DenseMap.h revision 81cf4325698b48b02eddab921ac333c7f25005c3
1//===- llvm/ADT/DenseMap.h - Dense probed hash table ------------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the DenseMap class.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_ADT_DENSEMAP_H
15#define LLVM_ADT_DENSEMAP_H
16
17#include "llvm/Support/MathExtras.h"
18#include "llvm/Support/PointerLikeTypeTraits.h"
19#include "llvm/Support/type_traits.h"
20#include "llvm/ADT/DenseMapInfo.h"
21#include <iterator>
22#include <new>
23#include <utility>
24#include <cassert>
25#include <cstring>
26
27namespace llvm {
28
29template<typename KeyT, typename ValueT,
30         typename KeyInfoT = DenseMapInfo<KeyT>,
31         typename ValueInfoT = DenseMapInfo<ValueT>, bool IsConst = false>
32class DenseMapIterator;
33
34template<typename KeyT, typename ValueT,
35         typename KeyInfoT = DenseMapInfo<KeyT>,
36         typename ValueInfoT = DenseMapInfo<ValueT> >
37class DenseMap {
38  typedef std::pair<KeyT, ValueT> BucketT;
39  unsigned NumBuckets;
40  BucketT *Buckets;
41
42  unsigned NumEntries;
43  unsigned NumTombstones;
44public:
45  typedef KeyT key_type;
46  typedef ValueT mapped_type;
47  typedef BucketT value_type;
48
49  DenseMap(const DenseMap& other) {
50    NumBuckets = 0;
51    CopyFrom(other);
52  }
53
54  explicit DenseMap(unsigned NumInitBuckets = 64) {
55    init(NumInitBuckets);
56  }
57
58  ~DenseMap() {
59    const KeyT EmptyKey = getEmptyKey(), TombstoneKey = getTombstoneKey();
60    for (BucketT *P = Buckets, *E = Buckets+NumBuckets; P != E; ++P) {
61      if (!KeyInfoT::isEqual(P->first, EmptyKey) &&
62          !KeyInfoT::isEqual(P->first, TombstoneKey))
63        P->second.~ValueT();
64      P->first.~KeyT();
65    }
66#ifndef NDEBUG
67    memset(Buckets, 0x5a, sizeof(BucketT)*NumBuckets);
68#endif
69    operator delete(Buckets);
70  }
71
72  typedef DenseMapIterator<KeyT, ValueT, KeyInfoT> iterator;
73  typedef DenseMapIterator<KeyT, ValueT,
74                           KeyInfoT, ValueInfoT, true> const_iterator;
75  inline iterator begin() {
76     return iterator(Buckets, Buckets+NumBuckets);
77  }
78  inline iterator end() {
79    return iterator(Buckets+NumBuckets, Buckets+NumBuckets);
80  }
81  inline const_iterator begin() const {
82    return const_iterator(Buckets, Buckets+NumBuckets);
83  }
84  inline const_iterator end() const {
85    return const_iterator(Buckets+NumBuckets, Buckets+NumBuckets);
86  }
87
88  bool empty() const { return NumEntries == 0; }
89  unsigned size() const { return NumEntries; }
90
91  /// Grow the densemap so that it has at least Size buckets. Does not shrink
92  void resize(size_t Size) { grow(Size); }
93
94  void clear() {
95    if (NumEntries == 0 && NumTombstones == 0) return;
96
97    // If the capacity of the array is huge, and the # elements used is small,
98    // shrink the array.
99    if (NumEntries * 4 < NumBuckets && NumBuckets > 64) {
100      shrink_and_clear();
101      return;
102    }
103
104    const KeyT EmptyKey = getEmptyKey(), TombstoneKey = getTombstoneKey();
105    for (BucketT *P = Buckets, *E = Buckets+NumBuckets; P != E; ++P) {
106      if (!KeyInfoT::isEqual(P->first, EmptyKey)) {
107        if (!KeyInfoT::isEqual(P->first, TombstoneKey)) {
108          P->second.~ValueT();
109          --NumEntries;
110        }
111        P->first = EmptyKey;
112      }
113    }
114    assert(NumEntries == 0 && "Node count imbalance!");
115    NumTombstones = 0;
116  }
117
118  /// count - Return true if the specified key is in the map.
119  bool count(const KeyT &Val) const {
120    BucketT *TheBucket;
121    return LookupBucketFor(Val, TheBucket);
122  }
123
124  iterator find(const KeyT &Val) {
125    BucketT *TheBucket;
126    if (LookupBucketFor(Val, TheBucket))
127      return iterator(TheBucket, Buckets+NumBuckets);
128    return end();
129  }
130  const_iterator find(const KeyT &Val) const {
131    BucketT *TheBucket;
132    if (LookupBucketFor(Val, TheBucket))
133      return const_iterator(TheBucket, Buckets+NumBuckets);
134    return end();
135  }
136
137  /// lookup - Return the entry for the specified key, or a default
138  /// constructed value if no such entry exists.
139  ValueT lookup(const KeyT &Val) const {
140    BucketT *TheBucket;
141    if (LookupBucketFor(Val, TheBucket))
142      return TheBucket->second;
143    return ValueT();
144  }
145
146  // Inserts key,value pair into the map if the key isn't already in the map.
147  // If the key is already in the map, it returns false and doesn't update the
148  // value.
149  std::pair<iterator, bool> insert(const std::pair<KeyT, ValueT> &KV) {
150    BucketT *TheBucket;
151    if (LookupBucketFor(KV.first, TheBucket))
152      return std::make_pair(iterator(TheBucket, Buckets+NumBuckets),
153                            false); // Already in map.
154
155    // Otherwise, insert the new element.
156    TheBucket = InsertIntoBucket(KV.first, KV.second, TheBucket);
157    return std::make_pair(iterator(TheBucket, Buckets+NumBuckets),
158                          true);
159  }
160
161  /// insert - Range insertion of pairs.
162  template<typename InputIt>
163  void insert(InputIt I, InputIt E) {
164    for (; I != E; ++I)
165      insert(*I);
166  }
167
168
169  bool erase(const KeyT &Val) {
170    BucketT *TheBucket;
171    if (!LookupBucketFor(Val, TheBucket))
172      return false; // not in map.
173
174    TheBucket->second.~ValueT();
175    TheBucket->first = getTombstoneKey();
176    --NumEntries;
177    ++NumTombstones;
178    return true;
179  }
180  bool erase(iterator I) {
181    BucketT *TheBucket = &*I;
182    TheBucket->second.~ValueT();
183    TheBucket->first = getTombstoneKey();
184    --NumEntries;
185    ++NumTombstones;
186    return true;
187  }
188
189  value_type& FindAndConstruct(const KeyT &Key) {
190    BucketT *TheBucket;
191    if (LookupBucketFor(Key, TheBucket))
192      return *TheBucket;
193
194    return *InsertIntoBucket(Key, ValueT(), TheBucket);
195  }
196
197  ValueT &operator[](const KeyT &Key) {
198    return FindAndConstruct(Key).second;
199  }
200
201  DenseMap& operator=(const DenseMap& other) {
202    CopyFrom(other);
203    return *this;
204  }
205
206  /// isPointerIntoBucketsArray - Return true if the specified pointer points
207  /// somewhere into the DenseMap's array of buckets (i.e. either to a key or
208  /// value in the DenseMap).
209  bool isPointerIntoBucketsArray(const void *Ptr) const {
210    return Ptr >= Buckets && Ptr < Buckets+NumBuckets;
211  }
212
213  /// getPointerIntoBucketsArray() - Return an opaque pointer into the buckets
214  /// array.  In conjunction with the previous method, this can be used to
215  /// determine whether an insertion caused the DenseMap to reallocate.
216  const void *getPointerIntoBucketsArray() const { return Buckets; }
217
218private:
219  void CopyFrom(const DenseMap& other) {
220    if (NumBuckets != 0 && (!KeyInfoT::isPod() || !ValueInfoT::isPod())) {
221      const KeyT EmptyKey = getEmptyKey(), TombstoneKey = getTombstoneKey();
222      for (BucketT *P = Buckets, *E = Buckets+NumBuckets; P != E; ++P) {
223        if (!KeyInfoT::isEqual(P->first, EmptyKey) &&
224            !KeyInfoT::isEqual(P->first, TombstoneKey))
225          P->second.~ValueT();
226        P->first.~KeyT();
227      }
228    }
229
230    NumEntries = other.NumEntries;
231    NumTombstones = other.NumTombstones;
232
233    if (NumBuckets) {
234#ifndef NDEBUG
235      memset(Buckets, 0x5a, sizeof(BucketT)*NumBuckets);
236#endif
237      operator delete(Buckets);
238    }
239    Buckets = static_cast<BucketT*>(operator new(sizeof(BucketT) *
240                                                 other.NumBuckets));
241
242    if (KeyInfoT::isPod() && ValueInfoT::isPod())
243      memcpy(Buckets, other.Buckets, other.NumBuckets * sizeof(BucketT));
244    else
245      for (size_t i = 0; i < other.NumBuckets; ++i) {
246        new (&Buckets[i].first) KeyT(other.Buckets[i].first);
247        if (!KeyInfoT::isEqual(Buckets[i].first, getEmptyKey()) &&
248            !KeyInfoT::isEqual(Buckets[i].first, getTombstoneKey()))
249          new (&Buckets[i].second) ValueT(other.Buckets[i].second);
250      }
251    NumBuckets = other.NumBuckets;
252  }
253
254  BucketT *InsertIntoBucket(const KeyT &Key, const ValueT &Value,
255                            BucketT *TheBucket) {
256    // If the load of the hash table is more than 3/4, or if fewer than 1/8 of
257    // the buckets are empty (meaning that many are filled with tombstones),
258    // grow the table.
259    //
260    // The later case is tricky.  For example, if we had one empty bucket with
261    // tons of tombstones, failing lookups (e.g. for insertion) would have to
262    // probe almost the entire table until it found the empty bucket.  If the
263    // table completely filled with tombstones, no lookup would ever succeed,
264    // causing infinite loops in lookup.
265    ++NumEntries;
266    if (NumEntries*4 >= NumBuckets*3 ||
267        NumBuckets-(NumEntries+NumTombstones) < NumBuckets/8) {
268      this->grow(NumBuckets * 2);
269      LookupBucketFor(Key, TheBucket);
270    }
271
272    // If we are writing over a tombstone, remember this.
273    if (!KeyInfoT::isEqual(TheBucket->first, getEmptyKey()))
274      --NumTombstones;
275
276    TheBucket->first = Key;
277    new (&TheBucket->second) ValueT(Value);
278    return TheBucket;
279  }
280
281  static unsigned getHashValue(const KeyT &Val) {
282    return KeyInfoT::getHashValue(Val);
283  }
284  static const KeyT getEmptyKey() {
285    return KeyInfoT::getEmptyKey();
286  }
287  static const KeyT getTombstoneKey() {
288    return KeyInfoT::getTombstoneKey();
289  }
290
291  /// LookupBucketFor - Lookup the appropriate bucket for Val, returning it in
292  /// FoundBucket.  If the bucket contains the key and a value, this returns
293  /// true, otherwise it returns a bucket with an empty marker or tombstone and
294  /// returns false.
295  bool LookupBucketFor(const KeyT &Val, BucketT *&FoundBucket) const {
296    unsigned BucketNo = getHashValue(Val);
297    unsigned ProbeAmt = 1;
298    BucketT *BucketsPtr = Buckets;
299
300    // FoundTombstone - Keep track of whether we find a tombstone while probing.
301    BucketT *FoundTombstone = 0;
302    const KeyT EmptyKey = getEmptyKey();
303    const KeyT TombstoneKey = getTombstoneKey();
304    assert(!KeyInfoT::isEqual(Val, EmptyKey) &&
305           !KeyInfoT::isEqual(Val, TombstoneKey) &&
306           "Empty/Tombstone value shouldn't be inserted into map!");
307
308    while (1) {
309      BucketT *ThisBucket = BucketsPtr + (BucketNo & (NumBuckets-1));
310      // Found Val's bucket?  If so, return it.
311      if (KeyInfoT::isEqual(ThisBucket->first, Val)) {
312        FoundBucket = ThisBucket;
313        return true;
314      }
315
316      // If we found an empty bucket, the key doesn't exist in the set.
317      // Insert it and return the default value.
318      if (KeyInfoT::isEqual(ThisBucket->first, EmptyKey)) {
319        // If we've already seen a tombstone while probing, fill it in instead
320        // of the empty bucket we eventually probed to.
321        if (FoundTombstone) ThisBucket = FoundTombstone;
322        FoundBucket = FoundTombstone ? FoundTombstone : ThisBucket;
323        return false;
324      }
325
326      // If this is a tombstone, remember it.  If Val ends up not in the map, we
327      // prefer to return it than something that would require more probing.
328      if (KeyInfoT::isEqual(ThisBucket->first, TombstoneKey) && !FoundTombstone)
329        FoundTombstone = ThisBucket;  // Remember the first tombstone found.
330
331      // Otherwise, it's a hash collision or a tombstone, continue quadratic
332      // probing.
333      BucketNo += ProbeAmt++;
334    }
335  }
336
337  void init(unsigned InitBuckets) {
338    NumEntries = 0;
339    NumTombstones = 0;
340    NumBuckets = InitBuckets;
341    assert(InitBuckets && (InitBuckets & (InitBuckets-1)) == 0 &&
342           "# initial buckets must be a power of two!");
343    Buckets = static_cast<BucketT*>(operator new(sizeof(BucketT)*InitBuckets));
344    // Initialize all the keys to EmptyKey.
345    const KeyT EmptyKey = getEmptyKey();
346    for (unsigned i = 0; i != InitBuckets; ++i)
347      new (&Buckets[i].first) KeyT(EmptyKey);
348  }
349
350  void grow(unsigned AtLeast) {
351    unsigned OldNumBuckets = NumBuckets;
352    BucketT *OldBuckets = Buckets;
353
354    // Double the number of buckets.
355    while (NumBuckets <= AtLeast)
356      NumBuckets <<= 1;
357    NumTombstones = 0;
358    Buckets = static_cast<BucketT*>(operator new(sizeof(BucketT)*NumBuckets));
359
360    // Initialize all the keys to EmptyKey.
361    const KeyT EmptyKey = getEmptyKey();
362    for (unsigned i = 0, e = NumBuckets; i != e; ++i)
363      new (&Buckets[i].first) KeyT(EmptyKey);
364
365    // Insert all the old elements.
366    const KeyT TombstoneKey = getTombstoneKey();
367    for (BucketT *B = OldBuckets, *E = OldBuckets+OldNumBuckets; B != E; ++B) {
368      if (!KeyInfoT::isEqual(B->first, EmptyKey) &&
369          !KeyInfoT::isEqual(B->first, TombstoneKey)) {
370        // Insert the key/value into the new table.
371        BucketT *DestBucket;
372        bool FoundVal = LookupBucketFor(B->first, DestBucket);
373        FoundVal = FoundVal; // silence warning.
374        assert(!FoundVal && "Key already in new map?");
375        DestBucket->first = B->first;
376        new (&DestBucket->second) ValueT(B->second);
377
378        // Free the value.
379        B->second.~ValueT();
380      }
381      B->first.~KeyT();
382    }
383
384#ifndef NDEBUG
385    memset(OldBuckets, 0x5a, sizeof(BucketT)*OldNumBuckets);
386#endif
387    // Free the old table.
388    operator delete(OldBuckets);
389  }
390
391  void shrink_and_clear() {
392    unsigned OldNumBuckets = NumBuckets;
393    BucketT *OldBuckets = Buckets;
394
395    // Reduce the number of buckets.
396    NumBuckets = NumEntries > 32 ? 1 << (Log2_32_Ceil(NumEntries) + 1)
397                                 : 64;
398    NumTombstones = 0;
399    Buckets = static_cast<BucketT*>(operator new(sizeof(BucketT)*NumBuckets));
400
401    // Initialize all the keys to EmptyKey.
402    const KeyT EmptyKey = getEmptyKey();
403    for (unsigned i = 0, e = NumBuckets; i != e; ++i)
404      new (&Buckets[i].first) KeyT(EmptyKey);
405
406    // Free the old buckets.
407    const KeyT TombstoneKey = getTombstoneKey();
408    for (BucketT *B = OldBuckets, *E = OldBuckets+OldNumBuckets; B != E; ++B) {
409      if (!KeyInfoT::isEqual(B->first, EmptyKey) &&
410          !KeyInfoT::isEqual(B->first, TombstoneKey)) {
411        // Free the value.
412        B->second.~ValueT();
413      }
414      B->first.~KeyT();
415    }
416
417#ifndef NDEBUG
418    memset(OldBuckets, 0x5a, sizeof(BucketT)*OldNumBuckets);
419#endif
420    // Free the old table.
421    operator delete(OldBuckets);
422
423    NumEntries = 0;
424  }
425};
426
427template<typename KeyT, typename ValueT,
428         typename KeyInfoT, typename ValueInfoT, bool IsConst>
429class DenseMapIterator {
430  typedef std::pair<KeyT, ValueT> Bucket;
431  typedef DenseMapIterator<KeyT, ValueT,
432                           KeyInfoT, ValueInfoT, true> ConstIterator;
433  friend class DenseMapIterator<KeyT, ValueT, KeyInfoT, ValueInfoT, true>;
434public:
435  typedef ptrdiff_t difference_type;
436  typedef typename conditional<IsConst, const Bucket, Bucket>::type value_type;
437  typedef value_type *pointer;
438  typedef value_type &reference;
439  typedef std::forward_iterator_tag iterator_category;
440private:
441  pointer Ptr, End;
442public:
443  DenseMapIterator() : Ptr(0), End(0) {}
444
445  DenseMapIterator(pointer Pos, pointer E) : Ptr(Pos), End(E) {
446    AdvancePastEmptyBuckets();
447  }
448
449  // If IsConst is true this is a converting constructor from iterator to
450  // const_iterator and the default copy constructor is used.
451  // Otherwise this is a copy constructor for iterator.
452  DenseMapIterator(const DenseMapIterator<KeyT, ValueT,
453                                          KeyInfoT, ValueInfoT, false>& I)
454    : Ptr(I.Ptr), End(I.End) {}
455
456  reference operator*() const {
457    return *Ptr;
458  }
459  pointer operator->() const {
460    return Ptr;
461  }
462
463  bool operator==(const ConstIterator &RHS) const {
464    return Ptr == RHS.operator->();
465  }
466  bool operator!=(const ConstIterator &RHS) const {
467    return Ptr != RHS.operator->();
468  }
469
470  inline DenseMapIterator& operator++() {  // Preincrement
471    ++Ptr;
472    AdvancePastEmptyBuckets();
473    return *this;
474  }
475  DenseMapIterator operator++(int) {  // Postincrement
476    DenseMapIterator tmp = *this; ++*this; return tmp;
477  }
478
479private:
480  void AdvancePastEmptyBuckets() {
481    const KeyT Empty = KeyInfoT::getEmptyKey();
482    const KeyT Tombstone = KeyInfoT::getTombstoneKey();
483
484    while (Ptr != End &&
485           (KeyInfoT::isEqual(Ptr->first, Empty) ||
486            KeyInfoT::isEqual(Ptr->first, Tombstone)))
487      ++Ptr;
488  }
489};
490
491} // end namespace llvm
492
493#endif
494