DenseMap.h revision ccb4f2d813380d8cf139062b8c829e4b8b322c0d
1//===- llvm/ADT/DenseMap.h - Dense probed hash table ------------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the DenseMap class.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_ADT_DENSEMAP_H
15#define LLVM_ADT_DENSEMAP_H
16
17#include "llvm/Support/MathExtras.h"
18#include "llvm/Support/PointerLikeTypeTraits.h"
19#include "llvm/Support/type_traits.h"
20#include "llvm/ADT/DenseMapInfo.h"
21#include <iterator>
22#include <new>
23#include <utility>
24#include <cassert>
25#include <cstring>
26
27namespace llvm {
28
29template<typename KeyT, typename ValueT,
30         typename KeyInfoT = DenseMapInfo<KeyT>,
31         typename ValueInfoT = DenseMapInfo<ValueT>, bool IsConst = false>
32class DenseMapIterator;
33
34template<typename KeyT, typename ValueT,
35         typename KeyInfoT = DenseMapInfo<KeyT>,
36         typename ValueInfoT = DenseMapInfo<ValueT> >
37class DenseMap {
38  typedef std::pair<KeyT, ValueT> BucketT;
39  unsigned NumBuckets;
40  BucketT *Buckets;
41
42  unsigned NumEntries;
43  unsigned NumTombstones;
44public:
45  typedef KeyT key_type;
46  typedef ValueT mapped_type;
47  typedef BucketT value_type;
48
49  DenseMap(const DenseMap &other) {
50    NumBuckets = 0;
51    CopyFrom(other);
52  }
53
54  explicit DenseMap(unsigned NumInitBuckets = 64) {
55    init(NumInitBuckets);
56  }
57
58  template<typename InputIt>
59  DenseMap(const InputIt &I, const InputIt &E) {
60    init(64);
61    insert(I, E);
62  }
63
64  ~DenseMap() {
65    const KeyT EmptyKey = getEmptyKey(), TombstoneKey = getTombstoneKey();
66    for (BucketT *P = Buckets, *E = Buckets+NumBuckets; P != E; ++P) {
67      if (!KeyInfoT::isEqual(P->first, EmptyKey) &&
68          !KeyInfoT::isEqual(P->first, TombstoneKey))
69        P->second.~ValueT();
70      P->first.~KeyT();
71    }
72#ifndef NDEBUG
73    memset(Buckets, 0x5a, sizeof(BucketT)*NumBuckets);
74#endif
75    operator delete(Buckets);
76  }
77
78  typedef DenseMapIterator<KeyT, ValueT, KeyInfoT> iterator;
79  typedef DenseMapIterator<KeyT, ValueT,
80                           KeyInfoT, ValueInfoT, true> const_iterator;
81  inline iterator begin() {
82     return iterator(Buckets, Buckets+NumBuckets);
83  }
84  inline iterator end() {
85    return iterator(Buckets+NumBuckets, Buckets+NumBuckets);
86  }
87  inline const_iterator begin() const {
88    return const_iterator(Buckets, Buckets+NumBuckets);
89  }
90  inline const_iterator end() const {
91    return const_iterator(Buckets+NumBuckets, Buckets+NumBuckets);
92  }
93
94  bool empty() const { return NumEntries == 0; }
95  unsigned size() const { return NumEntries; }
96
97  /// Grow the densemap so that it has at least Size buckets. Does not shrink
98  void resize(size_t Size) { grow(Size); }
99
100  void clear() {
101    if (NumEntries == 0 && NumTombstones == 0) return;
102
103    // If the capacity of the array is huge, and the # elements used is small,
104    // shrink the array.
105    if (NumEntries * 4 < NumBuckets && NumBuckets > 64) {
106      shrink_and_clear();
107      return;
108    }
109
110    const KeyT EmptyKey = getEmptyKey(), TombstoneKey = getTombstoneKey();
111    for (BucketT *P = Buckets, *E = Buckets+NumBuckets; P != E; ++P) {
112      if (!KeyInfoT::isEqual(P->first, EmptyKey)) {
113        if (!KeyInfoT::isEqual(P->first, TombstoneKey)) {
114          P->second.~ValueT();
115          --NumEntries;
116        }
117        P->first = EmptyKey;
118      }
119    }
120    assert(NumEntries == 0 && "Node count imbalance!");
121    NumTombstones = 0;
122  }
123
124  /// count - Return true if the specified key is in the map.
125  bool count(const KeyT &Val) const {
126    BucketT *TheBucket;
127    return LookupBucketFor(Val, TheBucket);
128  }
129
130  iterator find(const KeyT &Val) {
131    BucketT *TheBucket;
132    if (LookupBucketFor(Val, TheBucket))
133      return iterator(TheBucket, Buckets+NumBuckets);
134    return end();
135  }
136  const_iterator find(const KeyT &Val) const {
137    BucketT *TheBucket;
138    if (LookupBucketFor(Val, TheBucket))
139      return const_iterator(TheBucket, Buckets+NumBuckets);
140    return end();
141  }
142
143  /// lookup - Return the entry for the specified key, or a default
144  /// constructed value if no such entry exists.
145  ValueT lookup(const KeyT &Val) const {
146    BucketT *TheBucket;
147    if (LookupBucketFor(Val, TheBucket))
148      return TheBucket->second;
149    return ValueT();
150  }
151
152  // Inserts key,value pair into the map if the key isn't already in the map.
153  // If the key is already in the map, it returns false and doesn't update the
154  // value.
155  std::pair<iterator, bool> insert(const std::pair<KeyT, ValueT> &KV) {
156    BucketT *TheBucket;
157    if (LookupBucketFor(KV.first, TheBucket))
158      return std::make_pair(iterator(TheBucket, Buckets+NumBuckets),
159                            false); // Already in map.
160
161    // Otherwise, insert the new element.
162    TheBucket = InsertIntoBucket(KV.first, KV.second, TheBucket);
163    return std::make_pair(iterator(TheBucket, Buckets+NumBuckets),
164                          true);
165  }
166
167  /// insert - Range insertion of pairs.
168  template<typename InputIt>
169  void insert(InputIt I, InputIt E) {
170    for (; I != E; ++I)
171      insert(*I);
172  }
173
174
175  bool erase(const KeyT &Val) {
176    BucketT *TheBucket;
177    if (!LookupBucketFor(Val, TheBucket))
178      return false; // not in map.
179
180    TheBucket->second.~ValueT();
181    TheBucket->first = getTombstoneKey();
182    --NumEntries;
183    ++NumTombstones;
184    return true;
185  }
186  bool erase(iterator I) {
187    BucketT *TheBucket = &*I;
188    TheBucket->second.~ValueT();
189    TheBucket->first = getTombstoneKey();
190    --NumEntries;
191    ++NumTombstones;
192    return true;
193  }
194
195  void swap(DenseMap& RHS) {
196    std::swap(NumBuckets, RHS.NumBuckets);
197    std::swap(Buckets, RHS.Buckets);
198    std::swap(NumEntries, RHS.NumEntries);
199    std::swap(NumTombstones, RHS.NumTombstones);
200  }
201
202  value_type& FindAndConstruct(const KeyT &Key) {
203    BucketT *TheBucket;
204    if (LookupBucketFor(Key, TheBucket))
205      return *TheBucket;
206
207    return *InsertIntoBucket(Key, ValueT(), TheBucket);
208  }
209
210  ValueT &operator[](const KeyT &Key) {
211    return FindAndConstruct(Key).second;
212  }
213
214  DenseMap& operator=(const DenseMap& other) {
215    CopyFrom(other);
216    return *this;
217  }
218
219  /// isPointerIntoBucketsArray - Return true if the specified pointer points
220  /// somewhere into the DenseMap's array of buckets (i.e. either to a key or
221  /// value in the DenseMap).
222  bool isPointerIntoBucketsArray(const void *Ptr) const {
223    return Ptr >= Buckets && Ptr < Buckets+NumBuckets;
224  }
225
226  /// getPointerIntoBucketsArray() - Return an opaque pointer into the buckets
227  /// array.  In conjunction with the previous method, this can be used to
228  /// determine whether an insertion caused the DenseMap to reallocate.
229  const void *getPointerIntoBucketsArray() const { return Buckets; }
230
231private:
232  void CopyFrom(const DenseMap& other) {
233    if (NumBuckets != 0 &&
234        (!isPodLike<KeyInfoT>::value || !isPodLike<ValueInfoT>::value)) {
235      const KeyT EmptyKey = getEmptyKey(), TombstoneKey = getTombstoneKey();
236      for (BucketT *P = Buckets, *E = Buckets+NumBuckets; P != E; ++P) {
237        if (!KeyInfoT::isEqual(P->first, EmptyKey) &&
238            !KeyInfoT::isEqual(P->first, TombstoneKey))
239          P->second.~ValueT();
240        P->first.~KeyT();
241      }
242    }
243
244    NumEntries = other.NumEntries;
245    NumTombstones = other.NumTombstones;
246
247    if (NumBuckets) {
248#ifndef NDEBUG
249      memset(Buckets, 0x5a, sizeof(BucketT)*NumBuckets);
250#endif
251      operator delete(Buckets);
252    }
253    Buckets = static_cast<BucketT*>(operator new(sizeof(BucketT) *
254                                                 other.NumBuckets));
255
256    if (isPodLike<KeyInfoT>::value && isPodLike<ValueInfoT>::value)
257      memcpy(Buckets, other.Buckets, other.NumBuckets * sizeof(BucketT));
258    else
259      for (size_t i = 0; i < other.NumBuckets; ++i) {
260        new (&Buckets[i].first) KeyT(other.Buckets[i].first);
261        if (!KeyInfoT::isEqual(Buckets[i].first, getEmptyKey()) &&
262            !KeyInfoT::isEqual(Buckets[i].first, getTombstoneKey()))
263          new (&Buckets[i].second) ValueT(other.Buckets[i].second);
264      }
265    NumBuckets = other.NumBuckets;
266  }
267
268  BucketT *InsertIntoBucket(const KeyT &Key, const ValueT &Value,
269                            BucketT *TheBucket) {
270    // If the load of the hash table is more than 3/4, or if fewer than 1/8 of
271    // the buckets are empty (meaning that many are filled with tombstones),
272    // grow the table.
273    //
274    // The later case is tricky.  For example, if we had one empty bucket with
275    // tons of tombstones, failing lookups (e.g. for insertion) would have to
276    // probe almost the entire table until it found the empty bucket.  If the
277    // table completely filled with tombstones, no lookup would ever succeed,
278    // causing infinite loops in lookup.
279    ++NumEntries;
280    if (NumEntries*4 >= NumBuckets*3 ||
281        NumBuckets-(NumEntries+NumTombstones) < NumBuckets/8) {
282      this->grow(NumBuckets * 2);
283      LookupBucketFor(Key, TheBucket);
284    }
285
286    // If we are writing over a tombstone, remember this.
287    if (!KeyInfoT::isEqual(TheBucket->first, getEmptyKey()))
288      --NumTombstones;
289
290    TheBucket->first = Key;
291    new (&TheBucket->second) ValueT(Value);
292    return TheBucket;
293  }
294
295  static unsigned getHashValue(const KeyT &Val) {
296    return KeyInfoT::getHashValue(Val);
297  }
298  static const KeyT getEmptyKey() {
299    return KeyInfoT::getEmptyKey();
300  }
301  static const KeyT getTombstoneKey() {
302    return KeyInfoT::getTombstoneKey();
303  }
304
305  /// LookupBucketFor - Lookup the appropriate bucket for Val, returning it in
306  /// FoundBucket.  If the bucket contains the key and a value, this returns
307  /// true, otherwise it returns a bucket with an empty marker or tombstone and
308  /// returns false.
309  bool LookupBucketFor(const KeyT &Val, BucketT *&FoundBucket) const {
310    unsigned BucketNo = getHashValue(Val);
311    unsigned ProbeAmt = 1;
312    BucketT *BucketsPtr = Buckets;
313
314    // FoundTombstone - Keep track of whether we find a tombstone while probing.
315    BucketT *FoundTombstone = 0;
316    const KeyT EmptyKey = getEmptyKey();
317    const KeyT TombstoneKey = getTombstoneKey();
318    assert(!KeyInfoT::isEqual(Val, EmptyKey) &&
319           !KeyInfoT::isEqual(Val, TombstoneKey) &&
320           "Empty/Tombstone value shouldn't be inserted into map!");
321
322    while (1) {
323      BucketT *ThisBucket = BucketsPtr + (BucketNo & (NumBuckets-1));
324      // Found Val's bucket?  If so, return it.
325      if (KeyInfoT::isEqual(ThisBucket->first, Val)) {
326        FoundBucket = ThisBucket;
327        return true;
328      }
329
330      // If we found an empty bucket, the key doesn't exist in the set.
331      // Insert it and return the default value.
332      if (KeyInfoT::isEqual(ThisBucket->first, EmptyKey)) {
333        // If we've already seen a tombstone while probing, fill it in instead
334        // of the empty bucket we eventually probed to.
335        if (FoundTombstone) ThisBucket = FoundTombstone;
336        FoundBucket = FoundTombstone ? FoundTombstone : ThisBucket;
337        return false;
338      }
339
340      // If this is a tombstone, remember it.  If Val ends up not in the map, we
341      // prefer to return it than something that would require more probing.
342      if (KeyInfoT::isEqual(ThisBucket->first, TombstoneKey) && !FoundTombstone)
343        FoundTombstone = ThisBucket;  // Remember the first tombstone found.
344
345      // Otherwise, it's a hash collision or a tombstone, continue quadratic
346      // probing.
347      BucketNo += ProbeAmt++;
348    }
349  }
350
351  void init(unsigned InitBuckets) {
352    NumEntries = 0;
353    NumTombstones = 0;
354    NumBuckets = InitBuckets;
355    assert(InitBuckets && (InitBuckets & (InitBuckets-1)) == 0 &&
356           "# initial buckets must be a power of two!");
357    Buckets = static_cast<BucketT*>(operator new(sizeof(BucketT)*InitBuckets));
358    // Initialize all the keys to EmptyKey.
359    const KeyT EmptyKey = getEmptyKey();
360    for (unsigned i = 0; i != InitBuckets; ++i)
361      new (&Buckets[i].first) KeyT(EmptyKey);
362  }
363
364  void grow(unsigned AtLeast) {
365    unsigned OldNumBuckets = NumBuckets;
366    BucketT *OldBuckets = Buckets;
367
368    // Double the number of buckets.
369    while (NumBuckets < AtLeast)
370      NumBuckets <<= 1;
371    NumTombstones = 0;
372    Buckets = static_cast<BucketT*>(operator new(sizeof(BucketT)*NumBuckets));
373
374    // Initialize all the keys to EmptyKey.
375    const KeyT EmptyKey = getEmptyKey();
376    for (unsigned i = 0, e = NumBuckets; i != e; ++i)
377      new (&Buckets[i].first) KeyT(EmptyKey);
378
379    // Insert all the old elements.
380    const KeyT TombstoneKey = getTombstoneKey();
381    for (BucketT *B = OldBuckets, *E = OldBuckets+OldNumBuckets; B != E; ++B) {
382      if (!KeyInfoT::isEqual(B->first, EmptyKey) &&
383          !KeyInfoT::isEqual(B->first, TombstoneKey)) {
384        // Insert the key/value into the new table.
385        BucketT *DestBucket;
386        bool FoundVal = LookupBucketFor(B->first, DestBucket);
387        FoundVal = FoundVal; // silence warning.
388        assert(!FoundVal && "Key already in new map?");
389        DestBucket->first = B->first;
390        new (&DestBucket->second) ValueT(B->second);
391
392        // Free the value.
393        B->second.~ValueT();
394      }
395      B->first.~KeyT();
396    }
397
398#ifndef NDEBUG
399    memset(OldBuckets, 0x5a, sizeof(BucketT)*OldNumBuckets);
400#endif
401    // Free the old table.
402    operator delete(OldBuckets);
403  }
404
405  void shrink_and_clear() {
406    unsigned OldNumBuckets = NumBuckets;
407    BucketT *OldBuckets = Buckets;
408
409    // Reduce the number of buckets.
410    NumBuckets = NumEntries > 32 ? 1 << (Log2_32_Ceil(NumEntries) + 1)
411                                 : 64;
412    NumTombstones = 0;
413    Buckets = static_cast<BucketT*>(operator new(sizeof(BucketT)*NumBuckets));
414
415    // Initialize all the keys to EmptyKey.
416    const KeyT EmptyKey = getEmptyKey();
417    for (unsigned i = 0, e = NumBuckets; i != e; ++i)
418      new (&Buckets[i].first) KeyT(EmptyKey);
419
420    // Free the old buckets.
421    const KeyT TombstoneKey = getTombstoneKey();
422    for (BucketT *B = OldBuckets, *E = OldBuckets+OldNumBuckets; B != E; ++B) {
423      if (!KeyInfoT::isEqual(B->first, EmptyKey) &&
424          !KeyInfoT::isEqual(B->first, TombstoneKey)) {
425        // Free the value.
426        B->second.~ValueT();
427      }
428      B->first.~KeyT();
429    }
430
431#ifndef NDEBUG
432    memset(OldBuckets, 0x5a, sizeof(BucketT)*OldNumBuckets);
433#endif
434    // Free the old table.
435    operator delete(OldBuckets);
436
437    NumEntries = 0;
438  }
439};
440
441template<typename KeyT, typename ValueT,
442         typename KeyInfoT, typename ValueInfoT, bool IsConst>
443class DenseMapIterator {
444  typedef std::pair<KeyT, ValueT> Bucket;
445  typedef DenseMapIterator<KeyT, ValueT,
446                           KeyInfoT, ValueInfoT, true> ConstIterator;
447  friend class DenseMapIterator<KeyT, ValueT, KeyInfoT, ValueInfoT, true>;
448public:
449  typedef ptrdiff_t difference_type;
450  typedef typename conditional<IsConst, const Bucket, Bucket>::type value_type;
451  typedef value_type *pointer;
452  typedef value_type &reference;
453  typedef std::forward_iterator_tag iterator_category;
454private:
455  pointer Ptr, End;
456public:
457  DenseMapIterator() : Ptr(0), End(0) {}
458
459  DenseMapIterator(pointer Pos, pointer E) : Ptr(Pos), End(E) {
460    AdvancePastEmptyBuckets();
461  }
462
463  // If IsConst is true this is a converting constructor from iterator to
464  // const_iterator and the default copy constructor is used.
465  // Otherwise this is a copy constructor for iterator.
466  DenseMapIterator(const DenseMapIterator<KeyT, ValueT,
467                                          KeyInfoT, ValueInfoT, false>& I)
468    : Ptr(I.Ptr), End(I.End) {}
469
470  reference operator*() const {
471    return *Ptr;
472  }
473  pointer operator->() const {
474    return Ptr;
475  }
476
477  bool operator==(const ConstIterator &RHS) const {
478    return Ptr == RHS.operator->();
479  }
480  bool operator!=(const ConstIterator &RHS) const {
481    return Ptr != RHS.operator->();
482  }
483
484  inline DenseMapIterator& operator++() {  // Preincrement
485    ++Ptr;
486    AdvancePastEmptyBuckets();
487    return *this;
488  }
489  DenseMapIterator operator++(int) {  // Postincrement
490    DenseMapIterator tmp = *this; ++*this; return tmp;
491  }
492
493private:
494  void AdvancePastEmptyBuckets() {
495    const KeyT Empty = KeyInfoT::getEmptyKey();
496    const KeyT Tombstone = KeyInfoT::getTombstoneKey();
497
498    while (Ptr != End &&
499           (KeyInfoT::isEqual(Ptr->first, Empty) ||
500            KeyInfoT::isEqual(Ptr->first, Tombstone)))
501      ++Ptr;
502  }
503};
504
505} // end namespace llvm
506
507#endif
508