BitVector.h revision dce4a407a24b04eebc6a376f8e62b41aaa7b071f
1//===- llvm/ADT/BitVector.h - Bit vectors -----------------------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the BitVector class.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_ADT_BITVECTOR_H
15#define LLVM_ADT_BITVECTOR_H
16
17#include "llvm/Support/Compiler.h"
18#include "llvm/Support/ErrorHandling.h"
19#include "llvm/Support/MathExtras.h"
20#include <algorithm>
21#include <cassert>
22#include <climits>
23#include <cstdlib>
24
25namespace llvm {
26
27class BitVector {
28  typedef unsigned long BitWord;
29
30  enum { BITWORD_SIZE = (unsigned)sizeof(BitWord) * CHAR_BIT };
31
32  BitWord  *Bits;        // Actual bits.
33  unsigned Size;         // Size of bitvector in bits.
34  unsigned Capacity;     // Size of allocated memory in BitWord.
35
36public:
37  // Encapsulation of a single bit.
38  class reference {
39    friend class BitVector;
40
41    BitWord *WordRef;
42    unsigned BitPos;
43
44    reference();  // Undefined
45
46  public:
47    reference(BitVector &b, unsigned Idx) {
48      WordRef = &b.Bits[Idx / BITWORD_SIZE];
49      BitPos = Idx % BITWORD_SIZE;
50    }
51
52    ~reference() {}
53
54    reference &operator=(reference t) {
55      *this = bool(t);
56      return *this;
57    }
58
59    reference& operator=(bool t) {
60      if (t)
61        *WordRef |= BitWord(1) << BitPos;
62      else
63        *WordRef &= ~(BitWord(1) << BitPos);
64      return *this;
65    }
66
67    operator bool() const {
68      return ((*WordRef) & (BitWord(1) << BitPos)) ? true : false;
69    }
70  };
71
72
73  /// BitVector default ctor - Creates an empty bitvector.
74  BitVector() : Size(0), Capacity(0) {
75    Bits = nullptr;
76  }
77
78  /// BitVector ctor - Creates a bitvector of specified number of bits. All
79  /// bits are initialized to the specified value.
80  explicit BitVector(unsigned s, bool t = false) : Size(s) {
81    Capacity = NumBitWords(s);
82    Bits = (BitWord *)std::malloc(Capacity * sizeof(BitWord));
83    init_words(Bits, Capacity, t);
84    if (t)
85      clear_unused_bits();
86  }
87
88  /// BitVector copy ctor.
89  BitVector(const BitVector &RHS) : Size(RHS.size()) {
90    if (Size == 0) {
91      Bits = nullptr;
92      Capacity = 0;
93      return;
94    }
95
96    Capacity = NumBitWords(RHS.size());
97    Bits = (BitWord *)std::malloc(Capacity * sizeof(BitWord));
98    std::memcpy(Bits, RHS.Bits, Capacity * sizeof(BitWord));
99  }
100
101  BitVector(BitVector &&RHS)
102    : Bits(RHS.Bits), Size(RHS.Size), Capacity(RHS.Capacity) {
103    RHS.Bits = nullptr;
104  }
105
106  ~BitVector() {
107    std::free(Bits);
108  }
109
110  /// empty - Tests whether there are no bits in this bitvector.
111  bool empty() const { return Size == 0; }
112
113  /// size - Returns the number of bits in this bitvector.
114  unsigned size() const { return Size; }
115
116  /// count - Returns the number of bits which are set.
117  unsigned count() const {
118    unsigned NumBits = 0;
119    for (unsigned i = 0; i < NumBitWords(size()); ++i)
120      if (sizeof(BitWord) == 4)
121        NumBits += CountPopulation_32((uint32_t)Bits[i]);
122      else if (sizeof(BitWord) == 8)
123        NumBits += CountPopulation_64(Bits[i]);
124      else
125        llvm_unreachable("Unsupported!");
126    return NumBits;
127  }
128
129  /// any - Returns true if any bit is set.
130  bool any() const {
131    for (unsigned i = 0; i < NumBitWords(size()); ++i)
132      if (Bits[i] != 0)
133        return true;
134    return false;
135  }
136
137  /// all - Returns true if all bits are set.
138  bool all() const {
139    for (unsigned i = 0; i < Size / BITWORD_SIZE; ++i)
140      if (Bits[i] != ~0UL)
141        return false;
142
143    // If bits remain check that they are ones. The unused bits are always zero.
144    if (unsigned Remainder = Size % BITWORD_SIZE)
145      return Bits[Size / BITWORD_SIZE] == (1UL << Remainder) - 1;
146
147    return true;
148  }
149
150  /// none - Returns true if none of the bits are set.
151  bool none() const {
152    return !any();
153  }
154
155  /// find_first - Returns the index of the first set bit, -1 if none
156  /// of the bits are set.
157  int find_first() const {
158    for (unsigned i = 0; i < NumBitWords(size()); ++i)
159      if (Bits[i] != 0) {
160        if (sizeof(BitWord) == 4)
161          return i * BITWORD_SIZE + countTrailingZeros((uint32_t)Bits[i]);
162        if (sizeof(BitWord) == 8)
163          return i * BITWORD_SIZE + countTrailingZeros(Bits[i]);
164        llvm_unreachable("Unsupported!");
165      }
166    return -1;
167  }
168
169  /// find_next - Returns the index of the next set bit following the
170  /// "Prev" bit. Returns -1 if the next set bit is not found.
171  int find_next(unsigned Prev) const {
172    ++Prev;
173    if (Prev >= Size)
174      return -1;
175
176    unsigned WordPos = Prev / BITWORD_SIZE;
177    unsigned BitPos = Prev % BITWORD_SIZE;
178    BitWord Copy = Bits[WordPos];
179    // Mask off previous bits.
180    Copy &= ~0UL << BitPos;
181
182    if (Copy != 0) {
183      if (sizeof(BitWord) == 4)
184        return WordPos * BITWORD_SIZE + countTrailingZeros((uint32_t)Copy);
185      if (sizeof(BitWord) == 8)
186        return WordPos * BITWORD_SIZE + countTrailingZeros(Copy);
187      llvm_unreachable("Unsupported!");
188    }
189
190    // Check subsequent words.
191    for (unsigned i = WordPos+1; i < NumBitWords(size()); ++i)
192      if (Bits[i] != 0) {
193        if (sizeof(BitWord) == 4)
194          return i * BITWORD_SIZE + countTrailingZeros((uint32_t)Bits[i]);
195        if (sizeof(BitWord) == 8)
196          return i * BITWORD_SIZE + countTrailingZeros(Bits[i]);
197        llvm_unreachable("Unsupported!");
198      }
199    return -1;
200  }
201
202  /// clear - Clear all bits.
203  void clear() {
204    Size = 0;
205  }
206
207  /// resize - Grow or shrink the bitvector.
208  void resize(unsigned N, bool t = false) {
209    if (N > Capacity * BITWORD_SIZE) {
210      unsigned OldCapacity = Capacity;
211      grow(N);
212      init_words(&Bits[OldCapacity], (Capacity-OldCapacity), t);
213    }
214
215    // Set any old unused bits that are now included in the BitVector. This
216    // may set bits that are not included in the new vector, but we will clear
217    // them back out below.
218    if (N > Size)
219      set_unused_bits(t);
220
221    // Update the size, and clear out any bits that are now unused
222    unsigned OldSize = Size;
223    Size = N;
224    if (t || N < OldSize)
225      clear_unused_bits();
226  }
227
228  void reserve(unsigned N) {
229    if (N > Capacity * BITWORD_SIZE)
230      grow(N);
231  }
232
233  // Set, reset, flip
234  BitVector &set() {
235    init_words(Bits, Capacity, true);
236    clear_unused_bits();
237    return *this;
238  }
239
240  BitVector &set(unsigned Idx) {
241    Bits[Idx / BITWORD_SIZE] |= BitWord(1) << (Idx % BITWORD_SIZE);
242    return *this;
243  }
244
245  /// set - Efficiently set a range of bits in [I, E)
246  BitVector &set(unsigned I, unsigned E) {
247    assert(I <= E && "Attempted to set backwards range!");
248    assert(E <= size() && "Attempted to set out-of-bounds range!");
249
250    if (I == E) return *this;
251
252    if (I / BITWORD_SIZE == E / BITWORD_SIZE) {
253      BitWord EMask = 1UL << (E % BITWORD_SIZE);
254      BitWord IMask = 1UL << (I % BITWORD_SIZE);
255      BitWord Mask = EMask - IMask;
256      Bits[I / BITWORD_SIZE] |= Mask;
257      return *this;
258    }
259
260    BitWord PrefixMask = ~0UL << (I % BITWORD_SIZE);
261    Bits[I / BITWORD_SIZE] |= PrefixMask;
262    I = RoundUpToAlignment(I, BITWORD_SIZE);
263
264    for (; I + BITWORD_SIZE <= E; I += BITWORD_SIZE)
265      Bits[I / BITWORD_SIZE] = ~0UL;
266
267    BitWord PostfixMask = (1UL << (E % BITWORD_SIZE)) - 1;
268    if (I < E)
269      Bits[I / BITWORD_SIZE] |= PostfixMask;
270
271    return *this;
272  }
273
274  BitVector &reset() {
275    init_words(Bits, Capacity, false);
276    return *this;
277  }
278
279  BitVector &reset(unsigned Idx) {
280    Bits[Idx / BITWORD_SIZE] &= ~(BitWord(1) << (Idx % BITWORD_SIZE));
281    return *this;
282  }
283
284  /// reset - Efficiently reset a range of bits in [I, E)
285  BitVector &reset(unsigned I, unsigned E) {
286    assert(I <= E && "Attempted to reset backwards range!");
287    assert(E <= size() && "Attempted to reset out-of-bounds range!");
288
289    if (I == E) return *this;
290
291    if (I / BITWORD_SIZE == E / BITWORD_SIZE) {
292      BitWord EMask = 1UL << (E % BITWORD_SIZE);
293      BitWord IMask = 1UL << (I % BITWORD_SIZE);
294      BitWord Mask = EMask - IMask;
295      Bits[I / BITWORD_SIZE] &= ~Mask;
296      return *this;
297    }
298
299    BitWord PrefixMask = ~0UL << (I % BITWORD_SIZE);
300    Bits[I / BITWORD_SIZE] &= ~PrefixMask;
301    I = RoundUpToAlignment(I, BITWORD_SIZE);
302
303    for (; I + BITWORD_SIZE <= E; I += BITWORD_SIZE)
304      Bits[I / BITWORD_SIZE] = 0UL;
305
306    BitWord PostfixMask = (1UL << (E % BITWORD_SIZE)) - 1;
307    if (I < E)
308      Bits[I / BITWORD_SIZE] &= ~PostfixMask;
309
310    return *this;
311  }
312
313  BitVector &flip() {
314    for (unsigned i = 0; i < NumBitWords(size()); ++i)
315      Bits[i] = ~Bits[i];
316    clear_unused_bits();
317    return *this;
318  }
319
320  BitVector &flip(unsigned Idx) {
321    Bits[Idx / BITWORD_SIZE] ^= BitWord(1) << (Idx % BITWORD_SIZE);
322    return *this;
323  }
324
325  // Indexing.
326  reference operator[](unsigned Idx) {
327    assert (Idx < Size && "Out-of-bounds Bit access.");
328    return reference(*this, Idx);
329  }
330
331  bool operator[](unsigned Idx) const {
332    assert (Idx < Size && "Out-of-bounds Bit access.");
333    BitWord Mask = BitWord(1) << (Idx % BITWORD_SIZE);
334    return (Bits[Idx / BITWORD_SIZE] & Mask) != 0;
335  }
336
337  bool test(unsigned Idx) const {
338    return (*this)[Idx];
339  }
340
341  /// Test if any common bits are set.
342  bool anyCommon(const BitVector &RHS) const {
343    unsigned ThisWords = NumBitWords(size());
344    unsigned RHSWords  = NumBitWords(RHS.size());
345    for (unsigned i = 0, e = std::min(ThisWords, RHSWords); i != e; ++i)
346      if (Bits[i] & RHS.Bits[i])
347        return true;
348    return false;
349  }
350
351  // Comparison operators.
352  bool operator==(const BitVector &RHS) const {
353    unsigned ThisWords = NumBitWords(size());
354    unsigned RHSWords  = NumBitWords(RHS.size());
355    unsigned i;
356    for (i = 0; i != std::min(ThisWords, RHSWords); ++i)
357      if (Bits[i] != RHS.Bits[i])
358        return false;
359
360    // Verify that any extra words are all zeros.
361    if (i != ThisWords) {
362      for (; i != ThisWords; ++i)
363        if (Bits[i])
364          return false;
365    } else if (i != RHSWords) {
366      for (; i != RHSWords; ++i)
367        if (RHS.Bits[i])
368          return false;
369    }
370    return true;
371  }
372
373  bool operator!=(const BitVector &RHS) const {
374    return !(*this == RHS);
375  }
376
377  /// Intersection, union, disjoint union.
378  BitVector &operator&=(const BitVector &RHS) {
379    unsigned ThisWords = NumBitWords(size());
380    unsigned RHSWords  = NumBitWords(RHS.size());
381    unsigned i;
382    for (i = 0; i != std::min(ThisWords, RHSWords); ++i)
383      Bits[i] &= RHS.Bits[i];
384
385    // Any bits that are just in this bitvector become zero, because they aren't
386    // in the RHS bit vector.  Any words only in RHS are ignored because they
387    // are already zero in the LHS.
388    for (; i != ThisWords; ++i)
389      Bits[i] = 0;
390
391    return *this;
392  }
393
394  /// reset - Reset bits that are set in RHS. Same as *this &= ~RHS.
395  BitVector &reset(const BitVector &RHS) {
396    unsigned ThisWords = NumBitWords(size());
397    unsigned RHSWords  = NumBitWords(RHS.size());
398    unsigned i;
399    for (i = 0; i != std::min(ThisWords, RHSWords); ++i)
400      Bits[i] &= ~RHS.Bits[i];
401    return *this;
402  }
403
404  /// test - Check if (This - RHS) is zero.
405  /// This is the same as reset(RHS) and any().
406  bool test(const BitVector &RHS) const {
407    unsigned ThisWords = NumBitWords(size());
408    unsigned RHSWords  = NumBitWords(RHS.size());
409    unsigned i;
410    for (i = 0; i != std::min(ThisWords, RHSWords); ++i)
411      if ((Bits[i] & ~RHS.Bits[i]) != 0)
412        return true;
413
414    for (; i != ThisWords ; ++i)
415      if (Bits[i] != 0)
416        return true;
417
418    return false;
419  }
420
421  BitVector &operator|=(const BitVector &RHS) {
422    if (size() < RHS.size())
423      resize(RHS.size());
424    for (size_t i = 0, e = NumBitWords(RHS.size()); i != e; ++i)
425      Bits[i] |= RHS.Bits[i];
426    return *this;
427  }
428
429  BitVector &operator^=(const BitVector &RHS) {
430    if (size() < RHS.size())
431      resize(RHS.size());
432    for (size_t i = 0, e = NumBitWords(RHS.size()); i != e; ++i)
433      Bits[i] ^= RHS.Bits[i];
434    return *this;
435  }
436
437  // Assignment operator.
438  const BitVector &operator=(const BitVector &RHS) {
439    if (this == &RHS) return *this;
440
441    Size = RHS.size();
442    unsigned RHSWords = NumBitWords(Size);
443    if (Size <= Capacity * BITWORD_SIZE) {
444      if (Size)
445        std::memcpy(Bits, RHS.Bits, RHSWords * sizeof(BitWord));
446      clear_unused_bits();
447      return *this;
448    }
449
450    // Grow the bitvector to have enough elements.
451    Capacity = RHSWords;
452    BitWord *NewBits = (BitWord *)std::malloc(Capacity * sizeof(BitWord));
453    std::memcpy(NewBits, RHS.Bits, Capacity * sizeof(BitWord));
454
455    // Destroy the old bits.
456    std::free(Bits);
457    Bits = NewBits;
458
459    return *this;
460  }
461
462  const BitVector &operator=(BitVector &&RHS) {
463    if (this == &RHS) return *this;
464
465    std::free(Bits);
466    Bits = RHS.Bits;
467    Size = RHS.Size;
468    Capacity = RHS.Capacity;
469
470    RHS.Bits = nullptr;
471
472    return *this;
473  }
474
475  void swap(BitVector &RHS) {
476    std::swap(Bits, RHS.Bits);
477    std::swap(Size, RHS.Size);
478    std::swap(Capacity, RHS.Capacity);
479  }
480
481  //===--------------------------------------------------------------------===//
482  // Portable bit mask operations.
483  //===--------------------------------------------------------------------===//
484  //
485  // These methods all operate on arrays of uint32_t, each holding 32 bits. The
486  // fixed word size makes it easier to work with literal bit vector constants
487  // in portable code.
488  //
489  // The LSB in each word is the lowest numbered bit.  The size of a portable
490  // bit mask is always a whole multiple of 32 bits.  If no bit mask size is
491  // given, the bit mask is assumed to cover the entire BitVector.
492
493  /// setBitsInMask - Add '1' bits from Mask to this vector. Don't resize.
494  /// This computes "*this |= Mask".
495  void setBitsInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) {
496    applyMask<true, false>(Mask, MaskWords);
497  }
498
499  /// clearBitsInMask - Clear any bits in this vector that are set in Mask.
500  /// Don't resize. This computes "*this &= ~Mask".
501  void clearBitsInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) {
502    applyMask<false, false>(Mask, MaskWords);
503  }
504
505  /// setBitsNotInMask - Add a bit to this vector for every '0' bit in Mask.
506  /// Don't resize.  This computes "*this |= ~Mask".
507  void setBitsNotInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) {
508    applyMask<true, true>(Mask, MaskWords);
509  }
510
511  /// clearBitsNotInMask - Clear a bit in this vector for every '0' bit in Mask.
512  /// Don't resize.  This computes "*this &= Mask".
513  void clearBitsNotInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) {
514    applyMask<false, true>(Mask, MaskWords);
515  }
516
517private:
518  unsigned NumBitWords(unsigned S) const {
519    return (S + BITWORD_SIZE-1) / BITWORD_SIZE;
520  }
521
522  // Set the unused bits in the high words.
523  void set_unused_bits(bool t = true) {
524    //  Set high words first.
525    unsigned UsedWords = NumBitWords(Size);
526    if (Capacity > UsedWords)
527      init_words(&Bits[UsedWords], (Capacity-UsedWords), t);
528
529    //  Then set any stray high bits of the last used word.
530    unsigned ExtraBits = Size % BITWORD_SIZE;
531    if (ExtraBits) {
532      BitWord ExtraBitMask = ~0UL << ExtraBits;
533      if (t)
534        Bits[UsedWords-1] |= ExtraBitMask;
535      else
536        Bits[UsedWords-1] &= ~ExtraBitMask;
537    }
538  }
539
540  // Clear the unused bits in the high words.
541  void clear_unused_bits() {
542    set_unused_bits(false);
543  }
544
545  void grow(unsigned NewSize) {
546    Capacity = std::max(NumBitWords(NewSize), Capacity * 2);
547    Bits = (BitWord *)std::realloc(Bits, Capacity * sizeof(BitWord));
548
549    clear_unused_bits();
550  }
551
552  void init_words(BitWord *B, unsigned NumWords, bool t) {
553    memset(B, 0 - (int)t, NumWords*sizeof(BitWord));
554  }
555
556  template<bool AddBits, bool InvertMask>
557  void applyMask(const uint32_t *Mask, unsigned MaskWords) {
558    assert(BITWORD_SIZE % 32 == 0 && "Unsupported BitWord size.");
559    MaskWords = std::min(MaskWords, (size() + 31) / 32);
560    const unsigned Scale = BITWORD_SIZE / 32;
561    unsigned i;
562    for (i = 0; MaskWords >= Scale; ++i, MaskWords -= Scale) {
563      BitWord BW = Bits[i];
564      // This inner loop should unroll completely when BITWORD_SIZE > 32.
565      for (unsigned b = 0; b != BITWORD_SIZE; b += 32) {
566        uint32_t M = *Mask++;
567        if (InvertMask) M = ~M;
568        if (AddBits) BW |=   BitWord(M) << b;
569        else         BW &= ~(BitWord(M) << b);
570      }
571      Bits[i] = BW;
572    }
573    for (unsigned b = 0; MaskWords; b += 32, --MaskWords) {
574      uint32_t M = *Mask++;
575      if (InvertMask) M = ~M;
576      if (AddBits) Bits[i] |=   BitWord(M) << b;
577      else         Bits[i] &= ~(BitWord(M) << b);
578    }
579    if (AddBits)
580      clear_unused_bits();
581  }
582};
583
584} // End llvm namespace
585
586namespace std {
587  /// Implement std::swap in terms of BitVector swap.
588  inline void
589  swap(llvm::BitVector &LHS, llvm::BitVector &RHS) {
590    LHS.swap(RHS);
591  }
592}
593
594#endif
595