DNBArchImplI386.cpp revision 137e5230e8dfb1287dd7c5eaa943a39078e1fd8d
1//===-- DNBArchImplI386.cpp -------------------------------------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  Created by Greg Clayton on 6/25/07.
11//
12//===----------------------------------------------------------------------===//
13
14#if defined (__i386__) || defined (__x86_64__)
15
16#include <sys/cdefs.h>
17
18#include "MacOSX/i386/DNBArchImplI386.h"
19#include "DNBLog.h"
20#include "MachThread.h"
21#include "MachProcess.h"
22
23extern "C" bool CPUHasAVX(); // Defined over in DNBArchImplX86_64.cpp
24
25#if defined (LLDB_DEBUGSERVER_RELEASE) || defined (LLDB_DEBUGSERVER_DEBUG)
26enum debugState {
27    debugStateUnknown,
28    debugStateOff,
29    debugStateOn
30};
31
32static debugState sFPUDebugState = debugStateUnknown;
33static debugState sAVXForceState = debugStateUnknown;
34
35static bool DebugFPURegs ()
36{
37    if (sFPUDebugState == debugStateUnknown)
38    {
39        if (getenv("DNB_DEBUG_FPU_REGS"))
40            sFPUDebugState = debugStateOn;
41        else
42            sFPUDebugState = debugStateOff;
43    }
44
45    return (sFPUDebugState == debugStateOn);
46}
47
48static bool ForceAVXRegs ()
49{
50    if (sFPUDebugState == debugStateUnknown)
51    {
52        if (getenv("DNB_DEBUG_X86_FORCE_AVX_REGS"))
53            sAVXForceState = debugStateOn;
54        else
55            sAVXForceState = debugStateOff;
56    }
57
58    return (sAVXForceState == debugStateOn);
59}
60
61#define DEBUG_FPU_REGS (DebugFPURegs())
62#define FORCE_AVX_REGS (ForceAVXRegs())
63#else
64#define DEBUG_FPU_REGS (0)
65#define FORCE_AVX_REGS (0)
66#endif
67
68enum
69{
70    gpr_eax         = 0,
71    gpr_ebx         = 1,
72    gpr_ecx         = 2,
73    gpr_edx         = 3,
74    gpr_edi         = 4,
75    gpr_esi         = 5,
76    gpr_ebp         = 6,
77    gpr_esp         = 7,
78    gpr_ss          = 8,
79    gpr_eflags      = 9,
80    gpr_eip         = 10,
81    gpr_cs          = 11,
82    gpr_ds          = 12,
83    gpr_es          = 13,
84    gpr_fs          = 14,
85    gpr_gs          = 15,
86    k_num_gpr_regs
87};
88
89enum {
90    fpu_fcw,
91    fpu_fsw,
92    fpu_ftw,
93    fpu_fop,
94    fpu_ip,
95    fpu_cs,
96    fpu_dp,
97    fpu_ds,
98    fpu_mxcsr,
99    fpu_mxcsrmask,
100    fpu_stmm0,
101    fpu_stmm1,
102    fpu_stmm2,
103    fpu_stmm3,
104    fpu_stmm4,
105    fpu_stmm5,
106    fpu_stmm6,
107    fpu_stmm7,
108    fpu_xmm0,
109    fpu_xmm1,
110    fpu_xmm2,
111    fpu_xmm3,
112    fpu_xmm4,
113    fpu_xmm5,
114    fpu_xmm6,
115    fpu_xmm7,
116    fpu_ymm0,
117    fpu_ymm1,
118    fpu_ymm2,
119    fpu_ymm3,
120    fpu_ymm4,
121    fpu_ymm5,
122    fpu_ymm6,
123    fpu_ymm7,
124    k_num_fpu_regs,
125
126    // Aliases
127    fpu_fctrl = fpu_fcw,
128    fpu_fstat = fpu_fsw,
129    fpu_ftag  = fpu_ftw,
130    fpu_fiseg = fpu_cs,
131    fpu_fioff = fpu_ip,
132    fpu_foseg = fpu_ds,
133    fpu_fooff = fpu_dp
134};
135
136enum {
137    exc_trapno,
138    exc_err,
139    exc_faultvaddr,
140    k_num_exc_regs,
141};
142
143
144enum
145{
146    gcc_eax = 0,
147    gcc_ecx,
148    gcc_edx,
149    gcc_ebx,
150    gcc_ebp,
151    gcc_esp,
152    gcc_esi,
153    gcc_edi,
154    gcc_eip,
155    gcc_eflags
156};
157
158enum
159{
160    dwarf_eax = 0,
161    dwarf_ecx,
162    dwarf_edx,
163    dwarf_ebx,
164    dwarf_esp,
165    dwarf_ebp,
166    dwarf_esi,
167    dwarf_edi,
168    dwarf_eip,
169    dwarf_eflags,
170    dwarf_stmm0 = 11,
171    dwarf_stmm1,
172    dwarf_stmm2,
173    dwarf_stmm3,
174    dwarf_stmm4,
175    dwarf_stmm5,
176    dwarf_stmm6,
177    dwarf_stmm7,
178    dwarf_xmm0 = 21,
179    dwarf_xmm1,
180    dwarf_xmm2,
181    dwarf_xmm3,
182    dwarf_xmm4,
183    dwarf_xmm5,
184    dwarf_xmm6,
185    dwarf_xmm7,
186    dwarf_ymm0 = dwarf_xmm0,
187    dwarf_ymm1 = dwarf_xmm1,
188    dwarf_ymm2 = dwarf_xmm2,
189    dwarf_ymm3 = dwarf_xmm3,
190    dwarf_ymm4 = dwarf_xmm4,
191    dwarf_ymm5 = dwarf_xmm5,
192    dwarf_ymm6 = dwarf_xmm6,
193    dwarf_ymm7 = dwarf_xmm7,
194};
195
196enum
197{
198    gdb_eax        =  0,
199    gdb_ecx        =  1,
200    gdb_edx        =  2,
201    gdb_ebx        =  3,
202    gdb_esp        =  4,
203    gdb_ebp        =  5,
204    gdb_esi        =  6,
205    gdb_edi        =  7,
206    gdb_eip        =  8,
207    gdb_eflags     =  9,
208    gdb_cs         = 10,
209    gdb_ss         = 11,
210    gdb_ds         = 12,
211    gdb_es         = 13,
212    gdb_fs         = 14,
213    gdb_gs         = 15,
214    gdb_stmm0      = 16,
215    gdb_stmm1      = 17,
216    gdb_stmm2      = 18,
217    gdb_stmm3      = 19,
218    gdb_stmm4      = 20,
219    gdb_stmm5      = 21,
220    gdb_stmm6      = 22,
221    gdb_stmm7      = 23,
222    gdb_fctrl      = 24,    gdb_fcw     = gdb_fctrl,
223    gdb_fstat      = 25,    gdb_fsw     = gdb_fstat,
224    gdb_ftag       = 26,    gdb_ftw     = gdb_ftag,
225    gdb_fiseg      = 27,    gdb_fpu_cs  = gdb_fiseg,
226    gdb_fioff      = 28,    gdb_ip      = gdb_fioff,
227    gdb_foseg      = 29,    gdb_fpu_ds  = gdb_foseg,
228    gdb_fooff      = 30,    gdb_dp      = gdb_fooff,
229    gdb_fop        = 31,
230    gdb_xmm0       = 32,
231    gdb_xmm1       = 33,
232    gdb_xmm2       = 34,
233    gdb_xmm3       = 35,
234    gdb_xmm4       = 36,
235    gdb_xmm5       = 37,
236    gdb_xmm6       = 38,
237    gdb_xmm7       = 39,
238    gdb_mxcsr      = 40,
239    gdb_mm0        = 41,
240    gdb_mm1        = 42,
241    gdb_mm2        = 43,
242    gdb_mm3        = 44,
243    gdb_mm4        = 45,
244    gdb_mm5        = 46,
245    gdb_mm6        = 47,
246    gdb_mm7        = 48,
247    gdb_ymm0       = gdb_xmm0,
248    gdb_ymm1       = gdb_xmm1,
249    gdb_ymm2       = gdb_xmm2,
250    gdb_ymm3       = gdb_xmm3,
251    gdb_ymm4       = gdb_xmm4,
252    gdb_ymm5       = gdb_xmm5,
253    gdb_ymm6       = gdb_xmm6,
254    gdb_ymm7       = gdb_xmm7
255};
256
257uint64_t
258DNBArchImplI386::GetPC(uint64_t failValue)
259{
260    // Get program counter
261    if (GetGPRState(false) == KERN_SUCCESS)
262        return m_state.context.gpr.__eip;
263    return failValue;
264}
265
266kern_return_t
267DNBArchImplI386::SetPC(uint64_t value)
268{
269    // Get program counter
270    kern_return_t err = GetGPRState(false);
271    if (err == KERN_SUCCESS)
272    {
273        m_state.context.gpr.__eip = value;
274        err = SetGPRState();
275    }
276    return err == KERN_SUCCESS;
277}
278
279uint64_t
280DNBArchImplI386::GetSP(uint64_t failValue)
281{
282    // Get stack pointer
283    if (GetGPRState(false) == KERN_SUCCESS)
284        return m_state.context.gpr.__esp;
285    return failValue;
286}
287
288// Uncomment the value below to verify the values in the debugger.
289//#define DEBUG_GPR_VALUES 1    // DO NOT CHECK IN WITH THIS DEFINE ENABLED
290//#define SET_GPR(reg) m_state.context.gpr.__##reg = gpr_##reg
291
292kern_return_t
293DNBArchImplI386::GetGPRState(bool force)
294{
295    if (force || m_state.GetError(e_regSetGPR, Read))
296    {
297#if DEBUG_GPR_VALUES
298        SET_GPR(eax);
299        SET_GPR(ebx);
300        SET_GPR(ecx);
301        SET_GPR(edx);
302        SET_GPR(edi);
303        SET_GPR(esi);
304        SET_GPR(ebp);
305        SET_GPR(esp);
306        SET_GPR(ss);
307        SET_GPR(eflags);
308        SET_GPR(eip);
309        SET_GPR(cs);
310        SET_GPR(ds);
311        SET_GPR(es);
312        SET_GPR(fs);
313        SET_GPR(gs);
314        m_state.SetError(e_regSetGPR, Read, 0);
315#else
316        mach_msg_type_number_t count = e_regSetWordSizeGPR;
317        m_state.SetError(e_regSetGPR, Read, ::thread_get_state(m_thread->ThreadID(), __i386_THREAD_STATE, (thread_state_t)&m_state.context.gpr, &count));
318#endif
319    }
320    return m_state.GetError(e_regSetGPR, Read);
321}
322
323// Uncomment the value below to verify the values in the debugger.
324//#define DEBUG_FPU_VALUES 1    // DO NOT CHECK IN WITH THIS DEFINE ENABLED
325
326kern_return_t
327DNBArchImplI386::GetFPUState(bool force)
328{
329    if (force || m_state.GetError(e_regSetFPU, Read))
330    {
331        if (DEBUG_FPU_REGS)
332        {
333            if (CPUHasAVX() || FORCE_AVX_REGS)
334            {
335                m_state.context.fpu.avx.__fpu_reserved[0] = -1;
336                m_state.context.fpu.avx.__fpu_reserved[1] = -1;
337                *(uint16_t *)&(m_state.context.fpu.avx.__fpu_fcw) = 0x1234;
338                *(uint16_t *)&(m_state.context.fpu.avx.__fpu_fsw) = 0x5678;
339                m_state.context.fpu.avx.__fpu_ftw = 1;
340                m_state.context.fpu.avx.__fpu_rsrv1 = UINT8_MAX;
341                m_state.context.fpu.avx.__fpu_fop = 2;
342                m_state.context.fpu.avx.__fpu_ip = 3;
343                m_state.context.fpu.avx.__fpu_cs = 4;
344                m_state.context.fpu.avx.__fpu_rsrv2 = 5;
345                m_state.context.fpu.avx.__fpu_dp = 6;
346                m_state.context.fpu.avx.__fpu_ds = 7;
347                m_state.context.fpu.avx.__fpu_rsrv3 = UINT16_MAX;
348                m_state.context.fpu.avx.__fpu_mxcsr = 8;
349                m_state.context.fpu.avx.__fpu_mxcsrmask = 9;
350                int i;
351                for (i=0; i<16; ++i)
352                {
353                    if (i<10)
354                    {
355                        m_state.context.fpu.avx.__fpu_stmm0.__mmst_reg[i] = 'a';
356                        m_state.context.fpu.avx.__fpu_stmm1.__mmst_reg[i] = 'b';
357                        m_state.context.fpu.avx.__fpu_stmm2.__mmst_reg[i] = 'c';
358                        m_state.context.fpu.avx.__fpu_stmm3.__mmst_reg[i] = 'd';
359                        m_state.context.fpu.avx.__fpu_stmm4.__mmst_reg[i] = 'e';
360                        m_state.context.fpu.avx.__fpu_stmm5.__mmst_reg[i] = 'f';
361                        m_state.context.fpu.avx.__fpu_stmm6.__mmst_reg[i] = 'g';
362                        m_state.context.fpu.avx.__fpu_stmm7.__mmst_reg[i] = 'h';
363                    }
364                    else
365                    {
366                        m_state.context.fpu.avx.__fpu_stmm0.__mmst_reg[i] = INT8_MIN;
367                        m_state.context.fpu.avx.__fpu_stmm1.__mmst_reg[i] = INT8_MIN;
368                        m_state.context.fpu.avx.__fpu_stmm2.__mmst_reg[i] = INT8_MIN;
369                        m_state.context.fpu.avx.__fpu_stmm3.__mmst_reg[i] = INT8_MIN;
370                        m_state.context.fpu.avx.__fpu_stmm4.__mmst_reg[i] = INT8_MIN;
371                        m_state.context.fpu.avx.__fpu_stmm5.__mmst_reg[i] = INT8_MIN;
372                        m_state.context.fpu.avx.__fpu_stmm6.__mmst_reg[i] = INT8_MIN;
373                        m_state.context.fpu.avx.__fpu_stmm7.__mmst_reg[i] = INT8_MIN;
374                    }
375
376                    m_state.context.fpu.avx.__fpu_xmm0.__xmm_reg[i] = '0';
377                    m_state.context.fpu.avx.__fpu_xmm1.__xmm_reg[i] = '1';
378                    m_state.context.fpu.avx.__fpu_xmm2.__xmm_reg[i] = '2';
379                    m_state.context.fpu.avx.__fpu_xmm3.__xmm_reg[i] = '3';
380                    m_state.context.fpu.avx.__fpu_xmm4.__xmm_reg[i] = '4';
381                    m_state.context.fpu.avx.__fpu_xmm5.__xmm_reg[i] = '5';
382                    m_state.context.fpu.avx.__fpu_xmm6.__xmm_reg[i] = '6';
383                    m_state.context.fpu.avx.__fpu_xmm7.__xmm_reg[i] = '7';
384                }
385                for (i=0; i<sizeof(m_state.context.fpu.avx.__fpu_rsrv4); ++i)
386                    m_state.context.fpu.avx.__fpu_rsrv4[i] = INT8_MIN;
387                m_state.context.fpu.avx.__fpu_reserved1 = -1;
388                for (i=0; i<sizeof(m_state.context.fpu.avx.__avx_reserved1); ++i)
389                    m_state.context.fpu.avx.__avx_reserved1[i] = INT8_MIN;
390
391                for (i = 0; i < 16; ++i)
392                {
393                    m_state.context.fpu.avx.__fpu_ymmh0.__xmm_reg[i] = '0';
394                    m_state.context.fpu.avx.__fpu_ymmh1.__xmm_reg[i] = '1';
395                    m_state.context.fpu.avx.__fpu_ymmh2.__xmm_reg[i] = '2';
396                    m_state.context.fpu.avx.__fpu_ymmh3.__xmm_reg[i] = '3';
397                    m_state.context.fpu.avx.__fpu_ymmh4.__xmm_reg[i] = '4';
398                    m_state.context.fpu.avx.__fpu_ymmh5.__xmm_reg[i] = '5';
399                    m_state.context.fpu.avx.__fpu_ymmh6.__xmm_reg[i] = '6';
400                    m_state.context.fpu.avx.__fpu_ymmh7.__xmm_reg[i] = '7';
401                }
402            }
403            else
404            {
405                m_state.context.fpu.no_avx.__fpu_reserved[0] = -1;
406                m_state.context.fpu.no_avx.__fpu_reserved[1] = -1;
407                *(uint16_t *)&(m_state.context.fpu.no_avx.__fpu_fcw) = 0x1234;
408                *(uint16_t *)&(m_state.context.fpu.no_avx.__fpu_fsw) = 0x5678;
409                m_state.context.fpu.no_avx.__fpu_ftw = 1;
410                m_state.context.fpu.no_avx.__fpu_rsrv1 = UINT8_MAX;
411                m_state.context.fpu.no_avx.__fpu_fop = 2;
412                m_state.context.fpu.no_avx.__fpu_ip = 3;
413                m_state.context.fpu.no_avx.__fpu_cs = 4;
414                m_state.context.fpu.no_avx.__fpu_rsrv2 = 5;
415                m_state.context.fpu.no_avx.__fpu_dp = 6;
416                m_state.context.fpu.no_avx.__fpu_ds = 7;
417                m_state.context.fpu.no_avx.__fpu_rsrv3 = UINT16_MAX;
418                m_state.context.fpu.no_avx.__fpu_mxcsr = 8;
419                m_state.context.fpu.no_avx.__fpu_mxcsrmask = 9;
420                int i;
421                for (i=0; i<16; ++i)
422                {
423                    if (i<10)
424                    {
425                        m_state.context.fpu.no_avx.__fpu_stmm0.__mmst_reg[i] = 'a';
426                        m_state.context.fpu.no_avx.__fpu_stmm1.__mmst_reg[i] = 'b';
427                        m_state.context.fpu.no_avx.__fpu_stmm2.__mmst_reg[i] = 'c';
428                        m_state.context.fpu.no_avx.__fpu_stmm3.__mmst_reg[i] = 'd';
429                        m_state.context.fpu.no_avx.__fpu_stmm4.__mmst_reg[i] = 'e';
430                        m_state.context.fpu.no_avx.__fpu_stmm5.__mmst_reg[i] = 'f';
431                        m_state.context.fpu.no_avx.__fpu_stmm6.__mmst_reg[i] = 'g';
432                        m_state.context.fpu.no_avx.__fpu_stmm7.__mmst_reg[i] = 'h';
433                    }
434                    else
435                    {
436                        m_state.context.fpu.no_avx.__fpu_stmm0.__mmst_reg[i] = INT8_MIN;
437                        m_state.context.fpu.no_avx.__fpu_stmm1.__mmst_reg[i] = INT8_MIN;
438                        m_state.context.fpu.no_avx.__fpu_stmm2.__mmst_reg[i] = INT8_MIN;
439                        m_state.context.fpu.no_avx.__fpu_stmm3.__mmst_reg[i] = INT8_MIN;
440                        m_state.context.fpu.no_avx.__fpu_stmm4.__mmst_reg[i] = INT8_MIN;
441                        m_state.context.fpu.no_avx.__fpu_stmm5.__mmst_reg[i] = INT8_MIN;
442                        m_state.context.fpu.no_avx.__fpu_stmm6.__mmst_reg[i] = INT8_MIN;
443                        m_state.context.fpu.no_avx.__fpu_stmm7.__mmst_reg[i] = INT8_MIN;
444                    }
445
446                    m_state.context.fpu.no_avx.__fpu_xmm0.__xmm_reg[i] = '0';
447                    m_state.context.fpu.no_avx.__fpu_xmm1.__xmm_reg[i] = '1';
448                    m_state.context.fpu.no_avx.__fpu_xmm2.__xmm_reg[i] = '2';
449                    m_state.context.fpu.no_avx.__fpu_xmm3.__xmm_reg[i] = '3';
450                    m_state.context.fpu.no_avx.__fpu_xmm4.__xmm_reg[i] = '4';
451                    m_state.context.fpu.no_avx.__fpu_xmm5.__xmm_reg[i] = '5';
452                    m_state.context.fpu.no_avx.__fpu_xmm6.__xmm_reg[i] = '6';
453                    m_state.context.fpu.no_avx.__fpu_xmm7.__xmm_reg[i] = '7';
454                }
455                for (i=0; i<sizeof(m_state.context.fpu.avx.__fpu_rsrv4); ++i)
456                    m_state.context.fpu.no_avx.__fpu_rsrv4[i] = INT8_MIN;
457                m_state.context.fpu.no_avx.__fpu_reserved1 = -1;
458            }
459            m_state.SetError(e_regSetFPU, Read, 0);
460        }
461        else
462        {
463            if (CPUHasAVX() || FORCE_AVX_REGS)
464            {
465                mach_msg_type_number_t count = e_regSetWordSizeAVX;
466                m_state.SetError (e_regSetFPU, Read, ::thread_get_state(m_thread->ThreadID(), __i386_AVX_STATE, (thread_state_t)&m_state.context.fpu.avx, &count));
467                DNBLogThreadedIf (LOG_THREAD, "::thread_get_state (0x%4.4x, %u, &avx, %u (%u passed in)) => 0x%8.8x",
468                                  m_thread->ThreadID(), __i386_AVX_STATE, count, e_regSetWordSizeAVX,
469                                  m_state.GetError(e_regSetFPU, Read));
470            }
471            else
472            {
473                mach_msg_type_number_t count = e_regSetWordSizeFPU;
474                m_state.SetError(e_regSetFPU, Read, ::thread_get_state(m_thread->ThreadID(), __i386_FLOAT_STATE, (thread_state_t)&m_state.context.fpu.no_avx, &count));
475                DNBLogThreadedIf (LOG_THREAD, "::thread_get_state (0x%4.4x, %u, &fpu, %u (%u passed in) => 0x%8.8x",
476                                  m_thread->ThreadID(), __i386_FLOAT_STATE, count, e_regSetWordSizeFPU,
477                                  m_state.GetError(e_regSetFPU, Read));
478            }
479        }
480    }
481    return m_state.GetError(e_regSetFPU, Read);
482}
483
484kern_return_t
485DNBArchImplI386::GetEXCState(bool force)
486{
487    if (force || m_state.GetError(e_regSetEXC, Read))
488    {
489        mach_msg_type_number_t count = e_regSetWordSizeEXC;
490        m_state.SetError(e_regSetEXC, Read, ::thread_get_state(m_thread->ThreadID(), __i386_EXCEPTION_STATE, (thread_state_t)&m_state.context.exc, &count));
491    }
492    return m_state.GetError(e_regSetEXC, Read);
493}
494
495kern_return_t
496DNBArchImplI386::SetGPRState()
497{
498    m_state.SetError(e_regSetGPR, Write, ::thread_set_state(m_thread->ThreadID(), __i386_THREAD_STATE, (thread_state_t)&m_state.context.gpr, e_regSetWordSizeGPR));
499    return m_state.GetError(e_regSetGPR, Write);
500}
501
502kern_return_t
503DNBArchImplI386::SetFPUState()
504{
505    if (DEBUG_FPU_REGS)
506    {
507        m_state.SetError(e_regSetFPU, Write, 0);
508        return m_state.GetError(e_regSetFPU, Write);
509    }
510    else
511    {
512        if (CPUHasAVX() || FORCE_AVX_REGS)
513            m_state.SetError(e_regSetFPU, Write, ::thread_set_state(m_thread->ThreadID(), __i386_AVX_STATE, (thread_state_t)&m_state.context.fpu.avx, e_regSetWordSizeAVX));
514        else
515            m_state.SetError(e_regSetFPU, Write, ::thread_set_state(m_thread->ThreadID(), __i386_FLOAT_STATE, (thread_state_t)&m_state.context.fpu.no_avx, e_regSetWordSizeFPU));
516        return m_state.GetError(e_regSetFPU, Write);
517    }
518}
519
520kern_return_t
521DNBArchImplI386::SetEXCState()
522{
523    m_state.SetError(e_regSetEXC, Write, ::thread_set_state(m_thread->ThreadID(), __i386_EXCEPTION_STATE, (thread_state_t)&m_state.context.exc, e_regSetWordSizeEXC));
524    return m_state.GetError(e_regSetEXC, Write);
525}
526
527kern_return_t
528DNBArchImplI386::GetDBGState(bool force)
529{
530    if (force || m_state.GetError(e_regSetDBG, Read))
531    {
532        mach_msg_type_number_t count = e_regSetWordSizeDBG;
533        m_state.SetError(e_regSetDBG, Read, ::thread_get_state(m_thread->ThreadID(), __i386_DEBUG_STATE, (thread_state_t)&m_state.context.dbg, &count));
534    }
535    return m_state.GetError(e_regSetDBG, Read);
536}
537
538kern_return_t
539DNBArchImplI386::SetDBGState()
540{
541    m_state.SetError(e_regSetDBG, Write, ::thread_set_state(m_thread->ThreadID(), __i386_DEBUG_STATE, (thread_state_t)&m_state.context.dbg, e_regSetWordSizeDBG));
542    return m_state.GetError(e_regSetDBG, Write);
543}
544
545void
546DNBArchImplI386::ThreadWillResume()
547{
548    // Do we need to step this thread? If so, let the mach thread tell us so.
549    if (m_thread->IsStepping())
550    {
551        // This is the primary thread, let the arch do anything it needs
552        EnableHardwareSingleStep(true);
553    }
554
555    // Reset the debug status register, if necessary, before we resume.
556    kern_return_t kret = GetDBGState(false);
557    DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchImplI386::ThreadWillResume() GetDBGState() => 0x%8.8x.", kret);
558    if (kret != KERN_SUCCESS)
559        return;
560
561    DBG &debug_state = m_state.context.dbg;
562    bool need_reset = false;
563    uint32_t i, num = NumSupportedHardwareWatchpoints();
564    for (i = 0; i < num; ++i)
565        if (IsWatchpointHit(debug_state, i))
566            need_reset = true;
567
568    if (need_reset)
569    {
570        ClearWatchpointHits(debug_state);
571        kret = SetDBGState();
572        DNBLogThreadedIf(LOG_WATCHPOINTS,"DNBArchImplI386::ThreadWillResume() SetDBGState() => 0x%8.8x.", kret);
573    }
574}
575
576bool
577DNBArchImplI386::ThreadDidStop()
578{
579    bool success = true;
580
581    m_state.InvalidateAllRegisterStates();
582
583    // Are we stepping a single instruction?
584    if (GetGPRState(true) == KERN_SUCCESS)
585    {
586        // We are single stepping, was this the primary thread?
587        if (m_thread->IsStepping())
588        {
589            // This was the primary thread, we need to clear the trace
590            // bit if so.
591            success = EnableHardwareSingleStep(false) == KERN_SUCCESS;
592        }
593        else
594        {
595            // The MachThread will automatically restore the suspend count
596            // in ThreadDidStop(), so we don't need to do anything here if
597            // we weren't the primary thread the last time
598        }
599    }
600    return success;
601}
602
603bool
604DNBArchImplI386::NotifyException(MachException::Data& exc)
605{
606    switch (exc.exc_type)
607    {
608    case EXC_BAD_ACCESS:
609        break;
610    case EXC_BAD_INSTRUCTION:
611        break;
612    case EXC_ARITHMETIC:
613        break;
614    case EXC_EMULATION:
615        break;
616    case EXC_SOFTWARE:
617        break;
618    case EXC_BREAKPOINT:
619        if (exc.exc_data.size() >= 2 && exc.exc_data[0] == 2)
620        {
621            // exc_code = EXC_I386_BPT
622            //
623            nub_addr_t pc = GetPC(INVALID_NUB_ADDRESS);
624            if (pc != INVALID_NUB_ADDRESS && pc > 0)
625            {
626                pc -= 1;
627                // Check for a breakpoint at one byte prior to the current PC value
628                // since the PC will be just past the trap.
629
630                nub_break_t breakID = m_thread->Process()->Breakpoints().FindIDByAddress(pc);
631                if (NUB_BREAK_ID_IS_VALID(breakID))
632                {
633                    // Backup the PC for i386 since the trap was taken and the PC
634                    // is at the address following the single byte trap instruction.
635                    if (m_state.context.gpr.__eip > 0)
636                    {
637                        m_state.context.gpr.__eip = pc;
638                        // Write the new PC back out
639                        SetGPRState ();
640                    }
641                }
642                return true;
643            }
644        }
645        else if (exc.exc_data.size() >= 2 && exc.exc_data[0] == 1)
646        {
647            // exc_code = EXC_I386_SGL
648            //
649            // Check whether this corresponds to a watchpoint hit event.
650            // If yes, set the exc_sub_code to the data break address.
651            nub_addr_t addr = 0;
652            uint32_t hw_index = GetHardwareWatchpointHit(addr);
653            if (hw_index != INVALID_NUB_HW_INDEX)
654            {
655                exc.exc_data[1] = addr;
656                // Piggyback the hw_index in the exc.data.
657                exc.exc_data.push_back(hw_index);
658            }
659
660            return true;
661        }
662        break;
663    case EXC_SYSCALL:
664        break;
665    case EXC_MACH_SYSCALL:
666        break;
667    case EXC_RPC_ALERT:
668        break;
669    }
670    return false;
671}
672
673uint32_t
674DNBArchImplI386::NumSupportedHardwareWatchpoints()
675{
676    // Available debug address registers: dr0, dr1, dr2, dr3.
677    return 4;
678}
679
680static uint32_t
681size_and_rw_bits(nub_size_t size, bool read, bool write)
682{
683    uint32_t rw;
684    if (read) {
685        rw = 0x3; // READ or READ/WRITE
686    } else if (write) {
687        rw = 0x1; // WRITE
688    } else {
689        assert(0 && "read and write cannot both be false");
690    }
691
692    switch (size) {
693    case 1:
694        return rw;
695    case 2:
696        return (0x1 << 2) | rw;
697    case 4:
698        return (0x3 << 2) | rw;
699    case 8:
700        return (0x2 << 2) | rw;
701    default:
702        assert(0 && "invalid size, must be one of 1, 2, 4, or 8");
703    }
704}
705void
706DNBArchImplI386::SetWatchpoint(DBG &debug_state, uint32_t hw_index, nub_addr_t addr, nub_size_t size, bool read, bool write)
707{
708    // Set both dr7 (debug control register) and dri (debug address register).
709
710    // dr7{7-0} encodes the local/gloabl enable bits:
711    //  global enable --. .-- local enable
712    //                  | |
713    //                  v v
714    //      dr0 -> bits{1-0}
715    //      dr1 -> bits{3-2}
716    //      dr2 -> bits{5-4}
717    //      dr3 -> bits{7-6}
718    //
719    // dr7{31-16} encodes the rw/len bits:
720    //  b_x+3, b_x+2, b_x+1, b_x
721    //      where bits{x+1, x} => rw
722    //            0b00: execute, 0b01: write, 0b11: read-or-write, 0b10: io read-or-write (unused)
723    //      and bits{x+3, x+2} => len
724    //            0b00: 1-byte, 0b01: 2-byte, 0b11: 4-byte, 0b10: 8-byte
725    //
726    //      dr0 -> bits{19-16}
727    //      dr1 -> bits{23-20}
728    //      dr2 -> bits{27-24}
729    //      dr3 -> bits{31-28}
730    debug_state.__dr7 |= (1 << (2*hw_index) |
731                          size_and_rw_bits(size, read, write) << (16+4*hw_index));
732    uint32_t addr_32 = addr & 0xffffffff;
733    switch (hw_index) {
734    case 0:
735        debug_state.__dr0 = addr_32; break;
736    case 1:
737        debug_state.__dr1 = addr_32; break;
738    case 2:
739        debug_state.__dr2 = addr_32; break;
740    case 3:
741        debug_state.__dr3 = addr_32; break;
742    default:
743        assert(0 && "invalid hardware register index, must be one of 0, 1, 2, or 3");
744    }
745    return;
746}
747
748void
749DNBArchImplI386::ClearWatchpoint(DBG &debug_state, uint32_t hw_index)
750{
751    debug_state.__dr7 &= ~(3 << (2*hw_index));
752    switch (hw_index) {
753    case 0:
754        debug_state.__dr0 = 0; break;
755    case 1:
756        debug_state.__dr1 = 0; break;
757    case 2:
758        debug_state.__dr2 = 0; break;
759    case 3:
760        debug_state.__dr3 = 0; break;
761    default:
762        assert(0 && "invalid hardware register index, must be one of 0, 1, 2, or 3");
763    }
764    return;
765}
766
767bool
768DNBArchImplI386::IsWatchpointVacant(const DBG &debug_state, uint32_t hw_index)
769{
770    // Check dr7 (debug control register) for local/global enable bits:
771    //  global enable --. .-- local enable
772    //                  | |
773    //                  v v
774    //      dr0 -> bits{1-0}
775    //      dr1 -> bits{3-2}
776    //      dr2 -> bits{5-4}
777    //      dr3 -> bits{7-6}
778    return (debug_state.__dr7 & (3 << (2*hw_index))) == 0;
779}
780
781// Resets local copy of debug status register to wait for the next debug excpetion.
782void
783DNBArchImplI386::ClearWatchpointHits(DBG &debug_state)
784{
785    // See also IsWatchpointHit().
786    debug_state.__dr6 = 0;
787    return;
788}
789
790bool
791DNBArchImplI386::IsWatchpointHit(const DBG &debug_state, uint32_t hw_index)
792{
793    // Check dr6 (debug status register) whether a watchpoint hits:
794    //          is watchpoint hit?
795    //                  |
796    //                  v
797    //      dr0 -> bits{0}
798    //      dr1 -> bits{1}
799    //      dr2 -> bits{2}
800    //      dr3 -> bits{3}
801    return (debug_state.__dr6 & (1 << hw_index));
802}
803
804nub_addr_t
805DNBArchImplI386::GetWatchAddress(const DBG &debug_state, uint32_t hw_index)
806{
807    switch (hw_index) {
808    case 0:
809        return debug_state.__dr0;
810    case 1:
811        return debug_state.__dr1;
812    case 2:
813        return debug_state.__dr2;
814    case 3:
815        return debug_state.__dr3;
816    default:
817        assert(0 && "invalid hardware register index, must be one of 0, 1, 2, or 3");
818    }
819}
820
821uint32_t
822DNBArchImplI386::EnableHardwareWatchpoint (nub_addr_t addr, nub_size_t size, bool read, bool write)
823{
824    DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchImplI386::EnableHardwareWatchpoint(addr = 0x%llx, size = %zu, read = %u, write = %u)", (uint64_t)addr, size, read, write);
825
826    const uint32_t num_hw_watchpoints = NumSupportedHardwareWatchpoints();
827
828    // Can only watch 1, 2, 4, or 8 bytes.
829    if (!(size == 1 || size == 2 || size == 4 || size == 8))
830        return INVALID_NUB_HW_INDEX;
831
832    // We must watch for either read or write
833    if (read == false && write == false)
834        return INVALID_NUB_HW_INDEX;
835
836    // Read the debug state
837    kern_return_t kret = GetDBGState(false);
838
839    if (kret == KERN_SUCCESS)
840    {
841        // Check to make sure we have the needed hardware support
842        uint32_t i = 0;
843
844        DBG &debug_state = m_state.context.dbg;
845        for (i = 0; i < num_hw_watchpoints; ++i)
846        {
847            if (IsWatchpointVacant(debug_state, i))
848                break;
849        }
850
851        // See if we found an available hw breakpoint slot above
852        if (i < num_hw_watchpoints)
853        {
854            // Modify our local copy of the debug state, first.
855            SetWatchpoint(debug_state, i, addr, size, read, write);
856            // Now set the watch point in the inferior.
857            kret = SetDBGState();
858            DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchImplI386::EnableHardwareWatchpoint() SetDBGState() => 0x%8.8x.", kret);
859
860            if (kret == KERN_SUCCESS)
861                return i;
862        }
863        else
864        {
865            DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchImplI386::EnableHardwareWatchpoint(): All hardware resources (%u) are in use.", num_hw_watchpoints);
866        }
867    }
868    return INVALID_NUB_HW_INDEX;
869}
870
871bool
872DNBArchImplI386::DisableHardwareWatchpoint (uint32_t hw_index)
873{
874    kern_return_t kret = GetDBGState(false);
875
876    const uint32_t num_hw_points = NumSupportedHardwareWatchpoints();
877    if (kret == KERN_SUCCESS)
878    {
879        DBG &debug_state = m_state.context.dbg;
880        if (hw_index < num_hw_points && !IsWatchpointVacant(debug_state, hw_index))
881        {
882            // Modify our local copy of the debug state, first.
883            ClearWatchpoint(debug_state, hw_index);
884            // Now disable the watch point in the inferior.
885            kret = SetDBGState();
886            DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchImplI386::DisableHardwareWatchpoint( %u )",
887                             hw_index);
888
889            if (kret == KERN_SUCCESS)
890                return true;
891        }
892    }
893    return false;
894}
895
896DNBArchImplI386::DBG DNBArchImplI386::Global_Debug_State = {0,0,0,0,0,0,0,0};
897bool DNBArchImplI386::Valid_Global_Debug_State = false;
898
899// Use this callback from MachThread, which in turn was called from MachThreadList, to update
900// the global view of the hardware watchpoint state, so that when new thread comes along, they
901// get to inherit the existing hardware watchpoint state.
902void
903DNBArchImplI386::HardwareWatchpointStateChanged ()
904{
905    Global_Debug_State = m_state.context.dbg;
906    Valid_Global_Debug_State = true;
907}
908
909// Iterate through the debug status register; return the index of the first hit.
910uint32_t
911DNBArchImplI386::GetHardwareWatchpointHit(nub_addr_t &addr)
912{
913    // Read the debug state
914    kern_return_t kret = GetDBGState(false);
915    DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchImplI386::GetHardwareWatchpointHit() GetDBGState() => 0x%8.8x.", kret);
916    if (kret == KERN_SUCCESS)
917    {
918        DBG &debug_state = m_state.context.dbg;
919        uint32_t i, num = NumSupportedHardwareWatchpoints();
920        for (i = 0; i < num; ++i)
921        {
922            if (IsWatchpointHit(debug_state, i))
923            {
924                addr = GetWatchAddress(debug_state, i);
925                DNBLogThreadedIf(LOG_WATCHPOINTS,
926                                 "DNBArchImplI386::GetHardwareWatchpointHit() found => %u (addr = 0x%llx).",
927                                 i, (uint64_t)addr);
928                return i;
929            }
930        }
931    }
932    return INVALID_NUB_HW_INDEX;
933}
934
935// Set the single step bit in the processor status register.
936kern_return_t
937DNBArchImplI386::EnableHardwareSingleStep (bool enable)
938{
939    if (GetGPRState(false) == KERN_SUCCESS)
940    {
941        const uint32_t trace_bit = 0x100u;
942        if (enable)
943            m_state.context.gpr.__eflags |= trace_bit;
944        else
945            m_state.context.gpr.__eflags &= ~trace_bit;
946        return SetGPRState();
947    }
948    return m_state.GetError(e_regSetGPR, Read);
949}
950
951
952//----------------------------------------------------------------------
953// Register information defintions
954//----------------------------------------------------------------------
955
956
957#define GPR_OFFSET(reg) (offsetof (DNBArchImplI386::GPR, __##reg))
958#define FPU_OFFSET(reg) (offsetof (DNBArchImplI386::FPU, __fpu_##reg) + offsetof (DNBArchImplI386::Context, fpu.no_avx))
959#define AVX_OFFSET(reg) (offsetof (DNBArchImplI386::AVX, __fpu_##reg) + offsetof (DNBArchImplI386::Context, fpu.avx))
960#define EXC_OFFSET(reg) (offsetof (DNBArchImplI386::EXC, __##reg)     + offsetof (DNBArchImplI386::Context, exc))
961
962#define GPR_SIZE(reg)       (sizeof(((DNBArchImplI386::GPR *)NULL)->__##reg))
963#define FPU_SIZE_UINT(reg)  (sizeof(((DNBArchImplI386::FPU *)NULL)->__fpu_##reg))
964#define FPU_SIZE_MMST(reg)  (sizeof(((DNBArchImplI386::FPU *)NULL)->__fpu_##reg.__mmst_reg))
965#define FPU_SIZE_XMM(reg)   (sizeof(((DNBArchImplI386::FPU *)NULL)->__fpu_##reg.__xmm_reg))
966#define FPU_SIZE_YMM(reg)   (32)
967#define EXC_SIZE(reg)       (sizeof(((DNBArchImplI386::EXC *)NULL)->__##reg))
968
969// This does not accurately identify the location of ymm0...7 in
970// Context.fpu.avx.  That is because there is a bunch of padding
971// in Context.fpu.avx that we don't need.  Offset macros lay out
972// the register state that Debugserver transmits to the debugger
973// -- not to interpret the thread_get_state info.
974#define AVX_OFFSET_YMM(n)   (AVX_OFFSET(xmm7) + FPU_SIZE_XMM(xmm7) + (32 * n))
975
976// These macros will auto define the register name, alt name, register size,
977// register offset, encoding, format and native register. This ensures that
978// the register state structures are defined correctly and have the correct
979// sizes and offsets.
980
981// General purpose registers for 64 bit
982const DNBRegisterInfo
983DNBArchImplI386::g_gpr_registers[] =
984{
985{ e_regSetGPR, gpr_eax,     "eax"   , NULL      , Uint, Hex, GPR_SIZE(eax),     GPR_OFFSET(eax)     , gcc_eax   , dwarf_eax     , -1U                   , gdb_eax   },
986{ e_regSetGPR, gpr_ebx,     "ebx"   , NULL      , Uint, Hex, GPR_SIZE(ebx),     GPR_OFFSET(ebx)     , gcc_ebx   , dwarf_ebx     , -1U                   , gdb_ebx   },
987{ e_regSetGPR, gpr_ecx,     "ecx"   , NULL      , Uint, Hex, GPR_SIZE(ecx),     GPR_OFFSET(ecx)     , gcc_ecx   , dwarf_ecx     , -1U                   , gdb_ecx   },
988{ e_regSetGPR, gpr_edx,     "edx"   , NULL      , Uint, Hex, GPR_SIZE(edx),     GPR_OFFSET(edx)     , gcc_edx   , dwarf_edx     , -1U                   , gdb_edx   },
989{ e_regSetGPR, gpr_edi,     "edi"   , NULL      , Uint, Hex, GPR_SIZE(edi),     GPR_OFFSET(edi)     , gcc_edi   , dwarf_edi     , -1U                   , gdb_edi   },
990{ e_regSetGPR, gpr_esi,     "esi"   , NULL      , Uint, Hex, GPR_SIZE(esi),     GPR_OFFSET(esi)     , gcc_esi   , dwarf_esi     , -1U                   , gdb_esi   },
991{ e_regSetGPR, gpr_ebp,     "ebp"   , "fp"      , Uint, Hex, GPR_SIZE(ebp),     GPR_OFFSET(ebp)     , gcc_ebp   , dwarf_ebp     , GENERIC_REGNUM_FP     , gdb_ebp   },
992{ e_regSetGPR, gpr_esp,     "esp"   , "sp"      , Uint, Hex, GPR_SIZE(esp),     GPR_OFFSET(esp)     , gcc_esp   , dwarf_esp     , GENERIC_REGNUM_SP     , gdb_esp   },
993{ e_regSetGPR, gpr_ss,      "ss"    , NULL      , Uint, Hex, GPR_SIZE(ss),      GPR_OFFSET(ss)      , -1U       , -1U          , -1U                 , gdb_ss    },
994{ e_regSetGPR, gpr_eflags,  "eflags", "flags"   , Uint, Hex, GPR_SIZE(eflags),  GPR_OFFSET(eflags)  , gcc_eflags, dwarf_eflags  , GENERIC_REGNUM_FLAGS  , gdb_eflags},
995{ e_regSetGPR, gpr_eip,     "eip"   , "pc"      , Uint, Hex, GPR_SIZE(eip),     GPR_OFFSET(eip)     , gcc_eip   , dwarf_eip     , GENERIC_REGNUM_PC     , gdb_eip   },
996{ e_regSetGPR, gpr_cs,      "cs"    , NULL      , Uint, Hex, GPR_SIZE(cs),      GPR_OFFSET(cs)      , -1U       , -1U           , -1U                   , gdb_cs    },
997{ e_regSetGPR, gpr_ds,      "ds"    , NULL      , Uint, Hex, GPR_SIZE(ds),      GPR_OFFSET(ds)      , -1U       , -1U           , -1U                   , gdb_ds    },
998{ e_regSetGPR, gpr_es,      "es"    , NULL      , Uint, Hex, GPR_SIZE(es),      GPR_OFFSET(es)      , -1U       , -1U           , -1U                   , gdb_es    },
999{ e_regSetGPR, gpr_fs,      "fs"    , NULL      , Uint, Hex, GPR_SIZE(fs),      GPR_OFFSET(fs)      , -1U       , -1U           , -1U                   , gdb_fs    },
1000{ e_regSetGPR, gpr_gs,      "gs"    , NULL      , Uint, Hex, GPR_SIZE(gs),      GPR_OFFSET(gs)      , -1U       , -1U           , -1U                   , gdb_gs    }
1001};
1002
1003
1004const DNBRegisterInfo
1005DNBArchImplI386::g_fpu_registers_no_avx[] =
1006{
1007{ e_regSetFPU, fpu_fcw      , "fctrl"       , NULL, Uint, Hex, FPU_SIZE_UINT(fcw)       , FPU_OFFSET(fcw)       , -1U, -1U, -1U, -1U },
1008{ e_regSetFPU, fpu_fsw      , "fstat"       , NULL, Uint, Hex, FPU_SIZE_UINT(fsw)       , FPU_OFFSET(fsw)       , -1U, -1U, -1U, -1U },
1009{ e_regSetFPU, fpu_ftw      , "ftag"        , NULL, Uint, Hex, FPU_SIZE_UINT(ftw)       , FPU_OFFSET(ftw)       , -1U, -1U, -1U, -1U },
1010{ e_regSetFPU, fpu_fop      , "fop"         , NULL, Uint, Hex, FPU_SIZE_UINT(fop)       , FPU_OFFSET(fop)       , -1U, -1U, -1U, -1U },
1011{ e_regSetFPU, fpu_ip       , "fioff"       , NULL, Uint, Hex, FPU_SIZE_UINT(ip)        , FPU_OFFSET(ip)        , -1U, -1U, -1U, -1U },
1012{ e_regSetFPU, fpu_cs       , "fiseg"       , NULL, Uint, Hex, FPU_SIZE_UINT(cs)        , FPU_OFFSET(cs)        , -1U, -1U, -1U, -1U },
1013{ e_regSetFPU, fpu_dp       , "fooff"       , NULL, Uint, Hex, FPU_SIZE_UINT(dp)        , FPU_OFFSET(dp)        , -1U, -1U, -1U, -1U },
1014{ e_regSetFPU, fpu_ds       , "foseg"       , NULL, Uint, Hex, FPU_SIZE_UINT(ds)        , FPU_OFFSET(ds)        , -1U, -1U, -1U, -1U },
1015{ e_regSetFPU, fpu_mxcsr    , "mxcsr"       , NULL, Uint, Hex, FPU_SIZE_UINT(mxcsr)     , FPU_OFFSET(mxcsr)     , -1U, -1U, -1U, -1U },
1016{ e_regSetFPU, fpu_mxcsrmask, "mxcsrmask"   , NULL, Uint, Hex, FPU_SIZE_UINT(mxcsrmask) , FPU_OFFSET(mxcsrmask) , -1U, -1U, -1U, -1U },
1017
1018{ e_regSetFPU, fpu_stmm0, "stmm0", NULL, Vector, VectorOfUInt8, FPU_SIZE_MMST(stmm0), FPU_OFFSET(stmm0), -1U, dwarf_stmm0, -1U, gdb_stmm0 },
1019{ e_regSetFPU, fpu_stmm1, "stmm1", NULL, Vector, VectorOfUInt8, FPU_SIZE_MMST(stmm1), FPU_OFFSET(stmm1), -1U, dwarf_stmm1, -1U, gdb_stmm1 },
1020{ e_regSetFPU, fpu_stmm2, "stmm2", NULL, Vector, VectorOfUInt8, FPU_SIZE_MMST(stmm2), FPU_OFFSET(stmm2), -1U, dwarf_stmm2, -1U, gdb_stmm2 },
1021{ e_regSetFPU, fpu_stmm3, "stmm3", NULL, Vector, VectorOfUInt8, FPU_SIZE_MMST(stmm3), FPU_OFFSET(stmm3), -1U, dwarf_stmm3, -1U, gdb_stmm3 },
1022{ e_regSetFPU, fpu_stmm4, "stmm4", NULL, Vector, VectorOfUInt8, FPU_SIZE_MMST(stmm4), FPU_OFFSET(stmm4), -1U, dwarf_stmm4, -1U, gdb_stmm4 },
1023{ e_regSetFPU, fpu_stmm5, "stmm5", NULL, Vector, VectorOfUInt8, FPU_SIZE_MMST(stmm5), FPU_OFFSET(stmm5), -1U, dwarf_stmm5, -1U, gdb_stmm5 },
1024{ e_regSetFPU, fpu_stmm6, "stmm6", NULL, Vector, VectorOfUInt8, FPU_SIZE_MMST(stmm6), FPU_OFFSET(stmm6), -1U, dwarf_stmm6, -1U, gdb_stmm6 },
1025{ e_regSetFPU, fpu_stmm7, "stmm7", NULL, Vector, VectorOfUInt8, FPU_SIZE_MMST(stmm7), FPU_OFFSET(stmm7), -1U, dwarf_stmm7, -1U, gdb_stmm7 },
1026
1027{ e_regSetFPU, fpu_xmm0, "xmm0", NULL, Vector, VectorOfUInt8, FPU_SIZE_XMM(xmm0), FPU_OFFSET(xmm0), -1U, dwarf_xmm0, -1U, gdb_xmm0 },
1028{ e_regSetFPU, fpu_xmm1, "xmm1", NULL, Vector, VectorOfUInt8, FPU_SIZE_XMM(xmm1), FPU_OFFSET(xmm1), -1U, dwarf_xmm1, -1U, gdb_xmm1 },
1029{ e_regSetFPU, fpu_xmm2, "xmm2", NULL, Vector, VectorOfUInt8, FPU_SIZE_XMM(xmm2), FPU_OFFSET(xmm2), -1U, dwarf_xmm2, -1U, gdb_xmm2 },
1030{ e_regSetFPU, fpu_xmm3, "xmm3", NULL, Vector, VectorOfUInt8, FPU_SIZE_XMM(xmm3), FPU_OFFSET(xmm3), -1U, dwarf_xmm3, -1U, gdb_xmm3 },
1031{ e_regSetFPU, fpu_xmm4, "xmm4", NULL, Vector, VectorOfUInt8, FPU_SIZE_XMM(xmm4), FPU_OFFSET(xmm4), -1U, dwarf_xmm4, -1U, gdb_xmm4 },
1032{ e_regSetFPU, fpu_xmm5, "xmm5", NULL, Vector, VectorOfUInt8, FPU_SIZE_XMM(xmm5), FPU_OFFSET(xmm5), -1U, dwarf_xmm5, -1U, gdb_xmm5 },
1033{ e_regSetFPU, fpu_xmm6, "xmm6", NULL, Vector, VectorOfUInt8, FPU_SIZE_XMM(xmm6), FPU_OFFSET(xmm6), -1U, dwarf_xmm6, -1U, gdb_xmm6 },
1034{ e_regSetFPU, fpu_xmm7, "xmm7", NULL, Vector, VectorOfUInt8, FPU_SIZE_XMM(xmm7), FPU_OFFSET(xmm7), -1U, dwarf_xmm7, -1U, gdb_xmm7 }
1035};
1036
1037const DNBRegisterInfo
1038DNBArchImplI386::g_fpu_registers_avx[] =
1039{
1040{ e_regSetFPU, fpu_fcw      , "fctrl"       , NULL, Uint, Hex, FPU_SIZE_UINT(fcw)       , AVX_OFFSET(fcw)       , -1U, -1U, -1U, -1U },
1041{ e_regSetFPU, fpu_fsw      , "fstat"       , NULL, Uint, Hex, FPU_SIZE_UINT(fsw)       , AVX_OFFSET(fsw)       , -1U, -1U, -1U, -1U },
1042{ e_regSetFPU, fpu_ftw      , "ftag"        , NULL, Uint, Hex, FPU_SIZE_UINT(ftw)       , AVX_OFFSET(ftw)       , -1U, -1U, -1U, -1U },
1043{ e_regSetFPU, fpu_fop      , "fop"         , NULL, Uint, Hex, FPU_SIZE_UINT(fop)       , AVX_OFFSET(fop)       , -1U, -1U, -1U, -1U },
1044{ e_regSetFPU, fpu_ip       , "fioff"       , NULL, Uint, Hex, FPU_SIZE_UINT(ip)        , AVX_OFFSET(ip)        , -1U, -1U, -1U, -1U },
1045{ e_regSetFPU, fpu_cs       , "fiseg"       , NULL, Uint, Hex, FPU_SIZE_UINT(cs)        , AVX_OFFSET(cs)        , -1U, -1U, -1U, -1U },
1046{ e_regSetFPU, fpu_dp       , "fooff"       , NULL, Uint, Hex, FPU_SIZE_UINT(dp)        , AVX_OFFSET(dp)        , -1U, -1U, -1U, -1U },
1047{ e_regSetFPU, fpu_ds       , "foseg"       , NULL, Uint, Hex, FPU_SIZE_UINT(ds)        , AVX_OFFSET(ds)        , -1U, -1U, -1U, -1U },
1048{ e_regSetFPU, fpu_mxcsr    , "mxcsr"       , NULL, Uint, Hex, FPU_SIZE_UINT(mxcsr)     , AVX_OFFSET(mxcsr)     , -1U, -1U, -1U, -1U },
1049{ e_regSetFPU, fpu_mxcsrmask, "mxcsrmask"   , NULL, Uint, Hex, FPU_SIZE_UINT(mxcsrmask) , AVX_OFFSET(mxcsrmask) , -1U, -1U, -1U, -1U },
1050
1051{ e_regSetFPU, fpu_stmm0, "stmm0", NULL, Vector, VectorOfUInt8, FPU_SIZE_MMST(stmm0), AVX_OFFSET(stmm0), -1U, dwarf_stmm0, -1U, gdb_stmm0 },
1052{ e_regSetFPU, fpu_stmm1, "stmm1", NULL, Vector, VectorOfUInt8, FPU_SIZE_MMST(stmm1), AVX_OFFSET(stmm1), -1U, dwarf_stmm1, -1U, gdb_stmm1 },
1053{ e_regSetFPU, fpu_stmm2, "stmm2", NULL, Vector, VectorOfUInt8, FPU_SIZE_MMST(stmm2), AVX_OFFSET(stmm2), -1U, dwarf_stmm2, -1U, gdb_stmm2 },
1054{ e_regSetFPU, fpu_stmm3, "stmm3", NULL, Vector, VectorOfUInt8, FPU_SIZE_MMST(stmm3), AVX_OFFSET(stmm3), -1U, dwarf_stmm3, -1U, gdb_stmm3 },
1055{ e_regSetFPU, fpu_stmm4, "stmm4", NULL, Vector, VectorOfUInt8, FPU_SIZE_MMST(stmm4), AVX_OFFSET(stmm4), -1U, dwarf_stmm4, -1U, gdb_stmm4 },
1056{ e_regSetFPU, fpu_stmm5, "stmm5", NULL, Vector, VectorOfUInt8, FPU_SIZE_MMST(stmm5), AVX_OFFSET(stmm5), -1U, dwarf_stmm5, -1U, gdb_stmm5 },
1057{ e_regSetFPU, fpu_stmm6, "stmm6", NULL, Vector, VectorOfUInt8, FPU_SIZE_MMST(stmm6), AVX_OFFSET(stmm6), -1U, dwarf_stmm6, -1U, gdb_stmm6 },
1058{ e_regSetFPU, fpu_stmm7, "stmm7", NULL, Vector, VectorOfUInt8, FPU_SIZE_MMST(stmm7), AVX_OFFSET(stmm7), -1U, dwarf_stmm7, -1U, gdb_stmm7 },
1059
1060{ e_regSetFPU, fpu_xmm0, "xmm0", NULL, Vector, VectorOfUInt8, FPU_SIZE_XMM(xmm0), AVX_OFFSET(xmm0), -1U, dwarf_xmm0, -1U, gdb_xmm0 },
1061{ e_regSetFPU, fpu_xmm1, "xmm1", NULL, Vector, VectorOfUInt8, FPU_SIZE_XMM(xmm1), AVX_OFFSET(xmm1), -1U, dwarf_xmm1, -1U, gdb_xmm1 },
1062{ e_regSetFPU, fpu_xmm2, "xmm2", NULL, Vector, VectorOfUInt8, FPU_SIZE_XMM(xmm2), AVX_OFFSET(xmm2), -1U, dwarf_xmm2, -1U, gdb_xmm2 },
1063{ e_regSetFPU, fpu_xmm3, "xmm3", NULL, Vector, VectorOfUInt8, FPU_SIZE_XMM(xmm3), AVX_OFFSET(xmm3), -1U, dwarf_xmm3, -1U, gdb_xmm3 },
1064{ e_regSetFPU, fpu_xmm4, "xmm4", NULL, Vector, VectorOfUInt8, FPU_SIZE_XMM(xmm4), AVX_OFFSET(xmm4), -1U, dwarf_xmm4, -1U, gdb_xmm4 },
1065{ e_regSetFPU, fpu_xmm5, "xmm5", NULL, Vector, VectorOfUInt8, FPU_SIZE_XMM(xmm5), AVX_OFFSET(xmm5), -1U, dwarf_xmm5, -1U, gdb_xmm5 },
1066{ e_regSetFPU, fpu_xmm6, "xmm6", NULL, Vector, VectorOfUInt8, FPU_SIZE_XMM(xmm6), AVX_OFFSET(xmm6), -1U, dwarf_xmm6, -1U, gdb_xmm6 },
1067{ e_regSetFPU, fpu_xmm7, "xmm7", NULL, Vector, VectorOfUInt8, FPU_SIZE_XMM(xmm7), AVX_OFFSET(xmm7), -1U, dwarf_xmm7, -1U, gdb_xmm7 },
1068
1069{ e_regSetFPU, fpu_ymm0, "ymm0", NULL, Vector, VectorOfUInt8, FPU_SIZE_YMM(ymm0), AVX_OFFSET_YMM(0), -1U, dwarf_ymm0, -1U, gdb_ymm0 },
1070{ e_regSetFPU, fpu_ymm1, "ymm1", NULL, Vector, VectorOfUInt8, FPU_SIZE_YMM(ymm1), AVX_OFFSET_YMM(1), -1U, dwarf_ymm1, -1U, gdb_ymm1 },
1071{ e_regSetFPU, fpu_ymm2, "ymm2", NULL, Vector, VectorOfUInt8, FPU_SIZE_YMM(ymm2), AVX_OFFSET_YMM(2), -1U, dwarf_ymm2, -1U, gdb_ymm2 },
1072{ e_regSetFPU, fpu_ymm3, "ymm3", NULL, Vector, VectorOfUInt8, FPU_SIZE_YMM(ymm3), AVX_OFFSET_YMM(3), -1U, dwarf_ymm3, -1U, gdb_ymm3 },
1073{ e_regSetFPU, fpu_ymm4, "ymm4", NULL, Vector, VectorOfUInt8, FPU_SIZE_YMM(ymm4), AVX_OFFSET_YMM(4), -1U, dwarf_ymm4, -1U, gdb_ymm4 },
1074{ e_regSetFPU, fpu_ymm5, "ymm5", NULL, Vector, VectorOfUInt8, FPU_SIZE_YMM(ymm5), AVX_OFFSET_YMM(5), -1U, dwarf_ymm5, -1U, gdb_ymm5 },
1075{ e_regSetFPU, fpu_ymm6, "ymm6", NULL, Vector, VectorOfUInt8, FPU_SIZE_YMM(ymm6), AVX_OFFSET_YMM(6), -1U, dwarf_ymm6, -1U, gdb_ymm6 },
1076{ e_regSetFPU, fpu_ymm7, "ymm7", NULL, Vector, VectorOfUInt8, FPU_SIZE_YMM(ymm7), AVX_OFFSET_YMM(7), -1U, dwarf_ymm7, -1U, gdb_ymm7 },
1077};
1078
1079const DNBRegisterInfo
1080DNBArchImplI386::g_exc_registers[] =
1081{
1082{ e_regSetEXC, exc_trapno,      "trapno"    , NULL, Uint, Hex, EXC_SIZE (trapno)    , EXC_OFFSET (trapno)       , -1U, -1U, -1U, -1U },
1083{ e_regSetEXC, exc_err,         "err"       , NULL, Uint, Hex, EXC_SIZE (err)       , EXC_OFFSET (err)          , -1U, -1U, -1U, -1U },
1084{ e_regSetEXC, exc_faultvaddr,  "faultvaddr", NULL, Uint, Hex, EXC_SIZE (faultvaddr), EXC_OFFSET (faultvaddr)   , -1U, -1U, -1U, -1U }
1085};
1086
1087// Number of registers in each register set
1088const size_t DNBArchImplI386::k_num_gpr_registers = sizeof(g_gpr_registers)/sizeof(DNBRegisterInfo);
1089const size_t DNBArchImplI386::k_num_fpu_registers_no_avx = sizeof(g_fpu_registers_no_avx)/sizeof(DNBRegisterInfo);
1090const size_t DNBArchImplI386::k_num_fpu_registers_avx = sizeof(g_fpu_registers_avx)/sizeof(DNBRegisterInfo);
1091const size_t DNBArchImplI386::k_num_exc_registers = sizeof(g_exc_registers)/sizeof(DNBRegisterInfo);
1092const size_t DNBArchImplI386::k_num_all_registers_no_avx = k_num_gpr_registers + k_num_fpu_registers_no_avx + k_num_exc_registers;
1093const size_t DNBArchImplI386::k_num_all_registers_avx = k_num_gpr_registers + k_num_fpu_registers_avx + k_num_exc_registers;
1094
1095//----------------------------------------------------------------------
1096// Register set definitions. The first definitions at register set index
1097// of zero is for all registers, followed by other registers sets. The
1098// register information for the all register set need not be filled in.
1099//----------------------------------------------------------------------
1100const DNBRegisterSetInfo
1101DNBArchImplI386::g_reg_sets_no_avx[] =
1102{
1103    { "i386 Registers",             NULL,                   k_num_all_registers_no_avx },
1104    { "General Purpose Registers",  g_gpr_registers,        k_num_gpr_registers        },
1105    { "Floating Point Registers",   g_fpu_registers_no_avx, k_num_fpu_registers_no_avx },
1106    { "Exception State Registers",  g_exc_registers,        k_num_exc_registers        }
1107};
1108
1109const DNBRegisterSetInfo
1110DNBArchImplI386::g_reg_sets_avx[] =
1111{
1112    { "i386 Registers",             NULL,                   k_num_all_registers_avx },
1113    { "General Purpose Registers",  g_gpr_registers,        k_num_gpr_registers     },
1114    { "Floating Point Registers",   g_fpu_registers_avx,    k_num_fpu_registers_avx },
1115    { "Exception State Registers",  g_exc_registers,        k_num_exc_registers     }
1116};
1117
1118// Total number of register sets for this architecture
1119const size_t DNBArchImplI386::k_num_register_sets = sizeof(g_reg_sets_no_avx)/sizeof(DNBRegisterSetInfo);
1120
1121DNBArchProtocol *
1122DNBArchImplI386::Create (MachThread *thread)
1123{
1124    DNBArchImplI386 *obj = new DNBArchImplI386 (thread);
1125
1126    // When new thread comes along, it tries to inherit from the global debug state, if it is valid.
1127    if (Valid_Global_Debug_State)
1128    {
1129        obj->m_state.context.dbg = Global_Debug_State;
1130        kern_return_t kret = obj->SetDBGState();
1131        DNBLogThreadedIf(LOG_WATCHPOINTS,
1132                         "DNBArchImplX86_64::Create() Inherit and SetDBGState() => 0x%8.8x.", kret);
1133    }
1134    return obj;
1135}
1136
1137const uint8_t * const
1138DNBArchImplI386::SoftwareBreakpointOpcode (nub_size_t byte_size)
1139{
1140    static const uint8_t g_breakpoint_opcode[] = { 0xCC };
1141    if (byte_size == 1)
1142        return g_breakpoint_opcode;
1143    return NULL;
1144}
1145
1146const DNBRegisterSetInfo *
1147DNBArchImplI386::GetRegisterSetInfo(nub_size_t *num_reg_sets)
1148{
1149    *num_reg_sets = k_num_register_sets;
1150    if (CPUHasAVX() || FORCE_AVX_REGS)
1151        return g_reg_sets_avx;
1152    else
1153        return g_reg_sets_no_avx;
1154}
1155
1156
1157void
1158DNBArchImplI386::Initialize()
1159{
1160    DNBArchPluginInfo arch_plugin_info =
1161    {
1162        CPU_TYPE_I386,
1163        DNBArchImplI386::Create,
1164        DNBArchImplI386::GetRegisterSetInfo,
1165        DNBArchImplI386::SoftwareBreakpointOpcode
1166    };
1167
1168    // Register this arch plug-in with the main protocol class
1169    DNBArchProtocol::RegisterArchPlugin (arch_plugin_info);
1170}
1171
1172bool
1173DNBArchImplI386::GetRegisterValue(int set, int reg, DNBRegisterValue *value)
1174{
1175    if (set == REGISTER_SET_GENERIC)
1176    {
1177        switch (reg)
1178        {
1179        case GENERIC_REGNUM_PC:     // Program Counter
1180            set = e_regSetGPR;
1181            reg = gpr_eip;
1182            break;
1183
1184        case GENERIC_REGNUM_SP:     // Stack Pointer
1185            set = e_regSetGPR;
1186            reg = gpr_esp;
1187            break;
1188
1189        case GENERIC_REGNUM_FP:     // Frame Pointer
1190            set = e_regSetGPR;
1191            reg = gpr_ebp;
1192            break;
1193
1194        case GENERIC_REGNUM_FLAGS:  // Processor flags register
1195            set = e_regSetGPR;
1196            reg = gpr_eflags;
1197            break;
1198
1199        case GENERIC_REGNUM_RA:     // Return Address
1200        default:
1201            return false;
1202        }
1203    }
1204
1205    if (GetRegisterState(set, false) != KERN_SUCCESS)
1206        return false;
1207
1208    const DNBRegisterInfo *regInfo = m_thread->GetRegisterInfo(set, reg);
1209    if (regInfo)
1210    {
1211        value->info = *regInfo;
1212        switch (set)
1213        {
1214        case e_regSetGPR:
1215            if (reg < k_num_gpr_registers)
1216            {
1217                value->value.uint32 = ((uint32_t*)(&m_state.context.gpr))[reg];
1218                return true;
1219            }
1220            break;
1221
1222        case e_regSetFPU:
1223            if (CPUHasAVX() || FORCE_AVX_REGS)
1224            {
1225                switch (reg)
1226                {
1227                case fpu_fcw:       value->value.uint16 = *((uint16_t *)(&m_state.context.fpu.avx.__fpu_fcw));    return true;
1228                case fpu_fsw:       value->value.uint16 = *((uint16_t *)(&m_state.context.fpu.avx.__fpu_fsw));    return true;
1229                case fpu_ftw:       value->value.uint8  = m_state.context.fpu.avx.__fpu_ftw;                      return true;
1230                case fpu_fop:       value->value.uint16 = m_state.context.fpu.avx.__fpu_fop;                      return true;
1231                case fpu_ip:        value->value.uint32 = m_state.context.fpu.avx.__fpu_ip;                       return true;
1232                case fpu_cs:        value->value.uint16 = m_state.context.fpu.avx.__fpu_cs;                       return true;
1233                case fpu_dp:        value->value.uint32 = m_state.context.fpu.avx.__fpu_dp;                       return true;
1234                case fpu_ds:        value->value.uint16 = m_state.context.fpu.avx.__fpu_ds;                       return true;
1235                case fpu_mxcsr:     value->value.uint32 = m_state.context.fpu.avx.__fpu_mxcsr;                    return true;
1236                case fpu_mxcsrmask: value->value.uint32 = m_state.context.fpu.avx.__fpu_mxcsrmask;                return true;
1237
1238                case fpu_stmm0:     memcpy(&value->value.uint8, m_state.context.fpu.avx.__fpu_stmm0.__mmst_reg, 10);    return true;
1239                case fpu_stmm1:     memcpy(&value->value.uint8, m_state.context.fpu.avx.__fpu_stmm1.__mmst_reg, 10);    return true;
1240                case fpu_stmm2:     memcpy(&value->value.uint8, m_state.context.fpu.avx.__fpu_stmm2.__mmst_reg, 10);    return true;
1241                case fpu_stmm3:     memcpy(&value->value.uint8, m_state.context.fpu.avx.__fpu_stmm3.__mmst_reg, 10);    return true;
1242                case fpu_stmm4:     memcpy(&value->value.uint8, m_state.context.fpu.avx.__fpu_stmm4.__mmst_reg, 10);    return true;
1243                case fpu_stmm5:     memcpy(&value->value.uint8, m_state.context.fpu.avx.__fpu_stmm5.__mmst_reg, 10);    return true;
1244                case fpu_stmm6:     memcpy(&value->value.uint8, m_state.context.fpu.avx.__fpu_stmm6.__mmst_reg, 10);    return true;
1245                case fpu_stmm7:     memcpy(&value->value.uint8, m_state.context.fpu.avx.__fpu_stmm7.__mmst_reg, 10);    return true;
1246
1247                case fpu_xmm0:      memcpy(&value->value.uint8, m_state.context.fpu.avx.__fpu_xmm0.__xmm_reg, 16);    return true;
1248                case fpu_xmm1:      memcpy(&value->value.uint8, m_state.context.fpu.avx.__fpu_xmm1.__xmm_reg, 16);    return true;
1249                case fpu_xmm2:      memcpy(&value->value.uint8, m_state.context.fpu.avx.__fpu_xmm2.__xmm_reg, 16);    return true;
1250                case fpu_xmm3:      memcpy(&value->value.uint8, m_state.context.fpu.avx.__fpu_xmm3.__xmm_reg, 16);    return true;
1251                case fpu_xmm4:      memcpy(&value->value.uint8, m_state.context.fpu.avx.__fpu_xmm4.__xmm_reg, 16);    return true;
1252                case fpu_xmm5:      memcpy(&value->value.uint8, m_state.context.fpu.avx.__fpu_xmm5.__xmm_reg, 16);    return true;
1253                case fpu_xmm6:      memcpy(&value->value.uint8, m_state.context.fpu.avx.__fpu_xmm6.__xmm_reg, 16);    return true;
1254                case fpu_xmm7:      memcpy(&value->value.uint8, m_state.context.fpu.avx.__fpu_xmm7.__xmm_reg, 16);    return true;
1255
1256#define MEMCPY_YMM(n)                                                                           \
1257    memcpy(&value->value.uint8, m_state.context.fpu.avx.__fpu_xmm##n.__xmm_reg, 16);            \
1258    memcpy((&value->value.uint8) + 16, m_state.context.fpu.avx.__fpu_ymmh##n.__xmm_reg, 16);
1259                case fpu_ymm0:      MEMCPY_YMM(0);  return true;
1260                case fpu_ymm1:      MEMCPY_YMM(1);  return true;
1261                case fpu_ymm2:      MEMCPY_YMM(2);  return true;
1262                case fpu_ymm3:      MEMCPY_YMM(3);  return true;
1263                case fpu_ymm4:      MEMCPY_YMM(4);  return true;
1264                case fpu_ymm5:      MEMCPY_YMM(5);  return true;
1265                case fpu_ymm6:      MEMCPY_YMM(6);  return true;
1266                case fpu_ymm7:      MEMCPY_YMM(7);  return true;
1267#undef MEMCPY_YMM
1268                }
1269            }
1270            else
1271            {
1272                switch (reg)
1273                {
1274                case fpu_fcw:       value->value.uint16 = *((uint16_t *)(&m_state.context.fpu.no_avx.__fpu_fcw));    return true;
1275                case fpu_fsw:       value->value.uint16 = *((uint16_t *)(&m_state.context.fpu.no_avx.__fpu_fsw));    return true;
1276                case fpu_ftw:       value->value.uint8  = m_state.context.fpu.no_avx.__fpu_ftw;                      return true;
1277                case fpu_fop:       value->value.uint16 = m_state.context.fpu.no_avx.__fpu_fop;                      return true;
1278                case fpu_ip:        value->value.uint32 = m_state.context.fpu.no_avx.__fpu_ip;                       return true;
1279                case fpu_cs:        value->value.uint16 = m_state.context.fpu.no_avx.__fpu_cs;                       return true;
1280                case fpu_dp:        value->value.uint32 = m_state.context.fpu.no_avx.__fpu_dp;                       return true;
1281                case fpu_ds:        value->value.uint16 = m_state.context.fpu.no_avx.__fpu_ds;                       return true;
1282                case fpu_mxcsr:     value->value.uint32 = m_state.context.fpu.no_avx.__fpu_mxcsr;                    return true;
1283                case fpu_mxcsrmask: value->value.uint32 = m_state.context.fpu.no_avx.__fpu_mxcsrmask;                return true;
1284
1285                case fpu_stmm0:     memcpy(&value->value.uint8, m_state.context.fpu.no_avx.__fpu_stmm0.__mmst_reg, 10);    return true;
1286                case fpu_stmm1:     memcpy(&value->value.uint8, m_state.context.fpu.no_avx.__fpu_stmm1.__mmst_reg, 10);    return true;
1287                case fpu_stmm2:     memcpy(&value->value.uint8, m_state.context.fpu.no_avx.__fpu_stmm2.__mmst_reg, 10);    return true;
1288                case fpu_stmm3:     memcpy(&value->value.uint8, m_state.context.fpu.no_avx.__fpu_stmm3.__mmst_reg, 10);    return true;
1289                case fpu_stmm4:     memcpy(&value->value.uint8, m_state.context.fpu.no_avx.__fpu_stmm4.__mmst_reg, 10);    return true;
1290                case fpu_stmm5:     memcpy(&value->value.uint8, m_state.context.fpu.no_avx.__fpu_stmm5.__mmst_reg, 10);    return true;
1291                case fpu_stmm6:     memcpy(&value->value.uint8, m_state.context.fpu.no_avx.__fpu_stmm6.__mmst_reg, 10);    return true;
1292                case fpu_stmm7:     memcpy(&value->value.uint8, m_state.context.fpu.no_avx.__fpu_stmm7.__mmst_reg, 10);    return true;
1293
1294                case fpu_xmm0:      memcpy(&value->value.uint8, m_state.context.fpu.no_avx.__fpu_xmm0.__xmm_reg, 16);    return true;
1295                case fpu_xmm1:      memcpy(&value->value.uint8, m_state.context.fpu.no_avx.__fpu_xmm1.__xmm_reg, 16);    return true;
1296                case fpu_xmm2:      memcpy(&value->value.uint8, m_state.context.fpu.no_avx.__fpu_xmm2.__xmm_reg, 16);    return true;
1297                case fpu_xmm3:      memcpy(&value->value.uint8, m_state.context.fpu.no_avx.__fpu_xmm3.__xmm_reg, 16);    return true;
1298                case fpu_xmm4:      memcpy(&value->value.uint8, m_state.context.fpu.no_avx.__fpu_xmm4.__xmm_reg, 16);    return true;
1299                case fpu_xmm5:      memcpy(&value->value.uint8, m_state.context.fpu.no_avx.__fpu_xmm5.__xmm_reg, 16);    return true;
1300                case fpu_xmm6:      memcpy(&value->value.uint8, m_state.context.fpu.no_avx.__fpu_xmm6.__xmm_reg, 16);    return true;
1301                case fpu_xmm7:      memcpy(&value->value.uint8, m_state.context.fpu.no_avx.__fpu_xmm7.__xmm_reg, 16);    return true;
1302                }
1303            }
1304            break;
1305
1306        case e_regSetEXC:
1307            if (reg < k_num_exc_registers)
1308            {
1309                value->value.uint32 = (&m_state.context.exc.__trapno)[reg];
1310                return true;
1311            }
1312            break;
1313        }
1314    }
1315    return false;
1316}
1317
1318
1319bool
1320DNBArchImplI386::SetRegisterValue(int set, int reg, const DNBRegisterValue *value)
1321{
1322    if (set == REGISTER_SET_GENERIC)
1323    {
1324        switch (reg)
1325        {
1326        case GENERIC_REGNUM_PC:     // Program Counter
1327            set = e_regSetGPR;
1328            reg = gpr_eip;
1329            break;
1330
1331        case GENERIC_REGNUM_SP:     // Stack Pointer
1332            set = e_regSetGPR;
1333            reg = gpr_esp;
1334            break;
1335
1336        case GENERIC_REGNUM_FP:     // Frame Pointer
1337            set = e_regSetGPR;
1338            reg = gpr_ebp;
1339            break;
1340
1341        case GENERIC_REGNUM_FLAGS:  // Processor flags register
1342            set = e_regSetGPR;
1343            reg = gpr_eflags;
1344            break;
1345
1346        case GENERIC_REGNUM_RA:     // Return Address
1347        default:
1348            return false;
1349        }
1350    }
1351
1352    if (GetRegisterState(set, false) != KERN_SUCCESS)
1353        return false;
1354
1355    bool success = false;
1356    const DNBRegisterInfo *regInfo = m_thread->GetRegisterInfo(set, reg);
1357    if (regInfo)
1358    {
1359        switch (set)
1360        {
1361        case e_regSetGPR:
1362            if (reg < k_num_gpr_registers)
1363            {
1364                ((uint32_t*)(&m_state.context.gpr))[reg] = value->value.uint32;
1365                success = true;
1366            }
1367            break;
1368
1369        case e_regSetFPU:
1370            if (CPUHasAVX() || FORCE_AVX_REGS)
1371            {
1372                switch (reg)
1373                {
1374                case fpu_fcw:       *((uint16_t *)(&m_state.context.fpu.avx.__fpu_fcw)) = value->value.uint16;    success = true; break;
1375                case fpu_fsw:       *((uint16_t *)(&m_state.context.fpu.avx.__fpu_fsw)) = value->value.uint16;    success = true; break;
1376                case fpu_ftw:       m_state.context.fpu.avx.__fpu_ftw = value->value.uint8;                       success = true; break;
1377                case fpu_fop:       m_state.context.fpu.avx.__fpu_fop = value->value.uint16;                      success = true; break;
1378                case fpu_ip:        m_state.context.fpu.avx.__fpu_ip = value->value.uint32;                       success = true; break;
1379                case fpu_cs:        m_state.context.fpu.avx.__fpu_cs = value->value.uint16;                       success = true; break;
1380                case fpu_dp:        m_state.context.fpu.avx.__fpu_dp = value->value.uint32;                       success = true; break;
1381                case fpu_ds:        m_state.context.fpu.avx.__fpu_ds = value->value.uint16;                       success = true; break;
1382                case fpu_mxcsr:     m_state.context.fpu.avx.__fpu_mxcsr = value->value.uint32;                    success = true; break;
1383                case fpu_mxcsrmask: m_state.context.fpu.avx.__fpu_mxcsrmask = value->value.uint32;                success = true; break;
1384
1385                case fpu_stmm0:     memcpy (m_state.context.fpu.avx.__fpu_stmm0.__mmst_reg, &value->value.uint8, 10);    success = true; break;
1386                case fpu_stmm1:     memcpy (m_state.context.fpu.avx.__fpu_stmm1.__mmst_reg, &value->value.uint8, 10);    success = true; break;
1387                case fpu_stmm2:     memcpy (m_state.context.fpu.avx.__fpu_stmm2.__mmst_reg, &value->value.uint8, 10);    success = true; break;
1388                case fpu_stmm3:     memcpy (m_state.context.fpu.avx.__fpu_stmm3.__mmst_reg, &value->value.uint8, 10);    success = true; break;
1389                case fpu_stmm4:     memcpy (m_state.context.fpu.avx.__fpu_stmm4.__mmst_reg, &value->value.uint8, 10);    success = true; break;
1390                case fpu_stmm5:     memcpy (m_state.context.fpu.avx.__fpu_stmm5.__mmst_reg, &value->value.uint8, 10);    success = true; break;
1391                case fpu_stmm6:     memcpy (m_state.context.fpu.avx.__fpu_stmm6.__mmst_reg, &value->value.uint8, 10);    success = true; break;
1392                case fpu_stmm7:     memcpy (m_state.context.fpu.avx.__fpu_stmm7.__mmst_reg, &value->value.uint8, 10);    success = true; break;
1393
1394                case fpu_xmm0:      memcpy(m_state.context.fpu.avx.__fpu_xmm0.__xmm_reg, &value->value.uint8, 16);    success = true; break;
1395                case fpu_xmm1:      memcpy(m_state.context.fpu.avx.__fpu_xmm1.__xmm_reg, &value->value.uint8, 16);    success = true; break;
1396                case fpu_xmm2:      memcpy(m_state.context.fpu.avx.__fpu_xmm2.__xmm_reg, &value->value.uint8, 16);    success = true; break;
1397                case fpu_xmm3:      memcpy(m_state.context.fpu.avx.__fpu_xmm3.__xmm_reg, &value->value.uint8, 16);    success = true; break;
1398                case fpu_xmm4:      memcpy(m_state.context.fpu.avx.__fpu_xmm4.__xmm_reg, &value->value.uint8, 16);    success = true; break;
1399                case fpu_xmm5:      memcpy(m_state.context.fpu.avx.__fpu_xmm5.__xmm_reg, &value->value.uint8, 16);    success = true; break;
1400                case fpu_xmm6:      memcpy(m_state.context.fpu.avx.__fpu_xmm6.__xmm_reg, &value->value.uint8, 16);    success = true; break;
1401                case fpu_xmm7:      memcpy(m_state.context.fpu.avx.__fpu_xmm7.__xmm_reg, &value->value.uint8, 16);    success = true; break;
1402
1403#define MEMCPY_YMM(n)                                                                           \
1404    memcpy(m_state.context.fpu.avx.__fpu_xmm##n.__xmm_reg, &value->value.uint8, 16);            \
1405    memcpy(m_state.context.fpu.avx.__fpu_ymmh##n.__xmm_reg, (&value->value.uint8) + 16, 16);
1406                case fpu_ymm0:      MEMCPY_YMM(0);  return true;
1407                case fpu_ymm1:      MEMCPY_YMM(1);  return true;
1408                case fpu_ymm2:      MEMCPY_YMM(2);  return true;
1409                case fpu_ymm3:      MEMCPY_YMM(3);  return true;
1410                case fpu_ymm4:      MEMCPY_YMM(4);  return true;
1411                case fpu_ymm5:      MEMCPY_YMM(5);  return true;
1412                case fpu_ymm6:      MEMCPY_YMM(6);  return true;
1413                case fpu_ymm7:      MEMCPY_YMM(7);  return true;
1414#undef MEMCPY_YMM
1415                }
1416            }
1417            else
1418            {
1419                switch (reg)
1420                {
1421                case fpu_fcw:       *((uint16_t *)(&m_state.context.fpu.no_avx.__fpu_fcw)) = value->value.uint16;    success = true; break;
1422                case fpu_fsw:       *((uint16_t *)(&m_state.context.fpu.no_avx.__fpu_fsw)) = value->value.uint16;    success = true; break;
1423                case fpu_ftw:       m_state.context.fpu.no_avx.__fpu_ftw = value->value.uint8;                       success = true; break;
1424                case fpu_fop:       m_state.context.fpu.no_avx.__fpu_fop = value->value.uint16;                      success = true; break;
1425                case fpu_ip:        m_state.context.fpu.no_avx.__fpu_ip = value->value.uint32;                       success = true; break;
1426                case fpu_cs:        m_state.context.fpu.no_avx.__fpu_cs = value->value.uint16;                       success = true; break;
1427                case fpu_dp:        m_state.context.fpu.no_avx.__fpu_dp = value->value.uint32;                       success = true; break;
1428                case fpu_ds:        m_state.context.fpu.no_avx.__fpu_ds = value->value.uint16;                       success = true; break;
1429                case fpu_mxcsr:     m_state.context.fpu.no_avx.__fpu_mxcsr = value->value.uint32;                    success = true; break;
1430                case fpu_mxcsrmask: m_state.context.fpu.no_avx.__fpu_mxcsrmask = value->value.uint32;                success = true; break;
1431
1432                case fpu_stmm0:     memcpy (m_state.context.fpu.no_avx.__fpu_stmm0.__mmst_reg, &value->value.uint8, 10);    success = true; break;
1433                case fpu_stmm1:     memcpy (m_state.context.fpu.no_avx.__fpu_stmm1.__mmst_reg, &value->value.uint8, 10);    success = true; break;
1434                case fpu_stmm2:     memcpy (m_state.context.fpu.no_avx.__fpu_stmm2.__mmst_reg, &value->value.uint8, 10);    success = true; break;
1435                case fpu_stmm3:     memcpy (m_state.context.fpu.no_avx.__fpu_stmm3.__mmst_reg, &value->value.uint8, 10);    success = true; break;
1436                case fpu_stmm4:     memcpy (m_state.context.fpu.no_avx.__fpu_stmm4.__mmst_reg, &value->value.uint8, 10);    success = true; break;
1437                case fpu_stmm5:     memcpy (m_state.context.fpu.no_avx.__fpu_stmm5.__mmst_reg, &value->value.uint8, 10);    success = true; break;
1438                case fpu_stmm6:     memcpy (m_state.context.fpu.no_avx.__fpu_stmm6.__mmst_reg, &value->value.uint8, 10);    success = true; break;
1439                case fpu_stmm7:     memcpy (m_state.context.fpu.no_avx.__fpu_stmm7.__mmst_reg, &value->value.uint8, 10);    success = true; break;
1440
1441                case fpu_xmm0:      memcpy(m_state.context.fpu.no_avx.__fpu_xmm0.__xmm_reg, &value->value.uint8, 16);    success = true; break;
1442                case fpu_xmm1:      memcpy(m_state.context.fpu.no_avx.__fpu_xmm1.__xmm_reg, &value->value.uint8, 16);    success = true; break;
1443                case fpu_xmm2:      memcpy(m_state.context.fpu.no_avx.__fpu_xmm2.__xmm_reg, &value->value.uint8, 16);    success = true; break;
1444                case fpu_xmm3:      memcpy(m_state.context.fpu.no_avx.__fpu_xmm3.__xmm_reg, &value->value.uint8, 16);    success = true; break;
1445                case fpu_xmm4:      memcpy(m_state.context.fpu.no_avx.__fpu_xmm4.__xmm_reg, &value->value.uint8, 16);    success = true; break;
1446                case fpu_xmm5:      memcpy(m_state.context.fpu.no_avx.__fpu_xmm5.__xmm_reg, &value->value.uint8, 16);    success = true; break;
1447                case fpu_xmm6:      memcpy(m_state.context.fpu.no_avx.__fpu_xmm6.__xmm_reg, &value->value.uint8, 16);    success = true; break;
1448                case fpu_xmm7:      memcpy(m_state.context.fpu.no_avx.__fpu_xmm7.__xmm_reg, &value->value.uint8, 16);    success = true; break;
1449                }
1450            }
1451            break;
1452
1453        case e_regSetEXC:
1454            if (reg < k_num_exc_registers)
1455            {
1456                (&m_state.context.exc.__trapno)[reg] = value->value.uint32;
1457                success = true;
1458            }
1459            break;
1460        }
1461    }
1462
1463    if (success)
1464        return SetRegisterState(set) == KERN_SUCCESS;
1465    return false;
1466}
1467
1468
1469nub_size_t
1470DNBArchImplI386::GetRegisterContext (void *buf, nub_size_t buf_len)
1471{
1472    nub_size_t size = sizeof (m_state.context);
1473
1474    if (buf && buf_len)
1475    {
1476        if (size > buf_len)
1477            size = buf_len;
1478
1479        bool force = false;
1480        kern_return_t kret;
1481        if ((kret = GetGPRState(force)) != KERN_SUCCESS)
1482        {
1483            DNBLogThreadedIf (LOG_THREAD, "DNBArchImplI386::GetRegisterContext (buf = %p, len = %zu) error: GPR regs failed to read: %u ", buf, buf_len, kret);
1484            size = 0;
1485        }
1486        else if ((kret = GetFPUState(force)) != KERN_SUCCESS)
1487        {
1488            DNBLogThreadedIf (LOG_THREAD, "DNBArchImplI386::GetRegisterContext (buf = %p, len = %zu) error: %s regs failed to read: %u", buf, buf_len, CPUHasAVX() ? "AVX" : "FPU", kret);
1489            size = 0;
1490        }
1491        else if ((kret = GetEXCState(force)) != KERN_SUCCESS)
1492        {
1493            DNBLogThreadedIf (LOG_THREAD, "DNBArchImplI386::GetRegisterContext (buf = %p, len = %zu) error: EXC regs failed to read: %u", buf, buf_len, kret);
1494            size = 0;
1495        }
1496        else
1497        {
1498            // Success
1499            ::memcpy (buf, &m_state.context, size);
1500        }
1501    }
1502    DNBLogThreadedIf (LOG_THREAD, "DNBArchImplI386::GetRegisterContext (buf = %p, len = %zu) => %zu", buf, buf_len, size);
1503    // Return the size of the register context even if NULL was passed in
1504    return size;
1505}
1506
1507nub_size_t
1508DNBArchImplI386::SetRegisterContext (const void *buf, nub_size_t buf_len)
1509{
1510    nub_size_t size = sizeof (m_state.context);
1511    if (buf == NULL || buf_len == 0)
1512        size = 0;
1513
1514    if (size)
1515    {
1516        if (size > buf_len)
1517            size = buf_len;
1518
1519        ::memcpy (&m_state.context, buf, size);
1520        kern_return_t kret;
1521        if ((kret = SetGPRState()) != KERN_SUCCESS)
1522            DNBLogThreadedIf (LOG_THREAD, "DNBArchImplI386::SetRegisterContext (buf = %p, len = %zu) error: GPR regs failed to write: %u", buf, buf_len, kret);
1523        if ((kret = SetFPUState()) != KERN_SUCCESS)
1524            DNBLogThreadedIf (LOG_THREAD, "DNBArchImplI386::SetRegisterContext (buf = %p, len = %zu) error: %s regs failed to write: %u", buf, buf_len, CPUHasAVX() ? "AVX" : "FPU", kret);
1525        if ((kret = SetEXCState()) != KERN_SUCCESS)
1526            DNBLogThreadedIf (LOG_THREAD, "DNBArchImplI386::SetRegisterContext (buf = %p, len = %zu) error: EXP regs failed to write: %u", buf, buf_len, kret);
1527    }
1528    DNBLogThreadedIf (LOG_THREAD, "DNBArchImplI386::SetRegisterContext (buf = %p, len = %zu) => %zu", buf, buf_len, size);
1529    return size;
1530}
1531
1532
1533
1534kern_return_t
1535DNBArchImplI386::GetRegisterState(int set, bool force)
1536{
1537    switch (set)
1538    {
1539    case e_regSetALL:    return GetGPRState(force) | GetFPUState(force) | GetEXCState(force);
1540    case e_regSetGPR:    return GetGPRState(force);
1541    case e_regSetFPU:    return GetFPUState(force);
1542    case e_regSetEXC:    return GetEXCState(force);
1543    default: break;
1544    }
1545    return KERN_INVALID_ARGUMENT;
1546}
1547
1548kern_return_t
1549DNBArchImplI386::SetRegisterState(int set)
1550{
1551    // Make sure we have a valid context to set.
1552    if (RegisterSetStateIsValid(set))
1553    {
1554        switch (set)
1555        {
1556        case e_regSetALL:    return SetGPRState() | SetFPUState() | SetEXCState();
1557        case e_regSetGPR:    return SetGPRState();
1558        case e_regSetFPU:    return SetFPUState();
1559        case e_regSetEXC:    return SetEXCState();
1560        default: break;
1561        }
1562    }
1563    return KERN_INVALID_ARGUMENT;
1564}
1565
1566bool
1567DNBArchImplI386::RegisterSetStateIsValid (int set) const
1568{
1569    return m_state.RegsAreValid(set);
1570}
1571
1572#endif    // #if defined (__i386__)
1573