DenseMap.h revision 36b56886974eae4f9c5ebc96befd3e7bfe5de338
1//===- llvm/ADT/DenseMap.h - Dense probed hash table ------------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the DenseMap class.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_ADT_DENSEMAP_H
15#define LLVM_ADT_DENSEMAP_H
16
17#include "llvm/ADT/DenseMapInfo.h"
18#include "llvm/Support/AlignOf.h"
19#include "llvm/Support/Compiler.h"
20#include "llvm/Support/MathExtras.h"
21#include "llvm/Support/PointerLikeTypeTraits.h"
22#include "llvm/Support/type_traits.h"
23#include <algorithm>
24#include <cassert>
25#include <climits>
26#include <cstddef>
27#include <cstring>
28#include <iterator>
29#include <new>
30#include <utility>
31
32namespace llvm {
33
34template<typename KeyT, typename ValueT,
35         typename KeyInfoT = DenseMapInfo<KeyT>,
36         bool IsConst = false>
37class DenseMapIterator;
38
39template<typename DerivedT,
40         typename KeyT, typename ValueT, typename KeyInfoT>
41class DenseMapBase {
42protected:
43  typedef std::pair<KeyT, ValueT> BucketT;
44
45public:
46  typedef KeyT key_type;
47  typedef ValueT mapped_type;
48  typedef BucketT value_type;
49
50  typedef DenseMapIterator<KeyT, ValueT, KeyInfoT> iterator;
51  typedef DenseMapIterator<KeyT, ValueT,
52                           KeyInfoT, true> const_iterator;
53  inline iterator begin() {
54    // When the map is empty, avoid the overhead of AdvancePastEmptyBuckets().
55    return empty() ? end() : iterator(getBuckets(), getBucketsEnd());
56  }
57  inline iterator end() {
58    return iterator(getBucketsEnd(), getBucketsEnd(), true);
59  }
60  inline const_iterator begin() const {
61    return empty() ? end() : const_iterator(getBuckets(), getBucketsEnd());
62  }
63  inline const_iterator end() const {
64    return const_iterator(getBucketsEnd(), getBucketsEnd(), true);
65  }
66
67  bool LLVM_ATTRIBUTE_UNUSED_RESULT empty() const {
68    return getNumEntries() == 0;
69  }
70  unsigned size() const { return getNumEntries(); }
71
72  /// Grow the densemap so that it has at least Size buckets. Does not shrink
73  void resize(size_t Size) {
74    if (Size > getNumBuckets())
75      grow(Size);
76  }
77
78  void clear() {
79    if (getNumEntries() == 0 && getNumTombstones() == 0) return;
80
81    // If the capacity of the array is huge, and the # elements used is small,
82    // shrink the array.
83    if (getNumEntries() * 4 < getNumBuckets() && getNumBuckets() > 64) {
84      shrink_and_clear();
85      return;
86    }
87
88    const KeyT EmptyKey = getEmptyKey(), TombstoneKey = getTombstoneKey();
89    for (BucketT *P = getBuckets(), *E = getBucketsEnd(); P != E; ++P) {
90      if (!KeyInfoT::isEqual(P->first, EmptyKey)) {
91        if (!KeyInfoT::isEqual(P->first, TombstoneKey)) {
92          P->second.~ValueT();
93          decrementNumEntries();
94        }
95        P->first = EmptyKey;
96      }
97    }
98    assert(getNumEntries() == 0 && "Node count imbalance!");
99    setNumTombstones(0);
100  }
101
102  /// count - Return true if the specified key is in the map.
103  bool count(const KeyT &Val) const {
104    const BucketT *TheBucket;
105    return LookupBucketFor(Val, TheBucket);
106  }
107
108  iterator find(const KeyT &Val) {
109    BucketT *TheBucket;
110    if (LookupBucketFor(Val, TheBucket))
111      return iterator(TheBucket, getBucketsEnd(), true);
112    return end();
113  }
114  const_iterator find(const KeyT &Val) const {
115    const BucketT *TheBucket;
116    if (LookupBucketFor(Val, TheBucket))
117      return const_iterator(TheBucket, getBucketsEnd(), true);
118    return end();
119  }
120
121  /// Alternate version of find() which allows a different, and possibly
122  /// less expensive, key type.
123  /// The DenseMapInfo is responsible for supplying methods
124  /// getHashValue(LookupKeyT) and isEqual(LookupKeyT, KeyT) for each key
125  /// type used.
126  template<class LookupKeyT>
127  iterator find_as(const LookupKeyT &Val) {
128    BucketT *TheBucket;
129    if (LookupBucketFor(Val, TheBucket))
130      return iterator(TheBucket, getBucketsEnd(), true);
131    return end();
132  }
133  template<class LookupKeyT>
134  const_iterator find_as(const LookupKeyT &Val) const {
135    const BucketT *TheBucket;
136    if (LookupBucketFor(Val, TheBucket))
137      return const_iterator(TheBucket, getBucketsEnd(), true);
138    return end();
139  }
140
141  /// lookup - Return the entry for the specified key, or a default
142  /// constructed value if no such entry exists.
143  ValueT lookup(const KeyT &Val) const {
144    const BucketT *TheBucket;
145    if (LookupBucketFor(Val, TheBucket))
146      return TheBucket->second;
147    return ValueT();
148  }
149
150  // Inserts key,value pair into the map if the key isn't already in the map.
151  // If the key is already in the map, it returns false and doesn't update the
152  // value.
153  std::pair<iterator, bool> insert(const std::pair<KeyT, ValueT> &KV) {
154    BucketT *TheBucket;
155    if (LookupBucketFor(KV.first, TheBucket))
156      return std::make_pair(iterator(TheBucket, getBucketsEnd(), true),
157                            false); // Already in map.
158
159    // Otherwise, insert the new element.
160    TheBucket = InsertIntoBucket(KV.first, KV.second, TheBucket);
161    return std::make_pair(iterator(TheBucket, getBucketsEnd(), true), true);
162  }
163
164  // Inserts key,value pair into the map if the key isn't already in the map.
165  // If the key is already in the map, it returns false and doesn't update the
166  // value.
167  std::pair<iterator, bool> insert(std::pair<KeyT, ValueT> &&KV) {
168    BucketT *TheBucket;
169    if (LookupBucketFor(KV.first, TheBucket))
170      return std::make_pair(iterator(TheBucket, getBucketsEnd(), true),
171                            false); // Already in map.
172
173    // Otherwise, insert the new element.
174    TheBucket = InsertIntoBucket(std::move(KV.first),
175                                 std::move(KV.second),
176                                 TheBucket);
177    return std::make_pair(iterator(TheBucket, getBucketsEnd(), true), true);
178  }
179
180  /// insert - Range insertion of pairs.
181  template<typename InputIt>
182  void insert(InputIt I, InputIt E) {
183    for (; I != E; ++I)
184      insert(*I);
185  }
186
187
188  bool erase(const KeyT &Val) {
189    BucketT *TheBucket;
190    if (!LookupBucketFor(Val, TheBucket))
191      return false; // not in map.
192
193    TheBucket->second.~ValueT();
194    TheBucket->first = getTombstoneKey();
195    decrementNumEntries();
196    incrementNumTombstones();
197    return true;
198  }
199  void erase(iterator I) {
200    BucketT *TheBucket = &*I;
201    TheBucket->second.~ValueT();
202    TheBucket->first = getTombstoneKey();
203    decrementNumEntries();
204    incrementNumTombstones();
205  }
206
207  value_type& FindAndConstruct(const KeyT &Key) {
208    BucketT *TheBucket;
209    if (LookupBucketFor(Key, TheBucket))
210      return *TheBucket;
211
212    return *InsertIntoBucket(Key, ValueT(), TheBucket);
213  }
214
215  ValueT &operator[](const KeyT &Key) {
216    return FindAndConstruct(Key).second;
217  }
218
219  value_type& FindAndConstruct(KeyT &&Key) {
220    BucketT *TheBucket;
221    if (LookupBucketFor(Key, TheBucket))
222      return *TheBucket;
223
224    return *InsertIntoBucket(std::move(Key), ValueT(), TheBucket);
225  }
226
227  ValueT &operator[](KeyT &&Key) {
228    return FindAndConstruct(std::move(Key)).second;
229  }
230
231  /// isPointerIntoBucketsArray - Return true if the specified pointer points
232  /// somewhere into the DenseMap's array of buckets (i.e. either to a key or
233  /// value in the DenseMap).
234  bool isPointerIntoBucketsArray(const void *Ptr) const {
235    return Ptr >= getBuckets() && Ptr < getBucketsEnd();
236  }
237
238  /// getPointerIntoBucketsArray() - Return an opaque pointer into the buckets
239  /// array.  In conjunction with the previous method, this can be used to
240  /// determine whether an insertion caused the DenseMap to reallocate.
241  const void *getPointerIntoBucketsArray() const { return getBuckets(); }
242
243protected:
244  DenseMapBase() {}
245
246  void destroyAll() {
247    if (getNumBuckets() == 0) // Nothing to do.
248      return;
249
250    const KeyT EmptyKey = getEmptyKey(), TombstoneKey = getTombstoneKey();
251    for (BucketT *P = getBuckets(), *E = getBucketsEnd(); P != E; ++P) {
252      if (!KeyInfoT::isEqual(P->first, EmptyKey) &&
253          !KeyInfoT::isEqual(P->first, TombstoneKey))
254        P->second.~ValueT();
255      P->first.~KeyT();
256    }
257
258#ifndef NDEBUG
259    memset((void*)getBuckets(), 0x5a, sizeof(BucketT)*getNumBuckets());
260#endif
261  }
262
263  void initEmpty() {
264    setNumEntries(0);
265    setNumTombstones(0);
266
267    assert((getNumBuckets() & (getNumBuckets()-1)) == 0 &&
268           "# initial buckets must be a power of two!");
269    const KeyT EmptyKey = getEmptyKey();
270    for (BucketT *B = getBuckets(), *E = getBucketsEnd(); B != E; ++B)
271      new (&B->first) KeyT(EmptyKey);
272  }
273
274  void moveFromOldBuckets(BucketT *OldBucketsBegin, BucketT *OldBucketsEnd) {
275    initEmpty();
276
277    // Insert all the old elements.
278    const KeyT EmptyKey = getEmptyKey();
279    const KeyT TombstoneKey = getTombstoneKey();
280    for (BucketT *B = OldBucketsBegin, *E = OldBucketsEnd; B != E; ++B) {
281      if (!KeyInfoT::isEqual(B->first, EmptyKey) &&
282          !KeyInfoT::isEqual(B->first, TombstoneKey)) {
283        // Insert the key/value into the new table.
284        BucketT *DestBucket;
285        bool FoundVal = LookupBucketFor(B->first, DestBucket);
286        (void)FoundVal; // silence warning.
287        assert(!FoundVal && "Key already in new map?");
288        DestBucket->first = std::move(B->first);
289        new (&DestBucket->second) ValueT(std::move(B->second));
290        incrementNumEntries();
291
292        // Free the value.
293        B->second.~ValueT();
294      }
295      B->first.~KeyT();
296    }
297
298#ifndef NDEBUG
299    if (OldBucketsBegin != OldBucketsEnd)
300      memset((void*)OldBucketsBegin, 0x5a,
301             sizeof(BucketT) * (OldBucketsEnd - OldBucketsBegin));
302#endif
303  }
304
305  template <typename OtherBaseT>
306  void copyFrom(const DenseMapBase<OtherBaseT, KeyT, ValueT, KeyInfoT>& other) {
307    assert(getNumBuckets() == other.getNumBuckets());
308
309    setNumEntries(other.getNumEntries());
310    setNumTombstones(other.getNumTombstones());
311
312    if (isPodLike<KeyT>::value && isPodLike<ValueT>::value)
313      memcpy(getBuckets(), other.getBuckets(),
314             getNumBuckets() * sizeof(BucketT));
315    else
316      for (size_t i = 0; i < getNumBuckets(); ++i) {
317        new (&getBuckets()[i].first) KeyT(other.getBuckets()[i].first);
318        if (!KeyInfoT::isEqual(getBuckets()[i].first, getEmptyKey()) &&
319            !KeyInfoT::isEqual(getBuckets()[i].first, getTombstoneKey()))
320          new (&getBuckets()[i].second) ValueT(other.getBuckets()[i].second);
321      }
322  }
323
324  void swap(DenseMapBase& RHS) {
325    std::swap(getNumEntries(), RHS.getNumEntries());
326    std::swap(getNumTombstones(), RHS.getNumTombstones());
327  }
328
329  static unsigned getHashValue(const KeyT &Val) {
330    return KeyInfoT::getHashValue(Val);
331  }
332  template<typename LookupKeyT>
333  static unsigned getHashValue(const LookupKeyT &Val) {
334    return KeyInfoT::getHashValue(Val);
335  }
336  static const KeyT getEmptyKey() {
337    return KeyInfoT::getEmptyKey();
338  }
339  static const KeyT getTombstoneKey() {
340    return KeyInfoT::getTombstoneKey();
341  }
342
343private:
344  unsigned getNumEntries() const {
345    return static_cast<const DerivedT *>(this)->getNumEntries();
346  }
347  void setNumEntries(unsigned Num) {
348    static_cast<DerivedT *>(this)->setNumEntries(Num);
349  }
350  void incrementNumEntries() {
351    setNumEntries(getNumEntries() + 1);
352  }
353  void decrementNumEntries() {
354    setNumEntries(getNumEntries() - 1);
355  }
356  unsigned getNumTombstones() const {
357    return static_cast<const DerivedT *>(this)->getNumTombstones();
358  }
359  void setNumTombstones(unsigned Num) {
360    static_cast<DerivedT *>(this)->setNumTombstones(Num);
361  }
362  void incrementNumTombstones() {
363    setNumTombstones(getNumTombstones() + 1);
364  }
365  void decrementNumTombstones() {
366    setNumTombstones(getNumTombstones() - 1);
367  }
368  const BucketT *getBuckets() const {
369    return static_cast<const DerivedT *>(this)->getBuckets();
370  }
371  BucketT *getBuckets() {
372    return static_cast<DerivedT *>(this)->getBuckets();
373  }
374  unsigned getNumBuckets() const {
375    return static_cast<const DerivedT *>(this)->getNumBuckets();
376  }
377  BucketT *getBucketsEnd() {
378    return getBuckets() + getNumBuckets();
379  }
380  const BucketT *getBucketsEnd() const {
381    return getBuckets() + getNumBuckets();
382  }
383
384  void grow(unsigned AtLeast) {
385    static_cast<DerivedT *>(this)->grow(AtLeast);
386  }
387
388  void shrink_and_clear() {
389    static_cast<DerivedT *>(this)->shrink_and_clear();
390  }
391
392
393  BucketT *InsertIntoBucket(const KeyT &Key, const ValueT &Value,
394                            BucketT *TheBucket) {
395    TheBucket = InsertIntoBucketImpl(Key, TheBucket);
396
397    TheBucket->first = Key;
398    new (&TheBucket->second) ValueT(Value);
399    return TheBucket;
400  }
401
402  BucketT *InsertIntoBucket(const KeyT &Key, ValueT &&Value,
403                            BucketT *TheBucket) {
404    TheBucket = InsertIntoBucketImpl(Key, TheBucket);
405
406    TheBucket->first = Key;
407    new (&TheBucket->second) ValueT(std::move(Value));
408    return TheBucket;
409  }
410
411  BucketT *InsertIntoBucket(KeyT &&Key, ValueT &&Value, BucketT *TheBucket) {
412    TheBucket = InsertIntoBucketImpl(Key, TheBucket);
413
414    TheBucket->first = std::move(Key);
415    new (&TheBucket->second) ValueT(std::move(Value));
416    return TheBucket;
417  }
418
419  BucketT *InsertIntoBucketImpl(const KeyT &Key, BucketT *TheBucket) {
420    // If the load of the hash table is more than 3/4, or if fewer than 1/8 of
421    // the buckets are empty (meaning that many are filled with tombstones),
422    // grow the table.
423    //
424    // The later case is tricky.  For example, if we had one empty bucket with
425    // tons of tombstones, failing lookups (e.g. for insertion) would have to
426    // probe almost the entire table until it found the empty bucket.  If the
427    // table completely filled with tombstones, no lookup would ever succeed,
428    // causing infinite loops in lookup.
429    unsigned NewNumEntries = getNumEntries() + 1;
430    unsigned NumBuckets = getNumBuckets();
431    if (NewNumEntries*4 >= NumBuckets*3) {
432      this->grow(NumBuckets * 2);
433      LookupBucketFor(Key, TheBucket);
434      NumBuckets = getNumBuckets();
435    } else if (NumBuckets-(NewNumEntries+getNumTombstones()) <= NumBuckets/8) {
436      this->grow(NumBuckets);
437      LookupBucketFor(Key, TheBucket);
438    }
439    assert(TheBucket);
440
441    // Only update the state after we've grown our bucket space appropriately
442    // so that when growing buckets we have self-consistent entry count.
443    incrementNumEntries();
444
445    // If we are writing over a tombstone, remember this.
446    const KeyT EmptyKey = getEmptyKey();
447    if (!KeyInfoT::isEqual(TheBucket->first, EmptyKey))
448      decrementNumTombstones();
449
450    return TheBucket;
451  }
452
453  /// LookupBucketFor - Lookup the appropriate bucket for Val, returning it in
454  /// FoundBucket.  If the bucket contains the key and a value, this returns
455  /// true, otherwise it returns a bucket with an empty marker or tombstone and
456  /// returns false.
457  template<typename LookupKeyT>
458  bool LookupBucketFor(const LookupKeyT &Val,
459                       const BucketT *&FoundBucket) const {
460    const BucketT *BucketsPtr = getBuckets();
461    const unsigned NumBuckets = getNumBuckets();
462
463    if (NumBuckets == 0) {
464      FoundBucket = 0;
465      return false;
466    }
467
468    // FoundTombstone - Keep track of whether we find a tombstone while probing.
469    const BucketT *FoundTombstone = 0;
470    const KeyT EmptyKey = getEmptyKey();
471    const KeyT TombstoneKey = getTombstoneKey();
472    assert(!KeyInfoT::isEqual(Val, EmptyKey) &&
473           !KeyInfoT::isEqual(Val, TombstoneKey) &&
474           "Empty/Tombstone value shouldn't be inserted into map!");
475
476    unsigned BucketNo = getHashValue(Val) & (NumBuckets-1);
477    unsigned ProbeAmt = 1;
478    while (1) {
479      const BucketT *ThisBucket = BucketsPtr + BucketNo;
480      // Found Val's bucket?  If so, return it.
481      if (KeyInfoT::isEqual(Val, ThisBucket->first)) {
482        FoundBucket = ThisBucket;
483        return true;
484      }
485
486      // If we found an empty bucket, the key doesn't exist in the set.
487      // Insert it and return the default value.
488      if (KeyInfoT::isEqual(ThisBucket->first, EmptyKey)) {
489        // If we've already seen a tombstone while probing, fill it in instead
490        // of the empty bucket we eventually probed to.
491        FoundBucket = FoundTombstone ? FoundTombstone : ThisBucket;
492        return false;
493      }
494
495      // If this is a tombstone, remember it.  If Val ends up not in the map, we
496      // prefer to return it than something that would require more probing.
497      if (KeyInfoT::isEqual(ThisBucket->first, TombstoneKey) && !FoundTombstone)
498        FoundTombstone = ThisBucket;  // Remember the first tombstone found.
499
500      // Otherwise, it's a hash collision or a tombstone, continue quadratic
501      // probing.
502      BucketNo += ProbeAmt++;
503      BucketNo &= (NumBuckets-1);
504    }
505  }
506
507  template <typename LookupKeyT>
508  bool LookupBucketFor(const LookupKeyT &Val, BucketT *&FoundBucket) {
509    const BucketT *ConstFoundBucket;
510    bool Result = const_cast<const DenseMapBase *>(this)
511      ->LookupBucketFor(Val, ConstFoundBucket);
512    FoundBucket = const_cast<BucketT *>(ConstFoundBucket);
513    return Result;
514  }
515
516public:
517  /// Return the approximate size (in bytes) of the actual map.
518  /// This is just the raw memory used by DenseMap.
519  /// If entries are pointers to objects, the size of the referenced objects
520  /// are not included.
521  size_t getMemorySize() const {
522    return getNumBuckets() * sizeof(BucketT);
523  }
524};
525
526template<typename KeyT, typename ValueT,
527         typename KeyInfoT = DenseMapInfo<KeyT> >
528class DenseMap
529    : public DenseMapBase<DenseMap<KeyT, ValueT, KeyInfoT>,
530                          KeyT, ValueT, KeyInfoT> {
531  // Lift some types from the dependent base class into this class for
532  // simplicity of referring to them.
533  typedef DenseMapBase<DenseMap, KeyT, ValueT, KeyInfoT> BaseT;
534  typedef typename BaseT::BucketT BucketT;
535  friend class DenseMapBase<DenseMap, KeyT, ValueT, KeyInfoT>;
536
537  BucketT *Buckets;
538  unsigned NumEntries;
539  unsigned NumTombstones;
540  unsigned NumBuckets;
541
542public:
543  explicit DenseMap(unsigned NumInitBuckets = 0) {
544    init(NumInitBuckets);
545  }
546
547  DenseMap(const DenseMap &other) : BaseT() {
548    init(0);
549    copyFrom(other);
550  }
551
552  DenseMap(DenseMap &&other) : BaseT() {
553    init(0);
554    swap(other);
555  }
556
557  template<typename InputIt>
558  DenseMap(const InputIt &I, const InputIt &E) {
559    init(NextPowerOf2(std::distance(I, E)));
560    this->insert(I, E);
561  }
562
563  ~DenseMap() {
564    this->destroyAll();
565    operator delete(Buckets);
566  }
567
568  void swap(DenseMap& RHS) {
569    std::swap(Buckets, RHS.Buckets);
570    std::swap(NumEntries, RHS.NumEntries);
571    std::swap(NumTombstones, RHS.NumTombstones);
572    std::swap(NumBuckets, RHS.NumBuckets);
573  }
574
575  DenseMap& operator=(const DenseMap& other) {
576    copyFrom(other);
577    return *this;
578  }
579
580  DenseMap& operator=(DenseMap &&other) {
581    this->destroyAll();
582    operator delete(Buckets);
583    init(0);
584    swap(other);
585    return *this;
586  }
587
588  void copyFrom(const DenseMap& other) {
589    this->destroyAll();
590    operator delete(Buckets);
591    if (allocateBuckets(other.NumBuckets)) {
592      this->BaseT::copyFrom(other);
593    } else {
594      NumEntries = 0;
595      NumTombstones = 0;
596    }
597  }
598
599  void init(unsigned InitBuckets) {
600    if (allocateBuckets(InitBuckets)) {
601      this->BaseT::initEmpty();
602    } else {
603      NumEntries = 0;
604      NumTombstones = 0;
605    }
606  }
607
608  void grow(unsigned AtLeast) {
609    unsigned OldNumBuckets = NumBuckets;
610    BucketT *OldBuckets = Buckets;
611
612    allocateBuckets(std::max<unsigned>(64, static_cast<unsigned>(NextPowerOf2(AtLeast-1))));
613    assert(Buckets);
614    if (!OldBuckets) {
615      this->BaseT::initEmpty();
616      return;
617    }
618
619    this->moveFromOldBuckets(OldBuckets, OldBuckets+OldNumBuckets);
620
621    // Free the old table.
622    operator delete(OldBuckets);
623  }
624
625  void shrink_and_clear() {
626    unsigned OldNumEntries = NumEntries;
627    this->destroyAll();
628
629    // Reduce the number of buckets.
630    unsigned NewNumBuckets = 0;
631    if (OldNumEntries)
632      NewNumBuckets = std::max(64, 1 << (Log2_32_Ceil(OldNumEntries) + 1));
633    if (NewNumBuckets == NumBuckets) {
634      this->BaseT::initEmpty();
635      return;
636    }
637
638    operator delete(Buckets);
639    init(NewNumBuckets);
640  }
641
642private:
643  unsigned getNumEntries() const {
644    return NumEntries;
645  }
646  void setNumEntries(unsigned Num) {
647    NumEntries = Num;
648  }
649
650  unsigned getNumTombstones() const {
651    return NumTombstones;
652  }
653  void setNumTombstones(unsigned Num) {
654    NumTombstones = Num;
655  }
656
657  BucketT *getBuckets() const {
658    return Buckets;
659  }
660
661  unsigned getNumBuckets() const {
662    return NumBuckets;
663  }
664
665  bool allocateBuckets(unsigned Num) {
666    NumBuckets = Num;
667    if (NumBuckets == 0) {
668      Buckets = 0;
669      return false;
670    }
671
672    Buckets = static_cast<BucketT*>(operator new(sizeof(BucketT) * NumBuckets));
673    return true;
674  }
675};
676
677template<typename KeyT, typename ValueT,
678         unsigned InlineBuckets = 4,
679         typename KeyInfoT = DenseMapInfo<KeyT> >
680class SmallDenseMap
681    : public DenseMapBase<SmallDenseMap<KeyT, ValueT, InlineBuckets, KeyInfoT>,
682                          KeyT, ValueT, KeyInfoT> {
683  // Lift some types from the dependent base class into this class for
684  // simplicity of referring to them.
685  typedef DenseMapBase<SmallDenseMap, KeyT, ValueT, KeyInfoT> BaseT;
686  typedef typename BaseT::BucketT BucketT;
687  friend class DenseMapBase<SmallDenseMap, KeyT, ValueT, KeyInfoT>;
688
689  unsigned Small : 1;
690  unsigned NumEntries : 31;
691  unsigned NumTombstones;
692
693  struct LargeRep {
694    BucketT *Buckets;
695    unsigned NumBuckets;
696  };
697
698  /// A "union" of an inline bucket array and the struct representing
699  /// a large bucket. This union will be discriminated by the 'Small' bit.
700  AlignedCharArrayUnion<BucketT[InlineBuckets], LargeRep> storage;
701
702public:
703  explicit SmallDenseMap(unsigned NumInitBuckets = 0) {
704    init(NumInitBuckets);
705  }
706
707  SmallDenseMap(const SmallDenseMap &other) : BaseT() {
708    init(0);
709    copyFrom(other);
710  }
711
712  SmallDenseMap(SmallDenseMap &&other) : BaseT() {
713    init(0);
714    swap(other);
715  }
716
717  template<typename InputIt>
718  SmallDenseMap(const InputIt &I, const InputIt &E) {
719    init(NextPowerOf2(std::distance(I, E)));
720    this->insert(I, E);
721  }
722
723  ~SmallDenseMap() {
724    this->destroyAll();
725    deallocateBuckets();
726  }
727
728  void swap(SmallDenseMap& RHS) {
729    unsigned TmpNumEntries = RHS.NumEntries;
730    RHS.NumEntries = NumEntries;
731    NumEntries = TmpNumEntries;
732    std::swap(NumTombstones, RHS.NumTombstones);
733
734    const KeyT EmptyKey = this->getEmptyKey();
735    const KeyT TombstoneKey = this->getTombstoneKey();
736    if (Small && RHS.Small) {
737      // If we're swapping inline bucket arrays, we have to cope with some of
738      // the tricky bits of DenseMap's storage system: the buckets are not
739      // fully initialized. Thus we swap every key, but we may have
740      // a one-directional move of the value.
741      for (unsigned i = 0, e = InlineBuckets; i != e; ++i) {
742        BucketT *LHSB = &getInlineBuckets()[i],
743                *RHSB = &RHS.getInlineBuckets()[i];
744        bool hasLHSValue = (!KeyInfoT::isEqual(LHSB->first, EmptyKey) &&
745                            !KeyInfoT::isEqual(LHSB->first, TombstoneKey));
746        bool hasRHSValue = (!KeyInfoT::isEqual(RHSB->first, EmptyKey) &&
747                            !KeyInfoT::isEqual(RHSB->first, TombstoneKey));
748        if (hasLHSValue && hasRHSValue) {
749          // Swap together if we can...
750          std::swap(*LHSB, *RHSB);
751          continue;
752        }
753        // Swap separately and handle any assymetry.
754        std::swap(LHSB->first, RHSB->first);
755        if (hasLHSValue) {
756          new (&RHSB->second) ValueT(std::move(LHSB->second));
757          LHSB->second.~ValueT();
758        } else if (hasRHSValue) {
759          new (&LHSB->second) ValueT(std::move(RHSB->second));
760          RHSB->second.~ValueT();
761        }
762      }
763      return;
764    }
765    if (!Small && !RHS.Small) {
766      std::swap(getLargeRep()->Buckets, RHS.getLargeRep()->Buckets);
767      std::swap(getLargeRep()->NumBuckets, RHS.getLargeRep()->NumBuckets);
768      return;
769    }
770
771    SmallDenseMap &SmallSide = Small ? *this : RHS;
772    SmallDenseMap &LargeSide = Small ? RHS : *this;
773
774    // First stash the large side's rep and move the small side across.
775    LargeRep TmpRep = std::move(*LargeSide.getLargeRep());
776    LargeSide.getLargeRep()->~LargeRep();
777    LargeSide.Small = true;
778    // This is similar to the standard move-from-old-buckets, but the bucket
779    // count hasn't actually rotated in this case. So we have to carefully
780    // move construct the keys and values into their new locations, but there
781    // is no need to re-hash things.
782    for (unsigned i = 0, e = InlineBuckets; i != e; ++i) {
783      BucketT *NewB = &LargeSide.getInlineBuckets()[i],
784              *OldB = &SmallSide.getInlineBuckets()[i];
785      new (&NewB->first) KeyT(std::move(OldB->first));
786      OldB->first.~KeyT();
787      if (!KeyInfoT::isEqual(NewB->first, EmptyKey) &&
788          !KeyInfoT::isEqual(NewB->first, TombstoneKey)) {
789        new (&NewB->second) ValueT(std::move(OldB->second));
790        OldB->second.~ValueT();
791      }
792    }
793
794    // The hard part of moving the small buckets across is done, just move
795    // the TmpRep into its new home.
796    SmallSide.Small = false;
797    new (SmallSide.getLargeRep()) LargeRep(std::move(TmpRep));
798  }
799
800  SmallDenseMap& operator=(const SmallDenseMap& other) {
801    copyFrom(other);
802    return *this;
803  }
804
805  SmallDenseMap& operator=(SmallDenseMap &&other) {
806    this->destroyAll();
807    deallocateBuckets();
808    init(0);
809    swap(other);
810    return *this;
811  }
812
813  void copyFrom(const SmallDenseMap& other) {
814    this->destroyAll();
815    deallocateBuckets();
816    Small = true;
817    if (other.getNumBuckets() > InlineBuckets) {
818      Small = false;
819      new (getLargeRep()) LargeRep(allocateBuckets(other.getNumBuckets()));
820    }
821    this->BaseT::copyFrom(other);
822  }
823
824  void init(unsigned InitBuckets) {
825    Small = true;
826    if (InitBuckets > InlineBuckets) {
827      Small = false;
828      new (getLargeRep()) LargeRep(allocateBuckets(InitBuckets));
829    }
830    this->BaseT::initEmpty();
831  }
832
833  void grow(unsigned AtLeast) {
834    if (AtLeast >= InlineBuckets)
835      AtLeast = std::max<unsigned>(64, NextPowerOf2(AtLeast-1));
836
837    if (Small) {
838      if (AtLeast < InlineBuckets)
839        return; // Nothing to do.
840
841      // First move the inline buckets into a temporary storage.
842      AlignedCharArrayUnion<BucketT[InlineBuckets]> TmpStorage;
843      BucketT *TmpBegin = reinterpret_cast<BucketT *>(TmpStorage.buffer);
844      BucketT *TmpEnd = TmpBegin;
845
846      // Loop over the buckets, moving non-empty, non-tombstones into the
847      // temporary storage. Have the loop move the TmpEnd forward as it goes.
848      const KeyT EmptyKey = this->getEmptyKey();
849      const KeyT TombstoneKey = this->getTombstoneKey();
850      for (BucketT *P = getBuckets(), *E = P + InlineBuckets; P != E; ++P) {
851        if (!KeyInfoT::isEqual(P->first, EmptyKey) &&
852            !KeyInfoT::isEqual(P->first, TombstoneKey)) {
853          assert(size_t(TmpEnd - TmpBegin) < InlineBuckets &&
854                 "Too many inline buckets!");
855          new (&TmpEnd->first) KeyT(std::move(P->first));
856          new (&TmpEnd->second) ValueT(std::move(P->second));
857          ++TmpEnd;
858          P->second.~ValueT();
859        }
860        P->first.~KeyT();
861      }
862
863      // Now make this map use the large rep, and move all the entries back
864      // into it.
865      Small = false;
866      new (getLargeRep()) LargeRep(allocateBuckets(AtLeast));
867      this->moveFromOldBuckets(TmpBegin, TmpEnd);
868      return;
869    }
870
871    LargeRep OldRep = std::move(*getLargeRep());
872    getLargeRep()->~LargeRep();
873    if (AtLeast <= InlineBuckets) {
874      Small = true;
875    } else {
876      new (getLargeRep()) LargeRep(allocateBuckets(AtLeast));
877    }
878
879    this->moveFromOldBuckets(OldRep.Buckets, OldRep.Buckets+OldRep.NumBuckets);
880
881    // Free the old table.
882    operator delete(OldRep.Buckets);
883  }
884
885  void shrink_and_clear() {
886    unsigned OldSize = this->size();
887    this->destroyAll();
888
889    // Reduce the number of buckets.
890    unsigned NewNumBuckets = 0;
891    if (OldSize) {
892      NewNumBuckets = 1 << (Log2_32_Ceil(OldSize) + 1);
893      if (NewNumBuckets > InlineBuckets && NewNumBuckets < 64u)
894        NewNumBuckets = 64;
895    }
896    if ((Small && NewNumBuckets <= InlineBuckets) ||
897        (!Small && NewNumBuckets == getLargeRep()->NumBuckets)) {
898      this->BaseT::initEmpty();
899      return;
900    }
901
902    deallocateBuckets();
903    init(NewNumBuckets);
904  }
905
906private:
907  unsigned getNumEntries() const {
908    return NumEntries;
909  }
910  void setNumEntries(unsigned Num) {
911    assert(Num < INT_MAX && "Cannot support more than INT_MAX entries");
912    NumEntries = Num;
913  }
914
915  unsigned getNumTombstones() const {
916    return NumTombstones;
917  }
918  void setNumTombstones(unsigned Num) {
919    NumTombstones = Num;
920  }
921
922  const BucketT *getInlineBuckets() const {
923    assert(Small);
924    // Note that this cast does not violate aliasing rules as we assert that
925    // the memory's dynamic type is the small, inline bucket buffer, and the
926    // 'storage.buffer' static type is 'char *'.
927    return reinterpret_cast<const BucketT *>(storage.buffer);
928  }
929  BucketT *getInlineBuckets() {
930    return const_cast<BucketT *>(
931      const_cast<const SmallDenseMap *>(this)->getInlineBuckets());
932  }
933  const LargeRep *getLargeRep() const {
934    assert(!Small);
935    // Note, same rule about aliasing as with getInlineBuckets.
936    return reinterpret_cast<const LargeRep *>(storage.buffer);
937  }
938  LargeRep *getLargeRep() {
939    return const_cast<LargeRep *>(
940      const_cast<const SmallDenseMap *>(this)->getLargeRep());
941  }
942
943  const BucketT *getBuckets() const {
944    return Small ? getInlineBuckets() : getLargeRep()->Buckets;
945  }
946  BucketT *getBuckets() {
947    return const_cast<BucketT *>(
948      const_cast<const SmallDenseMap *>(this)->getBuckets());
949  }
950  unsigned getNumBuckets() const {
951    return Small ? InlineBuckets : getLargeRep()->NumBuckets;
952  }
953
954  void deallocateBuckets() {
955    if (Small)
956      return;
957
958    operator delete(getLargeRep()->Buckets);
959    getLargeRep()->~LargeRep();
960  }
961
962  LargeRep allocateBuckets(unsigned Num) {
963    assert(Num > InlineBuckets && "Must allocate more buckets than are inline");
964    LargeRep Rep = {
965      static_cast<BucketT*>(operator new(sizeof(BucketT) * Num)), Num
966    };
967    return Rep;
968  }
969};
970
971template<typename KeyT, typename ValueT,
972         typename KeyInfoT, bool IsConst>
973class DenseMapIterator {
974  typedef std::pair<KeyT, ValueT> Bucket;
975  typedef DenseMapIterator<KeyT, ValueT,
976                           KeyInfoT, true> ConstIterator;
977  friend class DenseMapIterator<KeyT, ValueT, KeyInfoT, true>;
978public:
979  typedef ptrdiff_t difference_type;
980  typedef typename std::conditional<IsConst, const Bucket, Bucket>::type
981  value_type;
982  typedef value_type *pointer;
983  typedef value_type &reference;
984  typedef std::forward_iterator_tag iterator_category;
985private:
986  pointer Ptr, End;
987public:
988  DenseMapIterator() : Ptr(0), End(0) {}
989
990  DenseMapIterator(pointer Pos, pointer E, bool NoAdvance = false)
991    : Ptr(Pos), End(E) {
992    if (!NoAdvance) AdvancePastEmptyBuckets();
993  }
994
995  // If IsConst is true this is a converting constructor from iterator to
996  // const_iterator and the default copy constructor is used.
997  // Otherwise this is a copy constructor for iterator.
998  DenseMapIterator(const DenseMapIterator<KeyT, ValueT,
999                                          KeyInfoT, false>& I)
1000    : Ptr(I.Ptr), End(I.End) {}
1001
1002  reference operator*() const {
1003    return *Ptr;
1004  }
1005  pointer operator->() const {
1006    return Ptr;
1007  }
1008
1009  bool operator==(const ConstIterator &RHS) const {
1010    return Ptr == RHS.operator->();
1011  }
1012  bool operator!=(const ConstIterator &RHS) const {
1013    return Ptr != RHS.operator->();
1014  }
1015
1016  inline DenseMapIterator& operator++() {  // Preincrement
1017    ++Ptr;
1018    AdvancePastEmptyBuckets();
1019    return *this;
1020  }
1021  DenseMapIterator operator++(int) {  // Postincrement
1022    DenseMapIterator tmp = *this; ++*this; return tmp;
1023  }
1024
1025private:
1026  void AdvancePastEmptyBuckets() {
1027    const KeyT Empty = KeyInfoT::getEmptyKey();
1028    const KeyT Tombstone = KeyInfoT::getTombstoneKey();
1029
1030    while (Ptr != End &&
1031           (KeyInfoT::isEqual(Ptr->first, Empty) ||
1032            KeyInfoT::isEqual(Ptr->first, Tombstone)))
1033      ++Ptr;
1034  }
1035};
1036
1037template<typename KeyT, typename ValueT, typename KeyInfoT>
1038static inline size_t
1039capacity_in_bytes(const DenseMap<KeyT, ValueT, KeyInfoT> &X) {
1040  return X.getMemorySize();
1041}
1042
1043} // end namespace llvm
1044
1045#endif
1046