetVFP, vfp_fpscr, "fpscr", NULL, Uint, Hex, 4, VFP_OFFSET_NAME(fpscr), INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, NULL, NULL }
1540};
1541
1542// Exception registers
1543
1544const DNBRegisterInfo
1545DNBArchMachARM::g_exc_registers[] =
1546{
1547  { e_regSetVFP, exc_exception  , "exception"   , NULL, Uint, Hex, 4, EXC_OFFSET(exception) , INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM },
1548  { e_regSetVFP, exc_fsr        , "fsr"         , NULL, Uint, Hex, 4, EXC_OFFSET(fsr)       , INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM },
1549  { e_regSetVFP, exc_far        , "far"         , NULL, Uint, Hex, 4, EXC_OFFSET(far)       , INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM }
1550};
1551
1552// Number of registers in each register set
1553const size_t DNBArchMachARM::k_num_gpr_registers = sizeof(g_gpr_registers)/sizeof(DNBRegisterInfo);
1554const size_t DNBArchMachARM::k_num_vfp_registers = sizeof(g_vfp_registers)/sizeof(DNBRegisterInfo);
1555const size_t DNBArchMachARM::k_num_exc_registers = sizeof(g_exc_registers)/sizeof(DNBRegisterInfo);
1556const size_t DNBArchMachARM::k_num_all_registers = k_num_gpr_registers + k_num_vfp_registers + k_num_exc_registers;
1557
1558//----------------------------------------------------------------------
1559// Register set definitions. The first definitions at register set index
1560// of zero is for all registers, followed by other registers sets. The
1561// register information for the all register set need not be filled in.
1562//----------------------------------------------------------------------
1563const DNBRegisterSetInfo
1564DNBArchMachARM::g_reg_sets[] =
1565{
1566    { "ARM Registers",              NULL,               k_num_all_registers     },
1567    { "General Purpose Registers",  g_gpr_registers,    k_num_gpr_registers     },
1568    { "Floating Point Registers",   g_vfp_registers,    k_num_vfp_registers     },
1569    { "Exception State Registers",  g_exc_registers,    k_num_exc_registers     }
1570};
1571// Total number of register sets for this architecture
1572const size_t DNBArchMachARM::k_num_register_sets = sizeof(g_reg_sets)/sizeof(DNBRegisterSetInfo);
1573
1574
1575const DNBRegisterSetInfo *
1576DNBArchMachARM::GetRegisterSetInfo(nub_size_t *num_reg_sets)
1577{
1578    *num_reg_sets = k_num_register_sets;
1579    return g_reg_sets;
1580}
1581
1582bool
1583DNBArchMachARM::GetRegisterValue(int set, int reg, DNBRegisterValue *value)
1584{
1585    if (set == REGISTER_SET_GENERIC)
1586    {
1587        switch (reg)
1588        {
1589        case GENERIC_REGNUM_PC:     // Program Counter
1590            set = e_regSetGPR;
1591            reg = gpr_pc;
1592            break;
1593
1594        case GENERIC_REGNUM_SP:     // Stack Pointer
1595            set = e_regSetGPR;
1596            reg = gpr_sp;
1597            break;
1598
1599        case GENERIC_REGNUM_FP:     // Frame Pointer
1600            set = e_regSetGPR;
1601            reg = gpr_r7;   // is this the right reg?
1602            break;
1603
1604        case GENERIC_REGNUM_RA:     // Return Address
1605            set = e_regSetGPR;
1606            reg = gpr_lr;
1607            break;
1608
1609        case GENERIC_REGNUM_FLAGS:  // Processor flags register
1610            set = e_regSetGPR;
1611            reg = gpr_cpsr;
1612            break;
1613
1614        default:
1615            return false;
1616        }
1617    }
1618
1619    if (GetRegisterState(set, false) != KERN_SUCCESS)
1620        return false;
1621
1622    const DNBRegisterInfo *regInfo = m_thread->GetRegisterInfo(set, reg);
1623    if (regInfo)
1624    {
1625        value->info = *regInfo;
1626        switch (set)
1627        {
1628        case e_regSetGPR:
1629            if (reg < k_num_gpr_registers)
1630            {
1631                value->value.uint32 = m_state.context.gpr.__r[reg];
1632                return true;
1633            }
1634            break;
1635
1636        case e_regSetVFP:
1637            // "reg" is an index into the floating point register set at this point.
1638            // We need to translate it up so entry 0 in the fp reg set is the same as vfp_s0
1639            // in the enumerated values for case statement below.
1640            reg += vfp_s0;
1641            if (reg >= vfp_s0 && reg <= vfp_s31)
1642            {
1643                value->value.uint32 = m_state.context.vfp.__r[reg - vfp_s0];
1644                return true;
1645            }
1646            else if (reg >= vfp_d0 && reg <= vfp_d31)
1647            {
1648                uint32_t d_reg_idx = reg - vfp_d0;
1649                uint32_t s_reg_idx = d_reg_idx * 2;
1650                value->value.v_sint32[0] = m_state.context.vfp.__r[s_reg_idx + 0];
1651                value->value.v_sint32[1] = m_state.context.vfp.__r[s_reg_idx + 1];
1652                return true;
1653            }
1654            else if (reg >= vfp_q0 && reg <= vfp_q15)
1655            {
1656                uint32_t s_reg_idx = (reg - vfp_q0) * 4;
1657                memcpy (&value->value.v_uint8, (uint8_t *) &m_state.context.vfp.__r[s_reg_idx], 16);
1658                return true;
1659            }
1660
1661            else if (reg == vfp_fpscr)
1662            {
1663                value->value.uint32 = m_state.context.vfp.__fpscr;
1664                return true;
1665            }
1666            break;
1667
1668        case e_regSetEXC:
1669            if (reg < k_num_exc_registers)
1670            {
1671                value->value.uint32 = (&m_state.context.exc.__exception)[reg];
1672                return true;
1673            }
1674            break;
1675        }
1676    }
1677    return false;
1678}
1679
1680bool
1681DNBArchMachARM::SetRegisterValue(int set, int reg, const DNBRegisterValue *value)
1682{
1683    if (set == REGISTER_SET_GENERIC)
1684    {
1685        switch (reg)
1686        {
1687        case GENERIC_REGNUM_PC:     // Program Counter
1688            set = e_regSetGPR;
1689            reg = gpr_pc;
1690            break;
1691
1692        case GENERIC_REGNUM_SP:     // Stack Pointer
1693            set = e_regSetGPR;
1694            reg = gpr_sp;
1695            break;
1696
1697        case GENERIC_REGNUM_FP:     // Frame Pointer
1698            set = e_regSetGPR;
1699            reg = gpr_r7;
1700            break;
1701
1702        case GENERIC_REGNUM_RA:     // Return Address
1703            set = e_regSetGPR;
1704            reg = gpr_lr;
1705            break;
1706
1707        case GENERIC_REGNUM_FLAGS:  // Processor flags register
1708            set = e_regSetGPR;
1709            reg = gpr_cpsr;
1710            break;
1711
1712        default:
1713            return false;
1714        }
1715    }
1716
1717    if (GetRegisterState(set, false) != KERN_SUCCESS)
1718        return false;
1719
1720    bool success = false;
1721    const DNBRegisterInfo *regInfo = m_thread->GetRegisterInfo(set, reg);
1722    if (regInfo)
1723    {
1724        switch (set)
1725        {
1726        case e_regSetGPR:
1727            if (reg < k_num_gpr_registers)
1728            {
1729                m_state.context.gpr.__r[reg] = value->value.uint32;
1730                success = true;
1731            }
1732            break;
1733
1734        case e_regSetVFP:
1735            // "reg" is an index into the floating point register set at this point.
1736            // We need to translate it up so entry 0 in the fp reg set is the same as vfp_s0
1737            // in the enumerated values for case statement below.
1738            reg += vfp_s0;
1739
1740            if (reg >= vfp_s0 && reg <= vfp_s31)
1741            {
1742                m_state.context.vfp.__r[reg - vfp_s0] = value->value.uint32;
1743                success = true;
1744            }
1745            else if (reg >= vfp_d0 && reg <= vfp_d31)
1746            {
1747                uint32_t d_reg_idx = reg - vfp_d0;
1748                uint32_t s_reg_idx = d_reg_idx * 2;
1749                m_state.context.vfp.__r[s_reg_idx + 0] = value->value.v_sint32[0];
1750                m_state.context.vfp.__r[s_reg_idx + 1] = value->value.v_sint32[1];
1751                success = true;
1752            }
1753            else if (reg >= vfp_q0 && reg <= vfp_q15)
1754            {
1755                uint32_t s_reg_idx = (reg - vfp_q0) * 4;
1756                memcpy ((uint8_t *) &m_state.context.vfp.__r[s_reg_idx], &value->value.v_uint8, 16);
1757                return true;
1758            }
1759            else if (reg == vfp_fpscr)
1760            {
1761                m_state.context.vfp.__fpscr = value->value.uint32;
1762                success = true;
1763            }
1764            break;
1765
1766        case e_regSetEXC:
1767            if (reg < k_num_exc_registers)
1768            {
1769                (&m_state.context.exc.__exception)[reg] = value->value.uint32;
1770                success = true;
1771            }
1772            break;
1773        }
1774
1775    }
1776    if (success)
1777        return SetRegisterState(set) == KERN_SUCCESS;
1778    return false;
1779}
1780
1781kern_return_t
1782DNBArchMachARM::GetRegisterState(int set, bool force)
1783{
1784    switch (set)
1785    {
1786    case e_regSetALL:   return GetGPRState(force) |
1787                               GetVFPState(force) |
1788                               GetEXCState(force) |
1789                               GetDBGState(force);
1790    case e_regSetGPR:   return GetGPRState(force);
1791    case e_regSetVFP:   return GetVFPState(force);
1792    case e_regSetEXC:   return GetEXCState(force);
1793    case e_regSetDBG:   return GetDBGState(force);
1794    default: break;
1795    }
1796    return KERN_INVALID_ARGUMENT;
1797}
1798
1799kern_return_t
1800DNBArchMachARM::SetRegisterState(int set)
1801{
1802    // Make sure we have a valid context to set.
1803    kern_return_t err = GetRegisterState(set, false);
1804    if (err != KERN_SUCCESS)
1805        return err;
1806
1807    switch (set)
1808    {
1809    case e_regSetALL:   return SetGPRState() |
1810                               SetVFPState() |
1811                               SetEXCState() |
1812                               SetDBGState();
1813    case e_regSetGPR:   return SetGPRState();
1814    case e_regSetVFP:   return SetVFPState();
1815    case e_regSetEXC:   return SetEXCState();
1816    case e_regSetDBG:   return SetDBGState();
1817    default: break;
1818    }
1819    return KERN_INVALID_ARGUMENT;
1820}
1821
1822bool
1823DNBArchMachARM::RegisterSetStateIsValid (int set) const
1824{
1825    return m_state.RegsAreValid(set);
1826}
1827
1828
1829nub_size_t
1830DNBArchMachARM::GetRegisterContext (void *buf, nub_size_t buf_len)
1831{
1832    nub_size_t size = sizeof (m_state.context);
1833
1834    if (buf && buf_len)
1835    {
1836        if (size > buf_len)
1837            size = buf_len;
1838
1839        bool force = false;
1840        if (GetGPRState(force) | GetVFPState(force) | GetEXCState(force))
1841            return 0;
1842        ::memcpy (buf, &m_state.context, size);
1843    }
1844    DNBLogThreadedIf (LOG_THREAD, "DNBArchMachARM::GetRegisterContext (buf = %p, len = %llu) => %llu", buf, (uint64_t)buf_len, (uint64_t)size);
1845    // Return the size of the register context even if NULL was passed in
1846    return size;
1847}
1848
1849nub_size_t
1850DNBArchMachARM::SetRegisterContext (const void *buf, nub_size_t buf_len)
1851{
1852    nub_size_t size = sizeof (m_state.context);
1853    if (buf == NULL || buf_len == 0)
1854        size = 0;
1855
1856    if (size)
1857    {
1858        if (size > buf_len)
1859            size = buf_len;
1860
1861        ::memcpy (&m_state.context, buf, size);
1862        SetGPRState();
1863        SetVFPState();
1864        SetEXCState();
1865    }
1866    DNBLogThreadedIf (LOG_THREAD, "DNBArchMachARM::SetRegisterContext (buf = %p, len = %llu) => %llu", buf, (uint64_t)buf_len, (uint64_t)size);
1867    return size;
1868}
1869
1870
1871#endif    // #if defined (__arm__)
1872
1873