DenseMap.h revision 711d324d50e5b335e98e576ce6725b056427e3f3
1//===- llvm/ADT/DenseMap.h - Dense probed hash table ------------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the DenseMap class.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_ADT_DENSEMAP_H
15#define LLVM_ADT_DENSEMAP_H
16
17#include "llvm/ADT/DenseMapInfo.h"
18#include "llvm/Support/AlignOf.h"
19#include "llvm/Support/Compiler.h"
20#include "llvm/Support/MathExtras.h"
21#include "llvm/Support/PointerLikeTypeTraits.h"
22#include "llvm/Support/type_traits.h"
23#include <algorithm>
24#include <cassert>
25#include <climits>
26#include <cstddef>
27#include <cstring>
28#include <iterator>
29#include <new>
30#include <utility>
31
32namespace llvm {
33
34template<typename KeyT, typename ValueT,
35         typename KeyInfoT = DenseMapInfo<KeyT>,
36         bool IsConst = false>
37class DenseMapIterator;
38
39template<typename DerivedT,
40         typename KeyT, typename ValueT, typename KeyInfoT>
41class DenseMapBase {
42protected:
43  typedef std::pair<KeyT, ValueT> BucketT;
44
45public:
46  typedef KeyT key_type;
47  typedef ValueT mapped_type;
48  typedef BucketT value_type;
49
50  typedef DenseMapIterator<KeyT, ValueT, KeyInfoT> iterator;
51  typedef DenseMapIterator<KeyT, ValueT,
52                           KeyInfoT, true> const_iterator;
53  inline iterator begin() {
54    // When the map is empty, avoid the overhead of AdvancePastEmptyBuckets().
55    return empty() ? end() : iterator(getBuckets(), getBucketsEnd());
56  }
57  inline iterator end() {
58    return iterator(getBucketsEnd(), getBucketsEnd(), true);
59  }
60  inline const_iterator begin() const {
61    return empty() ? end() : const_iterator(getBuckets(), getBucketsEnd());
62  }
63  inline const_iterator end() const {
64    return const_iterator(getBucketsEnd(), getBucketsEnd(), true);
65  }
66
67  bool empty() const { return getNumEntries() == 0; }
68  unsigned size() const { return getNumEntries(); }
69
70  /// Grow the densemap so that it has at least Size buckets. Does not shrink
71  void resize(size_t Size) {
72    if (Size > getNumBuckets())
73      grow(Size);
74  }
75
76  void clear() {
77    if (getNumEntries() == 0 && getNumTombstones() == 0) return;
78
79    // If the capacity of the array is huge, and the # elements used is small,
80    // shrink the array.
81    if (getNumEntries() * 4 < getNumBuckets() && getNumBuckets() > 64) {
82      shrink_and_clear();
83      return;
84    }
85
86    const KeyT EmptyKey = getEmptyKey(), TombstoneKey = getTombstoneKey();
87    for (BucketT *P = getBuckets(), *E = getBucketsEnd(); P != E; ++P) {
88      if (!KeyInfoT::isEqual(P->first, EmptyKey)) {
89        if (!KeyInfoT::isEqual(P->first, TombstoneKey)) {
90          P->second.~ValueT();
91          decrementNumEntries();
92        }
93        P->first = EmptyKey;
94      }
95    }
96    assert(getNumEntries() == 0 && "Node count imbalance!");
97    setNumTombstones(0);
98  }
99
100  /// count - Return true if the specified key is in the map.
101  bool count(const KeyT &Val) const {
102    const BucketT *TheBucket;
103    return LookupBucketFor(Val, TheBucket);
104  }
105
106  iterator find(const KeyT &Val) {
107    BucketT *TheBucket;
108    if (LookupBucketFor(Val, TheBucket))
109      return iterator(TheBucket, getBucketsEnd(), true);
110    return end();
111  }
112  const_iterator find(const KeyT &Val) const {
113    const BucketT *TheBucket;
114    if (LookupBucketFor(Val, TheBucket))
115      return const_iterator(TheBucket, getBucketsEnd(), true);
116    return end();
117  }
118
119  /// Alternate version of find() which allows a different, and possibly
120  /// less expensive, key type.
121  /// The DenseMapInfo is responsible for supplying methods
122  /// getHashValue(LookupKeyT) and isEqual(LookupKeyT, KeyT) for each key
123  /// type used.
124  template<class LookupKeyT>
125  iterator find_as(const LookupKeyT &Val) {
126    BucketT *TheBucket;
127    if (LookupBucketFor(Val, TheBucket))
128      return iterator(TheBucket, getBucketsEnd(), true);
129    return end();
130  }
131  template<class LookupKeyT>
132  const_iterator find_as(const LookupKeyT &Val) const {
133    const BucketT *TheBucket;
134    if (LookupBucketFor(Val, TheBucket))
135      return const_iterator(TheBucket, getBucketsEnd(), true);
136    return end();
137  }
138
139  /// lookup - Return the entry for the specified key, or a default
140  /// constructed value if no such entry exists.
141  ValueT lookup(const KeyT &Val) const {
142    const BucketT *TheBucket;
143    if (LookupBucketFor(Val, TheBucket))
144      return TheBucket->second;
145    return ValueT();
146  }
147
148  // Inserts key,value pair into the map if the key isn't already in the map.
149  // If the key is already in the map, it returns false and doesn't update the
150  // value.
151  std::pair<iterator, bool> insert(const std::pair<KeyT, ValueT> &KV) {
152    BucketT *TheBucket;
153    if (LookupBucketFor(KV.first, TheBucket))
154      return std::make_pair(iterator(TheBucket, getBucketsEnd(), true),
155                            false); // Already in map.
156
157    // Otherwise, insert the new element.
158    TheBucket = InsertIntoBucket(KV.first, KV.second, TheBucket);
159    return std::make_pair(iterator(TheBucket, getBucketsEnd(), true), true);
160  }
161
162#if LLVM_HAS_RVALUE_REFERENCES
163  // Inserts key,value pair into the map if the key isn't already in the map.
164  // If the key is already in the map, it returns false and doesn't update the
165  // value.
166  std::pair<iterator, bool> insert(std::pair<KeyT, ValueT> &&KV) {
167    BucketT *TheBucket;
168    if (LookupBucketFor(KV.first, TheBucket))
169      return std::make_pair(iterator(TheBucket, getBucketsEnd(), true),
170                            false); // Already in map.
171
172    // Otherwise, insert the new element.
173    TheBucket = InsertIntoBucket(std::move(KV.first),
174                                 std::move(KV.second),
175                                 TheBucket);
176    return std::make_pair(iterator(TheBucket, getBucketsEnd(), true), true);
177  }
178#endif
179
180  /// insert - Range insertion of pairs.
181  template<typename InputIt>
182  void insert(InputIt I, InputIt E) {
183    for (; I != E; ++I)
184      insert(*I);
185  }
186
187
188  bool erase(const KeyT &Val) {
189    BucketT *TheBucket;
190    if (!LookupBucketFor(Val, TheBucket))
191      return false; // not in map.
192
193    TheBucket->second.~ValueT();
194    TheBucket->first = getTombstoneKey();
195    decrementNumEntries();
196    incrementNumTombstones();
197    return true;
198  }
199  void erase(iterator I) {
200    BucketT *TheBucket = &*I;
201    TheBucket->second.~ValueT();
202    TheBucket->first = getTombstoneKey();
203    decrementNumEntries();
204    incrementNumTombstones();
205  }
206
207  value_type& FindAndConstruct(const KeyT &Key) {
208    BucketT *TheBucket;
209    if (LookupBucketFor(Key, TheBucket))
210      return *TheBucket;
211
212    return *InsertIntoBucket(Key, ValueT(), TheBucket);
213  }
214
215  ValueT &operator[](const KeyT &Key) {
216    return FindAndConstruct(Key).second;
217  }
218
219#if LLVM_HAS_RVALUE_REFERENCES
220  value_type& FindAndConstruct(KeyT &&Key) {
221    BucketT *TheBucket;
222    if (LookupBucketFor(Key, TheBucket))
223      return *TheBucket;
224
225    return *InsertIntoBucket(Key, ValueT(), TheBucket);
226  }
227
228  ValueT &operator[](KeyT &&Key) {
229    return FindAndConstruct(Key).second;
230  }
231#endif
232
233  /// isPointerIntoBucketsArray - Return true if the specified pointer points
234  /// somewhere into the DenseMap's array of buckets (i.e. either to a key or
235  /// value in the DenseMap).
236  bool isPointerIntoBucketsArray(const void *Ptr) const {
237    return Ptr >= getBuckets() && Ptr < getBucketsEnd();
238  }
239
240  /// getPointerIntoBucketsArray() - Return an opaque pointer into the buckets
241  /// array.  In conjunction with the previous method, this can be used to
242  /// determine whether an insertion caused the DenseMap to reallocate.
243  const void *getPointerIntoBucketsArray() const { return getBuckets(); }
244
245protected:
246  DenseMapBase() {}
247
248  void destroyAll() {
249    if (getNumBuckets() == 0) // Nothing to do.
250      return;
251
252    const KeyT EmptyKey = getEmptyKey(), TombstoneKey = getTombstoneKey();
253    for (BucketT *P = getBuckets(), *E = getBucketsEnd(); P != E; ++P) {
254      if (!KeyInfoT::isEqual(P->first, EmptyKey) &&
255          !KeyInfoT::isEqual(P->first, TombstoneKey))
256        P->second.~ValueT();
257      P->first.~KeyT();
258    }
259
260#ifndef NDEBUG
261    memset((void*)getBuckets(), 0x5a, sizeof(BucketT)*getNumBuckets());
262#endif
263  }
264
265  void initEmpty() {
266    setNumEntries(0);
267    setNumTombstones(0);
268
269    assert((getNumBuckets() & (getNumBuckets()-1)) == 0 &&
270           "# initial buckets must be a power of two!");
271    const KeyT EmptyKey = getEmptyKey();
272    for (BucketT *B = getBuckets(), *E = getBucketsEnd(); B != E; ++B)
273      new (&B->first) KeyT(EmptyKey);
274  }
275
276  void moveFromOldBuckets(BucketT *OldBucketsBegin, BucketT *OldBucketsEnd) {
277    initEmpty();
278
279    // Insert all the old elements.
280    const KeyT EmptyKey = getEmptyKey();
281    const KeyT TombstoneKey = getTombstoneKey();
282    for (BucketT *B = OldBucketsBegin, *E = OldBucketsEnd; B != E; ++B) {
283      if (!KeyInfoT::isEqual(B->first, EmptyKey) &&
284          !KeyInfoT::isEqual(B->first, TombstoneKey)) {
285        // Insert the key/value into the new table.
286        BucketT *DestBucket;
287        bool FoundVal = LookupBucketFor(B->first, DestBucket);
288        (void)FoundVal; // silence warning.
289        assert(!FoundVal && "Key already in new map?");
290        DestBucket->first = llvm_move(B->first);
291        new (&DestBucket->second) ValueT(llvm_move(B->second));
292        incrementNumEntries();
293
294        // Free the value.
295        B->second.~ValueT();
296      }
297      B->first.~KeyT();
298    }
299
300#ifndef NDEBUG
301    if (OldBucketsBegin != OldBucketsEnd)
302      memset((void*)OldBucketsBegin, 0x5a,
303             sizeof(BucketT) * (OldBucketsEnd - OldBucketsBegin));
304#endif
305  }
306
307  template <typename OtherBaseT>
308  void copyFrom(const DenseMapBase<OtherBaseT, KeyT, ValueT, KeyInfoT>& other) {
309    assert(getNumBuckets() == other.getNumBuckets());
310
311    setNumEntries(other.getNumEntries());
312    setNumTombstones(other.getNumTombstones());
313
314    if (isPodLike<KeyT>::value && isPodLike<ValueT>::value)
315      memcpy(getBuckets(), other.getBuckets(),
316             getNumBuckets() * sizeof(BucketT));
317    else
318      for (size_t i = 0; i < getNumBuckets(); ++i) {
319        new (&getBuckets()[i].first) KeyT(other.getBuckets()[i].first);
320        if (!KeyInfoT::isEqual(getBuckets()[i].first, getEmptyKey()) &&
321            !KeyInfoT::isEqual(getBuckets()[i].first, getTombstoneKey()))
322          new (&getBuckets()[i].second) ValueT(other.getBuckets()[i].second);
323      }
324  }
325
326  void swap(DenseMapBase& RHS) {
327    std::swap(getNumEntries(), RHS.getNumEntries());
328    std::swap(getNumTombstones(), RHS.getNumTombstones());
329  }
330
331  static unsigned getHashValue(const KeyT &Val) {
332    return KeyInfoT::getHashValue(Val);
333  }
334  template<typename LookupKeyT>
335  static unsigned getHashValue(const LookupKeyT &Val) {
336    return KeyInfoT::getHashValue(Val);
337  }
338  static const KeyT getEmptyKey() {
339    return KeyInfoT::getEmptyKey();
340  }
341  static const KeyT getTombstoneKey() {
342    return KeyInfoT::getTombstoneKey();
343  }
344
345private:
346  unsigned getNumEntries() const {
347    return static_cast<const DerivedT *>(this)->getNumEntries();
348  }
349  void setNumEntries(unsigned Num) {
350    static_cast<DerivedT *>(this)->setNumEntries(Num);
351  }
352  void incrementNumEntries() {
353    setNumEntries(getNumEntries() + 1);
354  }
355  void decrementNumEntries() {
356    setNumEntries(getNumEntries() - 1);
357  }
358  unsigned getNumTombstones() const {
359    return static_cast<const DerivedT *>(this)->getNumTombstones();
360  }
361  void setNumTombstones(unsigned Num) {
362    static_cast<DerivedT *>(this)->setNumTombstones(Num);
363  }
364  void incrementNumTombstones() {
365    setNumTombstones(getNumTombstones() + 1);
366  }
367  void decrementNumTombstones() {
368    setNumTombstones(getNumTombstones() - 1);
369  }
370  const BucketT *getBuckets() const {
371    return static_cast<const DerivedT *>(this)->getBuckets();
372  }
373  BucketT *getBuckets() {
374    return static_cast<DerivedT *>(this)->getBuckets();
375  }
376  unsigned getNumBuckets() const {
377    return static_cast<const DerivedT *>(this)->getNumBuckets();
378  }
379  BucketT *getBucketsEnd() {
380    return getBuckets() + getNumBuckets();
381  }
382  const BucketT *getBucketsEnd() const {
383    return getBuckets() + getNumBuckets();
384  }
385
386  void grow(unsigned AtLeast) {
387    static_cast<DerivedT *>(this)->grow(AtLeast);
388  }
389
390  void shrink_and_clear() {
391    static_cast<DerivedT *>(this)->shrink_and_clear();
392  }
393
394
395  BucketT *InsertIntoBucket(const KeyT &Key, const ValueT &Value,
396                            BucketT *TheBucket) {
397    TheBucket = InsertIntoBucketImpl(Key, TheBucket);
398
399    TheBucket->first = Key;
400    new (&TheBucket->second) ValueT(Value);
401    return TheBucket;
402  }
403
404#if LLVM_HAS_RVALUE_REFERENCES
405  BucketT *InsertIntoBucket(const KeyT &Key, ValueT &&Value,
406                            BucketT *TheBucket) {
407    TheBucket = InsertIntoBucketImpl(Key, TheBucket);
408
409    TheBucket->first = Key;
410    new (&TheBucket->second) ValueT(std::move(Value));
411    return TheBucket;
412  }
413
414  BucketT *InsertIntoBucket(KeyT &&Key, ValueT &&Value, BucketT *TheBucket) {
415    TheBucket = InsertIntoBucketImpl(Key, TheBucket);
416
417    TheBucket->first = std::move(Key);
418    new (&TheBucket->second) ValueT(std::move(Value));
419    return TheBucket;
420  }
421#endif
422
423  BucketT *InsertIntoBucketImpl(const KeyT &Key, BucketT *TheBucket) {
424    // If the load of the hash table is more than 3/4, or if fewer than 1/8 of
425    // the buckets are empty (meaning that many are filled with tombstones),
426    // grow the table.
427    //
428    // The later case is tricky.  For example, if we had one empty bucket with
429    // tons of tombstones, failing lookups (e.g. for insertion) would have to
430    // probe almost the entire table until it found the empty bucket.  If the
431    // table completely filled with tombstones, no lookup would ever succeed,
432    // causing infinite loops in lookup.
433    unsigned NewNumEntries = getNumEntries() + 1;
434    unsigned NumBuckets = getNumBuckets();
435    if (NewNumEntries*4 >= NumBuckets*3) {
436      this->grow(NumBuckets * 2);
437      LookupBucketFor(Key, TheBucket);
438      NumBuckets = getNumBuckets();
439    }
440    if (NumBuckets-(NewNumEntries+getNumTombstones()) <= NumBuckets/8) {
441      this->grow(NumBuckets * 2);
442      LookupBucketFor(Key, TheBucket);
443    }
444    assert(TheBucket);
445
446    // Only update the state after we've grown our bucket space appropriately
447    // so that when growing buckets we have self-consistent entry count.
448    incrementNumEntries();
449
450    // If we are writing over a tombstone, remember this.
451    const KeyT EmptyKey = getEmptyKey();
452    if (!KeyInfoT::isEqual(TheBucket->first, EmptyKey))
453      decrementNumTombstones();
454
455    return TheBucket;
456  }
457
458  /// LookupBucketFor - Lookup the appropriate bucket for Val, returning it in
459  /// FoundBucket.  If the bucket contains the key and a value, this returns
460  /// true, otherwise it returns a bucket with an empty marker or tombstone and
461  /// returns false.
462  template<typename LookupKeyT>
463  bool LookupBucketFor(const LookupKeyT &Val,
464                       const BucketT *&FoundBucket) const {
465    const BucketT *BucketsPtr = getBuckets();
466    const unsigned NumBuckets = getNumBuckets();
467
468    if (NumBuckets == 0) {
469      FoundBucket = 0;
470      return false;
471    }
472
473    // FoundTombstone - Keep track of whether we find a tombstone while probing.
474    const BucketT *FoundTombstone = 0;
475    const KeyT EmptyKey = getEmptyKey();
476    const KeyT TombstoneKey = getTombstoneKey();
477    assert(!KeyInfoT::isEqual(Val, EmptyKey) &&
478           !KeyInfoT::isEqual(Val, TombstoneKey) &&
479           "Empty/Tombstone value shouldn't be inserted into map!");
480
481    unsigned BucketNo = getHashValue(Val) & (NumBuckets-1);
482    unsigned ProbeAmt = 1;
483    while (1) {
484      const BucketT *ThisBucket = BucketsPtr + BucketNo;
485      // Found Val's bucket?  If so, return it.
486      if (KeyInfoT::isEqual(Val, ThisBucket->first)) {
487        FoundBucket = ThisBucket;
488        return true;
489      }
490
491      // If we found an empty bucket, the key doesn't exist in the set.
492      // Insert it and return the default value.
493      if (KeyInfoT::isEqual(ThisBucket->first, EmptyKey)) {
494        // If we've already seen a tombstone while probing, fill it in instead
495        // of the empty bucket we eventually probed to.
496        FoundBucket = FoundTombstone ? FoundTombstone : ThisBucket;
497        return false;
498      }
499
500      // If this is a tombstone, remember it.  If Val ends up not in the map, we
501      // prefer to return it than something that would require more probing.
502      if (KeyInfoT::isEqual(ThisBucket->first, TombstoneKey) && !FoundTombstone)
503        FoundTombstone = ThisBucket;  // Remember the first tombstone found.
504
505      // Otherwise, it's a hash collision or a tombstone, continue quadratic
506      // probing.
507      BucketNo += ProbeAmt++;
508      BucketNo &= (NumBuckets-1);
509    }
510  }
511
512  template <typename LookupKeyT>
513  bool LookupBucketFor(const LookupKeyT &Val, BucketT *&FoundBucket) {
514    const BucketT *ConstFoundBucket;
515    bool Result = const_cast<const DenseMapBase *>(this)
516      ->LookupBucketFor(Val, ConstFoundBucket);
517    FoundBucket = const_cast<BucketT *>(ConstFoundBucket);
518    return Result;
519  }
520
521public:
522  /// Return the approximate size (in bytes) of the actual map.
523  /// This is just the raw memory used by DenseMap.
524  /// If entries are pointers to objects, the size of the referenced objects
525  /// are not included.
526  size_t getMemorySize() const {
527    return getNumBuckets() * sizeof(BucketT);
528  }
529};
530
531template<typename KeyT, typename ValueT,
532         typename KeyInfoT = DenseMapInfo<KeyT> >
533class DenseMap
534    : public DenseMapBase<DenseMap<KeyT, ValueT, KeyInfoT>,
535                          KeyT, ValueT, KeyInfoT> {
536  // Lift some types from the dependent base class into this class for
537  // simplicity of referring to them.
538  typedef DenseMapBase<DenseMap, KeyT, ValueT, KeyInfoT> BaseT;
539  typedef typename BaseT::BucketT BucketT;
540  friend class DenseMapBase<DenseMap, KeyT, ValueT, KeyInfoT>;
541
542  BucketT *Buckets;
543  unsigned NumEntries;
544  unsigned NumTombstones;
545  unsigned NumBuckets;
546
547public:
548  explicit DenseMap(unsigned NumInitBuckets = 0) {
549    init(NumInitBuckets);
550  }
551
552  DenseMap(const DenseMap &other) : BaseT() {
553    init(0);
554    copyFrom(other);
555  }
556
557#if LLVM_HAS_RVALUE_REFERENCES
558  DenseMap(DenseMap &&other) : BaseT() {
559    init(0);
560    swap(other);
561  }
562#endif
563
564  template<typename InputIt>
565  DenseMap(const InputIt &I, const InputIt &E) {
566    init(NextPowerOf2(std::distance(I, E)));
567    this->insert(I, E);
568  }
569
570  ~DenseMap() {
571    this->destroyAll();
572    operator delete(Buckets);
573  }
574
575  void swap(DenseMap& RHS) {
576    std::swap(Buckets, RHS.Buckets);
577    std::swap(NumEntries, RHS.NumEntries);
578    std::swap(NumTombstones, RHS.NumTombstones);
579    std::swap(NumBuckets, RHS.NumBuckets);
580  }
581
582  DenseMap& operator=(const DenseMap& other) {
583    copyFrom(other);
584    return *this;
585  }
586
587#if LLVM_HAS_RVALUE_REFERENCES
588  DenseMap& operator=(DenseMap &&other) {
589    this->destroyAll();
590    operator delete(Buckets);
591    init(0);
592    swap(other);
593    return *this;
594  }
595#endif
596
597  void copyFrom(const DenseMap& other) {
598    this->destroyAll();
599    operator delete(Buckets);
600    if (allocateBuckets(other.NumBuckets)) {
601      this->BaseT::copyFrom(other);
602    } else {
603      NumEntries = 0;
604      NumTombstones = 0;
605    }
606  }
607
608  void init(unsigned InitBuckets) {
609    if (allocateBuckets(InitBuckets)) {
610      this->BaseT::initEmpty();
611    } else {
612      NumEntries = 0;
613      NumTombstones = 0;
614    }
615  }
616
617  void grow(unsigned AtLeast) {
618    unsigned OldNumBuckets = NumBuckets;
619    BucketT *OldBuckets = Buckets;
620
621    allocateBuckets(std::max<unsigned>(64, static_cast<unsigned>(NextPowerOf2(AtLeast-1))));
622    assert(Buckets);
623    if (!OldBuckets) {
624      this->BaseT::initEmpty();
625      return;
626    }
627
628    this->moveFromOldBuckets(OldBuckets, OldBuckets+OldNumBuckets);
629
630    // Free the old table.
631    operator delete(OldBuckets);
632  }
633
634  void shrink_and_clear() {
635    unsigned OldNumEntries = NumEntries;
636    this->destroyAll();
637
638    // Reduce the number of buckets.
639    unsigned NewNumBuckets = 0;
640    if (OldNumEntries)
641      NewNumBuckets = std::max(64, 1 << (Log2_32_Ceil(OldNumEntries) + 1));
642    if (NewNumBuckets == NumBuckets) {
643      this->BaseT::initEmpty();
644      return;
645    }
646
647    operator delete(Buckets);
648    init(NewNumBuckets);
649  }
650
651private:
652  unsigned getNumEntries() const {
653    return NumEntries;
654  }
655  void setNumEntries(unsigned Num) {
656    NumEntries = Num;
657  }
658
659  unsigned getNumTombstones() const {
660    return NumTombstones;
661  }
662  void setNumTombstones(unsigned Num) {
663    NumTombstones = Num;
664  }
665
666  BucketT *getBuckets() const {
667    return Buckets;
668  }
669
670  unsigned getNumBuckets() const {
671    return NumBuckets;
672  }
673
674  bool allocateBuckets(unsigned Num) {
675    NumBuckets = Num;
676    if (NumBuckets == 0) {
677      Buckets = 0;
678      return false;
679    }
680
681    Buckets = static_cast<BucketT*>(operator new(sizeof(BucketT) * NumBuckets));
682    return true;
683  }
684};
685
686template<typename KeyT, typename ValueT,
687         unsigned InlineBuckets = 4,
688         typename KeyInfoT = DenseMapInfo<KeyT> >
689class SmallDenseMap
690    : public DenseMapBase<SmallDenseMap<KeyT, ValueT, InlineBuckets, KeyInfoT>,
691                          KeyT, ValueT, KeyInfoT> {
692  // Lift some types from the dependent base class into this class for
693  // simplicity of referring to them.
694  typedef DenseMapBase<SmallDenseMap, KeyT, ValueT, KeyInfoT> BaseT;
695  typedef typename BaseT::BucketT BucketT;
696  friend class DenseMapBase<SmallDenseMap, KeyT, ValueT, KeyInfoT>;
697
698  unsigned Small : 1;
699  unsigned NumEntries : 31;
700  unsigned NumTombstones;
701
702  struct LargeRep {
703    BucketT *Buckets;
704    unsigned NumBuckets;
705  };
706
707  /// A "union" of an inline bucket array and the struct representing
708  /// a large bucket. This union will be discriminated by the 'Small' bit.
709  AlignedCharArrayUnion<BucketT[InlineBuckets], LargeRep> storage;
710
711public:
712  explicit SmallDenseMap(unsigned NumInitBuckets = 0) {
713    init(NumInitBuckets);
714  }
715
716  SmallDenseMap(const SmallDenseMap &other) {
717    init(0);
718    copyFrom(other);
719  }
720
721#if LLVM_HAS_RVALUE_REFERENCES
722  SmallDenseMap(SmallDenseMap &&other) {
723    init(0);
724    swap(other);
725  }
726#endif
727
728  template<typename InputIt>
729  SmallDenseMap(const InputIt &I, const InputIt &E) {
730    init(NextPowerOf2(std::distance(I, E)));
731    this->insert(I, E);
732  }
733
734  ~SmallDenseMap() {
735    this->destroyAll();
736    deallocateBuckets();
737  }
738
739  void swap(SmallDenseMap& RHS) {
740    unsigned TmpNumEntries = RHS.NumEntries;
741    RHS.NumEntries = NumEntries;
742    NumEntries = TmpNumEntries;
743    std::swap(NumTombstones, RHS.NumTombstones);
744
745    const KeyT EmptyKey = this->getEmptyKey();
746    const KeyT TombstoneKey = this->getTombstoneKey();
747    if (Small && RHS.Small) {
748      // If we're swapping inline bucket arrays, we have to cope with some of
749      // the tricky bits of DenseMap's storage system: the buckets are not
750      // fully initialized. Thus we swap every key, but we may have
751      // a one-directional move of the value.
752      for (unsigned i = 0, e = InlineBuckets; i != e; ++i) {
753        BucketT *LHSB = &getInlineBuckets()[i],
754                *RHSB = &RHS.getInlineBuckets()[i];
755        bool hasLHSValue = (!KeyInfoT::isEqual(LHSB->first, EmptyKey) &&
756                            !KeyInfoT::isEqual(LHSB->first, TombstoneKey));
757        bool hasRHSValue = (!KeyInfoT::isEqual(RHSB->first, EmptyKey) &&
758                            !KeyInfoT::isEqual(RHSB->first, TombstoneKey));
759        if (hasLHSValue && hasRHSValue) {
760          // Swap together if we can...
761          std::swap(*LHSB, *RHSB);
762          continue;
763        }
764        // Swap separately and handle any assymetry.
765        std::swap(LHSB->first, RHSB->first);
766        if (hasLHSValue) {
767          new (&RHSB->second) ValueT(llvm_move(LHSB->second));
768          LHSB->second.~ValueT();
769        } else if (hasRHSValue) {
770          new (&LHSB->second) ValueT(llvm_move(RHSB->second));
771          RHSB->second.~ValueT();
772        }
773      }
774      return;
775    }
776    if (!Small && !RHS.Small) {
777      std::swap(getLargeRep()->Buckets, RHS.getLargeRep()->Buckets);
778      std::swap(getLargeRep()->NumBuckets, RHS.getLargeRep()->NumBuckets);
779      return;
780    }
781
782    SmallDenseMap &SmallSide = Small ? *this : RHS;
783    SmallDenseMap &LargeSide = Small ? RHS : *this;
784
785    // First stash the large side's rep and move the small side across.
786    LargeRep TmpRep = llvm_move(*LargeSide.getLargeRep());
787    LargeSide.getLargeRep()->~LargeRep();
788    LargeSide.Small = true;
789    // This is similar to the standard move-from-old-buckets, but the bucket
790    // count hasn't actually rotated in this case. So we have to carefully
791    // move construct the keys and values into their new locations, but there
792    // is no need to re-hash things.
793    for (unsigned i = 0, e = InlineBuckets; i != e; ++i) {
794      BucketT *NewB = &LargeSide.getInlineBuckets()[i],
795              *OldB = &SmallSide.getInlineBuckets()[i];
796      new (&NewB->first) KeyT(llvm_move(OldB->first));
797      OldB->first.~KeyT();
798      if (!KeyInfoT::isEqual(NewB->first, EmptyKey) &&
799          !KeyInfoT::isEqual(NewB->first, TombstoneKey)) {
800        new (&NewB->second) ValueT(llvm_move(OldB->second));
801        OldB->second.~ValueT();
802      }
803    }
804
805    // The hard part of moving the small buckets across is done, just move
806    // the TmpRep into its new home.
807    SmallSide.Small = false;
808    new (SmallSide.getLargeRep()) LargeRep(llvm_move(TmpRep));
809  }
810
811  SmallDenseMap& operator=(const SmallDenseMap& other) {
812    copyFrom(other);
813    return *this;
814  }
815
816#if LLVM_HAS_RVALUE_REFERENCES
817  SmallDenseMap& operator=(SmallDenseMap &&other) {
818    this->destroyAll();
819    deallocateBuckets();
820    init(0);
821    swap(other);
822    return *this;
823  }
824#endif
825
826  void copyFrom(const SmallDenseMap& other) {
827    this->destroyAll();
828    deallocateBuckets();
829    Small = true;
830    if (other.getNumBuckets() > InlineBuckets) {
831      Small = false;
832      allocateBuckets(other.getNumBuckets());
833    }
834    this->BaseT::copyFrom(other);
835  }
836
837  void init(unsigned InitBuckets) {
838    Small = true;
839    if (InitBuckets > InlineBuckets) {
840      Small = false;
841      new (getLargeRep()) LargeRep(allocateBuckets(InitBuckets));
842    }
843    this->BaseT::initEmpty();
844  }
845
846  void grow(unsigned AtLeast) {
847    if (AtLeast >= InlineBuckets)
848      AtLeast = std::max<unsigned>(64, NextPowerOf2(AtLeast-1));
849
850    if (Small) {
851      if (AtLeast < InlineBuckets)
852        return; // Nothing to do.
853
854      // First move the inline buckets into a temporary storage.
855      AlignedCharArrayUnion<BucketT[InlineBuckets]> TmpStorage;
856      BucketT *TmpBegin = reinterpret_cast<BucketT *>(TmpStorage.buffer);
857      BucketT *TmpEnd = TmpBegin;
858
859      // Loop over the buckets, moving non-empty, non-tombstones into the
860      // temporary storage. Have the loop move the TmpEnd forward as it goes.
861      const KeyT EmptyKey = this->getEmptyKey();
862      const KeyT TombstoneKey = this->getTombstoneKey();
863      for (BucketT *P = getBuckets(), *E = P + InlineBuckets; P != E; ++P) {
864        if (!KeyInfoT::isEqual(P->first, EmptyKey) &&
865            !KeyInfoT::isEqual(P->first, TombstoneKey)) {
866          assert(size_t(TmpEnd - TmpBegin) < InlineBuckets &&
867                 "Too many inline buckets!");
868          new (&TmpEnd->first) KeyT(llvm_move(P->first));
869          new (&TmpEnd->second) ValueT(llvm_move(P->second));
870          ++TmpEnd;
871          P->second.~ValueT();
872        }
873        P->first.~KeyT();
874      }
875
876      // Now make this map use the large rep, and move all the entries back
877      // into it.
878      Small = false;
879      new (getLargeRep()) LargeRep(allocateBuckets(AtLeast));
880      this->moveFromOldBuckets(TmpBegin, TmpEnd);
881      return;
882    }
883
884    LargeRep OldRep = llvm_move(*getLargeRep());
885    getLargeRep()->~LargeRep();
886    if (AtLeast <= InlineBuckets) {
887      Small = true;
888    } else {
889      new (getLargeRep()) LargeRep(allocateBuckets(AtLeast));
890    }
891
892    this->moveFromOldBuckets(OldRep.Buckets, OldRep.Buckets+OldRep.NumBuckets);
893
894    // Free the old table.
895    operator delete(OldRep.Buckets);
896  }
897
898  void shrink_and_clear() {
899    unsigned OldSize = this->size();
900    this->destroyAll();
901
902    // Reduce the number of buckets.
903    unsigned NewNumBuckets = 0;
904    if (OldSize) {
905      NewNumBuckets = 1 << (Log2_32_Ceil(OldSize) + 1);
906      if (NewNumBuckets > InlineBuckets && NewNumBuckets < 64u)
907        NewNumBuckets = 64;
908    }
909    if ((Small && NewNumBuckets <= InlineBuckets) ||
910        (!Small && NewNumBuckets == getLargeRep()->NumBuckets)) {
911      this->BaseT::initEmpty();
912      return;
913    }
914
915    deallocateBuckets();
916    init(NewNumBuckets);
917  }
918
919private:
920  unsigned getNumEntries() const {
921    return NumEntries;
922  }
923  void setNumEntries(unsigned Num) {
924    assert(Num < INT_MAX && "Cannot support more than INT_MAX entries");
925    NumEntries = Num;
926  }
927
928  unsigned getNumTombstones() const {
929    return NumTombstones;
930  }
931  void setNumTombstones(unsigned Num) {
932    NumTombstones = Num;
933  }
934
935  const BucketT *getInlineBuckets() const {
936    assert(Small);
937    // Note that this cast does not violate aliasing rules as we assert that
938    // the memory's dynamic type is the small, inline bucket buffer, and the
939    // 'storage.buffer' static type is 'char *'.
940    return reinterpret_cast<const BucketT *>(storage.buffer);
941  }
942  BucketT *getInlineBuckets() {
943    return const_cast<BucketT *>(
944      const_cast<const SmallDenseMap *>(this)->getInlineBuckets());
945  }
946  const LargeRep *getLargeRep() const {
947    assert(!Small);
948    // Note, same rule about aliasing as with getInlineBuckets.
949    return reinterpret_cast<const LargeRep *>(storage.buffer);
950  }
951  LargeRep *getLargeRep() {
952    return const_cast<LargeRep *>(
953      const_cast<const SmallDenseMap *>(this)->getLargeRep());
954  }
955
956  const BucketT *getBuckets() const {
957    return Small ? getInlineBuckets() : getLargeRep()->Buckets;
958  }
959  BucketT *getBuckets() {
960    return const_cast<BucketT *>(
961      const_cast<const SmallDenseMap *>(this)->getBuckets());
962  }
963  unsigned getNumBuckets() const {
964    return Small ? InlineBuckets : getLargeRep()->NumBuckets;
965  }
966
967  void deallocateBuckets() {
968    if (Small)
969      return;
970
971    operator delete(getLargeRep()->Buckets);
972    getLargeRep()->~LargeRep();
973  }
974
975  LargeRep allocateBuckets(unsigned Num) {
976    assert(Num > InlineBuckets && "Must allocate more buckets than are inline");
977    LargeRep Rep = {
978      static_cast<BucketT*>(operator new(sizeof(BucketT) * Num)), Num
979    };
980    return Rep;
981  }
982};
983
984template<typename KeyT, typename ValueT,
985         typename KeyInfoT, bool IsConst>
986class DenseMapIterator {
987  typedef std::pair<KeyT, ValueT> Bucket;
988  typedef DenseMapIterator<KeyT, ValueT,
989                           KeyInfoT, true> ConstIterator;
990  friend class DenseMapIterator<KeyT, ValueT, KeyInfoT, true>;
991public:
992  typedef ptrdiff_t difference_type;
993  typedef typename conditional<IsConst, const Bucket, Bucket>::type value_type;
994  typedef value_type *pointer;
995  typedef value_type &reference;
996  typedef std::forward_iterator_tag iterator_category;
997private:
998  pointer Ptr, End;
999public:
1000  DenseMapIterator() : Ptr(0), End(0) {}
1001
1002  DenseMapIterator(pointer Pos, pointer E, bool NoAdvance = false)
1003    : Ptr(Pos), End(E) {
1004    if (!NoAdvance) AdvancePastEmptyBuckets();
1005  }
1006
1007  // If IsConst is true this is a converting constructor from iterator to
1008  // const_iterator and the default copy constructor is used.
1009  // Otherwise this is a copy constructor for iterator.
1010  DenseMapIterator(const DenseMapIterator<KeyT, ValueT,
1011                                          KeyInfoT, false>& I)
1012    : Ptr(I.Ptr), End(I.End) {}
1013
1014  reference operator*() const {
1015    return *Ptr;
1016  }
1017  pointer operator->() const {
1018    return Ptr;
1019  }
1020
1021  bool operator==(const ConstIterator &RHS) const {
1022    return Ptr == RHS.operator->();
1023  }
1024  bool operator!=(const ConstIterator &RHS) const {
1025    return Ptr != RHS.operator->();
1026  }
1027
1028  inline DenseMapIterator& operator++() {  // Preincrement
1029    ++Ptr;
1030    AdvancePastEmptyBuckets();
1031    return *this;
1032  }
1033  DenseMapIterator operator++(int) {  // Postincrement
1034    DenseMapIterator tmp = *this; ++*this; return tmp;
1035  }
1036
1037private:
1038  void AdvancePastEmptyBuckets() {
1039    const KeyT Empty = KeyInfoT::getEmptyKey();
1040    const KeyT Tombstone = KeyInfoT::getTombstoneKey();
1041
1042    while (Ptr != End &&
1043           (KeyInfoT::isEqual(Ptr->first, Empty) ||
1044            KeyInfoT::isEqual(Ptr->first, Tombstone)))
1045      ++Ptr;
1046  }
1047};
1048
1049template<typename KeyT, typename ValueT, typename KeyInfoT>
1050static inline size_t
1051capacity_in_bytes(const DenseMap<KeyT, ValueT, KeyInfoT> &X) {
1052  return X.getMemorySize();
1053}
1054
1055} // end namespace llvm
1056
1057#endif
1058