1/*===-- executionengine_ocaml.c - LLVM OCaml Glue ---------------*- C++ -*-===*\
2|*                                                                            *|
3|*                     The LLVM Compiler Infrastructure                       *|
4|*                                                                            *|
5|* This file is distributed under the University of Illinois Open Source      *|
6|* License. See LICENSE.TXT for details.                                      *|
7|*                                                                            *|
8|*===----------------------------------------------------------------------===*|
9|*                                                                            *|
10|* This file glues LLVM's OCaml interface to its C interface. These functions *|
11|* are by and large transparent wrappers to the corresponding C functions.    *|
12|*                                                                            *|
13|* Note that these functions intentionally take liberties with the CAMLparamX *|
14|* macros, since most of the parameters are not GC heap objects.              *|
15|*                                                                            *|
16\*===----------------------------------------------------------------------===*/
17
18#include "llvm-c/ExecutionEngine.h"
19#include "llvm-c/Target.h"
20#include "caml/alloc.h"
21#include "caml/custom.h"
22#include "caml/fail.h"
23#include "caml/memory.h"
24#include <string.h>
25#include <assert.h>
26
27/* Force the LLVM interpreter and JIT to be linked in. */
28void llvm_initialize(void) {
29  LLVMLinkInInterpreter();
30  LLVMLinkInJIT();
31}
32
33/* unit -> bool */
34CAMLprim value llvm_initialize_native_target(value Unit) {
35  return Val_bool(LLVMInitializeNativeTarget());
36}
37
38/* Can't use the recommended caml_named_value mechanism for backwards
39   compatibility reasons. This is largely equivalent. */
40static value llvm_ee_error_exn;
41
42CAMLprim value llvm_register_ee_exns(value Error) {
43  llvm_ee_error_exn = Field(Error, 0);
44  register_global_root(&llvm_ee_error_exn);
45  return Val_unit;
46}
47
48static void llvm_raise(value Prototype, char *Message) {
49  CAMLparam1(Prototype);
50  CAMLlocal1(CamlMessage);
51
52  CamlMessage = copy_string(Message);
53  LLVMDisposeMessage(Message);
54
55  raise_with_arg(Prototype, CamlMessage);
56  abort(); /* NOTREACHED */
57#ifdef CAMLnoreturn
58  CAMLnoreturn; /* Silences warnings, but is missing in some versions. */
59#endif
60}
61
62
63/*--... Operations on generic values .......................................--*/
64
65#define Genericvalue_val(v)  (*(LLVMGenericValueRef *)(Data_custom_val(v)))
66
67static void llvm_finalize_generic_value(value GenVal) {
68  LLVMDisposeGenericValue(Genericvalue_val(GenVal));
69}
70
71static struct custom_operations generic_value_ops = {
72  (char *) "LLVMGenericValue",
73  llvm_finalize_generic_value,
74  custom_compare_default,
75  custom_hash_default,
76  custom_serialize_default,
77  custom_deserialize_default
78#ifdef custom_compare_ext_default
79  , custom_compare_ext_default
80#endif
81};
82
83static value alloc_generic_value(LLVMGenericValueRef Ref) {
84  value Val = alloc_custom(&generic_value_ops, sizeof(LLVMGenericValueRef), 0, 1);
85  Genericvalue_val(Val) = Ref;
86  return Val;
87}
88
89/* Llvm.lltype -> float -> t */
90CAMLprim value llvm_genericvalue_of_float(LLVMTypeRef Ty, value N) {
91  CAMLparam1(N);
92  CAMLreturn(alloc_generic_value(
93    LLVMCreateGenericValueOfFloat(Ty, Double_val(N))));
94}
95
96/* 'a -> t */
97CAMLprim value llvm_genericvalue_of_pointer(value V) {
98  CAMLparam1(V);
99  CAMLreturn(alloc_generic_value(LLVMCreateGenericValueOfPointer(Op_val(V))));
100}
101
102/* Llvm.lltype -> int -> t */
103CAMLprim value llvm_genericvalue_of_int(LLVMTypeRef Ty, value Int) {
104  return alloc_generic_value(LLVMCreateGenericValueOfInt(Ty, Int_val(Int), 1));
105}
106
107/* Llvm.lltype -> int32 -> t */
108CAMLprim value llvm_genericvalue_of_int32(LLVMTypeRef Ty, value Int32) {
109  CAMLparam1(Int32);
110  CAMLreturn(alloc_generic_value(
111    LLVMCreateGenericValueOfInt(Ty, Int32_val(Int32), 1)));
112}
113
114/* Llvm.lltype -> nativeint -> t */
115CAMLprim value llvm_genericvalue_of_nativeint(LLVMTypeRef Ty, value NatInt) {
116  CAMLparam1(NatInt);
117  CAMLreturn(alloc_generic_value(
118    LLVMCreateGenericValueOfInt(Ty, Nativeint_val(NatInt), 1)));
119}
120
121/* Llvm.lltype -> int64 -> t */
122CAMLprim value llvm_genericvalue_of_int64(LLVMTypeRef Ty, value Int64) {
123  CAMLparam1(Int64);
124  CAMLreturn(alloc_generic_value(
125    LLVMCreateGenericValueOfInt(Ty, Int64_val(Int64), 1)));
126}
127
128/* Llvm.lltype -> t -> float */
129CAMLprim value llvm_genericvalue_as_float(LLVMTypeRef Ty, value GenVal) {
130  CAMLparam1(GenVal);
131  CAMLreturn(copy_double(
132    LLVMGenericValueToFloat(Ty, Genericvalue_val(GenVal))));
133}
134
135/* t -> 'a */
136CAMLprim value llvm_genericvalue_as_pointer(value GenVal) {
137  return Val_op(LLVMGenericValueToPointer(Genericvalue_val(GenVal)));
138}
139
140/* t -> int */
141CAMLprim value llvm_genericvalue_as_int(value GenVal) {
142  assert(LLVMGenericValueIntWidth(Genericvalue_val(GenVal)) <= 8 * sizeof(value)
143         && "Generic value too wide to treat as an int!");
144  return Val_int(LLVMGenericValueToInt(Genericvalue_val(GenVal), 1));
145}
146
147/* t -> int32 */
148CAMLprim value llvm_genericvalue_as_int32(value GenVal) {
149  CAMLparam1(GenVal);
150  assert(LLVMGenericValueIntWidth(Genericvalue_val(GenVal)) <= 32
151         && "Generic value too wide to treat as an int32!");
152  CAMLreturn(copy_int32(LLVMGenericValueToInt(Genericvalue_val(GenVal), 1)));
153}
154
155/* t -> int64 */
156CAMLprim value llvm_genericvalue_as_int64(value GenVal) {
157  CAMLparam1(GenVal);
158  assert(LLVMGenericValueIntWidth(Genericvalue_val(GenVal)) <= 64
159         && "Generic value too wide to treat as an int64!");
160  CAMLreturn(copy_int64(LLVMGenericValueToInt(Genericvalue_val(GenVal), 1)));
161}
162
163/* t -> nativeint */
164CAMLprim value llvm_genericvalue_as_nativeint(value GenVal) {
165  CAMLparam1(GenVal);
166  assert(LLVMGenericValueIntWidth(Genericvalue_val(GenVal)) <= 8 * sizeof(value)
167         && "Generic value too wide to treat as a nativeint!");
168  CAMLreturn(copy_nativeint(LLVMGenericValueToInt(Genericvalue_val(GenVal),1)));
169}
170
171
172/*--... Operations on execution engines ....................................--*/
173
174/* llmodule -> ExecutionEngine.t */
175CAMLprim LLVMExecutionEngineRef llvm_ee_create(LLVMModuleRef M) {
176  LLVMExecutionEngineRef Interp;
177  char *Error;
178  if (LLVMCreateExecutionEngineForModule(&Interp, M, &Error))
179    llvm_raise(llvm_ee_error_exn, Error);
180  return Interp;
181}
182
183/* llmodule -> ExecutionEngine.t */
184CAMLprim LLVMExecutionEngineRef
185llvm_ee_create_interpreter(LLVMModuleRef M) {
186  LLVMExecutionEngineRef Interp;
187  char *Error;
188  if (LLVMCreateInterpreterForModule(&Interp, M, &Error))
189    llvm_raise(llvm_ee_error_exn, Error);
190  return Interp;
191}
192
193/* llmodule -> int -> ExecutionEngine.t */
194CAMLprim LLVMExecutionEngineRef
195llvm_ee_create_jit(LLVMModuleRef M, value OptLevel) {
196  LLVMExecutionEngineRef JIT;
197  char *Error;
198  if (LLVMCreateJITCompilerForModule(&JIT, M, Int_val(OptLevel), &Error))
199    llvm_raise(llvm_ee_error_exn, Error);
200  return JIT;
201}
202
203/* ExecutionEngine.t -> unit */
204CAMLprim value llvm_ee_dispose(LLVMExecutionEngineRef EE) {
205  LLVMDisposeExecutionEngine(EE);
206  return Val_unit;
207}
208
209/* llmodule -> ExecutionEngine.t -> unit */
210CAMLprim value llvm_ee_add_module(LLVMModuleRef M, LLVMExecutionEngineRef EE) {
211  LLVMAddModule(EE, M);
212  return Val_unit;
213}
214
215/* llmodule -> ExecutionEngine.t -> llmodule */
216CAMLprim LLVMModuleRef llvm_ee_remove_module(LLVMModuleRef M,
217                                             LLVMExecutionEngineRef EE) {
218  LLVMModuleRef RemovedModule;
219  char *Error;
220  if (LLVMRemoveModule(EE, M, &RemovedModule, &Error))
221    llvm_raise(llvm_ee_error_exn, Error);
222  return RemovedModule;
223}
224
225/* string -> ExecutionEngine.t -> llvalue option */
226CAMLprim value llvm_ee_find_function(value Name, LLVMExecutionEngineRef EE) {
227  CAMLparam1(Name);
228  CAMLlocal1(Option);
229  LLVMValueRef Found;
230  if (LLVMFindFunction(EE, String_val(Name), &Found))
231    CAMLreturn(Val_unit);
232  Option = alloc(1, 0);
233  Field(Option, 0) = Val_op(Found);
234  CAMLreturn(Option);
235}
236
237/* llvalue -> GenericValue.t array -> ExecutionEngine.t -> GenericValue.t */
238CAMLprim value llvm_ee_run_function(LLVMValueRef F, value Args,
239                                    LLVMExecutionEngineRef EE) {
240  unsigned NumArgs;
241  LLVMGenericValueRef Result, *GVArgs;
242  unsigned I;
243
244  NumArgs = Wosize_val(Args);
245  GVArgs = (LLVMGenericValueRef*) malloc(NumArgs * sizeof(LLVMGenericValueRef));
246  for (I = 0; I != NumArgs; ++I)
247    GVArgs[I] = Genericvalue_val(Field(Args, I));
248
249  Result = LLVMRunFunction(EE, F, NumArgs, GVArgs);
250
251  free(GVArgs);
252  return alloc_generic_value(Result);
253}
254
255/* ExecutionEngine.t -> unit */
256CAMLprim value llvm_ee_run_static_ctors(LLVMExecutionEngineRef EE) {
257  LLVMRunStaticConstructors(EE);
258  return Val_unit;
259}
260
261/* ExecutionEngine.t -> unit */
262CAMLprim value llvm_ee_run_static_dtors(LLVMExecutionEngineRef EE) {
263  LLVMRunStaticDestructors(EE);
264  return Val_unit;
265}
266
267/* llvalue -> string array -> (string * string) array -> ExecutionEngine.t ->
268   int */
269CAMLprim value llvm_ee_run_function_as_main(LLVMValueRef F,
270                                            value Args, value Env,
271                                            LLVMExecutionEngineRef EE) {
272  CAMLparam2(Args, Env);
273  int I, NumArgs, NumEnv, EnvSize, Result;
274  const char **CArgs, **CEnv;
275  char *CEnvBuf, *Pos;
276
277  NumArgs = Wosize_val(Args);
278  NumEnv = Wosize_val(Env);
279
280  /* Build the environment. */
281  CArgs = (const char **) malloc(NumArgs * sizeof(char*));
282  for (I = 0; I != NumArgs; ++I)
283    CArgs[I] = String_val(Field(Args, I));
284
285  /* Compute the size of the environment string buffer. */
286  for (I = 0, EnvSize = 0; I != NumEnv; ++I) {
287    EnvSize += strlen(String_val(Field(Field(Env, I), 0))) + 1;
288    EnvSize += strlen(String_val(Field(Field(Env, I), 1))) + 1;
289  }
290
291  /* Build the environment. */
292  CEnv = (const char **) malloc((NumEnv + 1) * sizeof(char*));
293  CEnvBuf = (char*) malloc(EnvSize);
294  Pos = CEnvBuf;
295  for (I = 0; I != NumEnv; ++I) {
296    char *Name  = String_val(Field(Field(Env, I), 0)),
297         *Value = String_val(Field(Field(Env, I), 1));
298    int NameLen  = strlen(Name),
299        ValueLen = strlen(Value);
300
301    CEnv[I] = Pos;
302    memcpy(Pos, Name, NameLen);
303    Pos += NameLen;
304    *Pos++ = '=';
305    memcpy(Pos, Value, ValueLen);
306    Pos += ValueLen;
307    *Pos++ = '\0';
308  }
309  CEnv[NumEnv] = NULL;
310
311  Result = LLVMRunFunctionAsMain(EE, F, NumArgs, CArgs, CEnv);
312
313  free(CArgs);
314  free(CEnv);
315  free(CEnvBuf);
316
317  CAMLreturn(Val_int(Result));
318}
319
320/* llvalue -> ExecutionEngine.t -> unit */
321CAMLprim value llvm_ee_free_machine_code(LLVMValueRef F,
322                                         LLVMExecutionEngineRef EE) {
323  LLVMFreeMachineCodeForFunction(EE, F);
324  return Val_unit;
325}
326
327extern value llvm_alloc_data_layout(LLVMTargetDataRef TargetData);
328
329/* ExecutionEngine.t -> Llvm_target.DataLayout.t */
330CAMLprim value llvm_ee_get_data_layout(LLVMExecutionEngineRef EE) {
331  value DataLayout;
332  LLVMTargetDataRef OrigDataLayout;
333  OrigDataLayout = LLVMGetExecutionEngineTargetData(EE);
334
335  char* TargetDataCStr;
336  TargetDataCStr = LLVMCopyStringRepOfTargetData(OrigDataLayout);
337  DataLayout = llvm_alloc_data_layout(LLVMCreateTargetData(TargetDataCStr));
338  LLVMDisposeMessage(TargetDataCStr);
339
340  return DataLayout;
341}
342