DenseMap.h revision d06c59821a1ca0191ea8a326a18509808a02ed03
1//===- llvm/ADT/DenseMap.h - Dense probed hash table ------------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the DenseMap class.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_ADT_DENSEMAP_H
15#define LLVM_ADT_DENSEMAP_H
16
17#include "llvm/Support/PointerLikeTypeTraits.h"
18#include "llvm/Support/MathExtras.h"
19#include <cassert>
20#include <cstring>
21#include <utility>
22#include <new>
23
24namespace llvm {
25
26template<typename T>
27struct DenseMapInfo {
28  //static inline T getEmptyKey();
29  //static inline T getTombstoneKey();
30  //static unsigned getHashValue(const T &Val);
31  //static bool isEqual(const T &LHS, const T &RHS);
32  //static bool isPod()
33};
34
35// Provide DenseMapInfo for all pointers.
36template<typename T>
37struct DenseMapInfo<T*> {
38  static inline T* getEmptyKey() {
39    intptr_t Val = -1;
40    Val <<= PointerLikeTypeTraits<T*>::NumLowBitsAvailable;
41    return reinterpret_cast<T*>(Val);
42  }
43  static inline T* getTombstoneKey() {
44    intptr_t Val = -2;
45    Val <<= PointerLikeTypeTraits<T*>::NumLowBitsAvailable;
46    return reinterpret_cast<T*>(Val);
47  }
48  static unsigned getHashValue(const T *PtrVal) {
49    return (unsigned((uintptr_t)PtrVal) >> 4) ^
50           (unsigned((uintptr_t)PtrVal) >> 9);
51  }
52  static bool isEqual(const T *LHS, const T *RHS) { return LHS == RHS; }
53  static bool isPod() { return true; }
54};
55
56// Provide DenseMapInfo for chars.
57template<> struct DenseMapInfo<char> {
58  static inline char getEmptyKey() { return ~0; }
59  static inline char getTombstoneKey() { return ~0 - 1; }
60  static unsigned getHashValue(const char& Val) { return Val * 37; }
61  static bool isPod() { return true; }
62  static bool isEqual(const char &LHS, const char &RHS) {
63    return LHS == RHS;
64  }
65};
66
67// Provide DenseMapInfo for unsigned ints.
68template<> struct DenseMapInfo<unsigned> {
69  static inline unsigned getEmptyKey() { return ~0; }
70  static inline unsigned getTombstoneKey() { return ~0 - 1; }
71  static unsigned getHashValue(const unsigned& Val) { return Val * 37; }
72  static bool isPod() { return true; }
73  static bool isEqual(const unsigned& LHS, const unsigned& RHS) {
74  return LHS == RHS;
75  }
76};
77
78// Provide DenseMapInfo for unsigned longs.
79template<> struct DenseMapInfo<unsigned long> {
80  static inline unsigned long getEmptyKey() { return ~0L; }
81  static inline unsigned long getTombstoneKey() { return ~0L - 1L; }
82  static unsigned getHashValue(const unsigned long& Val) {
83    return (unsigned)(Val * 37L);
84  }
85  static bool isPod() { return true; }
86  static bool isEqual(const unsigned long& LHS, const unsigned long& RHS) {
87  return LHS == RHS;
88  }
89};
90
91// Provide DenseMapInfo for all pairs whose members have info.
92template<typename T, typename U>
93struct DenseMapInfo<std::pair<T, U> > {
94  typedef std::pair<T, U> Pair;
95  typedef DenseMapInfo<T> FirstInfo;
96  typedef DenseMapInfo<U> SecondInfo;
97
98  static inline Pair getEmptyKey() {
99    return std::make_pair(FirstInfo::getEmptyKey(),
100                          SecondInfo::getEmptyKey());
101  }
102  static inline Pair getTombstoneKey() {
103    return std::make_pair(FirstInfo::getTombstoneKey(),
104                            SecondInfo::getEmptyKey());
105  }
106  static unsigned getHashValue(const Pair& PairVal) {
107    uint64_t key = (uint64_t)FirstInfo::getHashValue(PairVal.first) << 32
108          | (uint64_t)SecondInfo::getHashValue(PairVal.second);
109    key += ~(key << 32);
110    key ^= (key >> 22);
111    key += ~(key << 13);
112    key ^= (key >> 8);
113    key += (key << 3);
114    key ^= (key >> 15);
115    key += ~(key << 27);
116    key ^= (key >> 31);
117    return (unsigned)key;
118  }
119  static bool isEqual(const Pair& LHS, const Pair& RHS) { return LHS == RHS; }
120  static bool isPod() { return FirstInfo::isPod() && SecondInfo::isPod(); }
121};
122
123template<typename KeyT, typename ValueT,
124         typename KeyInfoT = DenseMapInfo<KeyT>,
125         typename ValueInfoT = DenseMapInfo<ValueT> >
126class DenseMapIterator;
127template<typename KeyT, typename ValueT,
128         typename KeyInfoT = DenseMapInfo<KeyT>,
129         typename ValueInfoT = DenseMapInfo<ValueT> >
130class DenseMapConstIterator;
131
132template<typename KeyT, typename ValueT,
133         typename KeyInfoT = DenseMapInfo<KeyT>,
134         typename ValueInfoT = DenseMapInfo<ValueT> >
135class DenseMap {
136  typedef std::pair<KeyT, ValueT> BucketT;
137  unsigned NumBuckets;
138  BucketT *Buckets;
139
140  unsigned NumEntries;
141  unsigned NumTombstones;
142public:
143  typedef KeyT key_type;
144  typedef ValueT mapped_type;
145  typedef BucketT value_type;
146
147  DenseMap(const DenseMap& other) {
148    NumBuckets = 0;
149    CopyFrom(other);
150  }
151
152  explicit DenseMap(unsigned NumInitBuckets = 64) {
153    init(NumInitBuckets);
154  }
155
156  ~DenseMap() {
157    const KeyT EmptyKey = getEmptyKey(), TombstoneKey = getTombstoneKey();
158    for (BucketT *P = Buckets, *E = Buckets+NumBuckets; P != E; ++P) {
159      if (!KeyInfoT::isEqual(P->first, EmptyKey) &&
160          !KeyInfoT::isEqual(P->first, TombstoneKey))
161        P->second.~ValueT();
162      P->first.~KeyT();
163    }
164#ifndef NDEBUG
165    memset(Buckets, 0x5a, sizeof(BucketT)*NumBuckets);
166#endif
167    operator delete(Buckets);
168  }
169
170  typedef DenseMapIterator<KeyT, ValueT, KeyInfoT> iterator;
171  typedef DenseMapConstIterator<KeyT, ValueT, KeyInfoT> const_iterator;
172  inline iterator begin() {
173     return iterator(Buckets, Buckets+NumBuckets);
174  }
175  inline iterator end() {
176    return iterator(Buckets+NumBuckets, Buckets+NumBuckets);
177  }
178  inline const_iterator begin() const {
179    return const_iterator(Buckets, Buckets+NumBuckets);
180  }
181  inline const_iterator end() const {
182    return const_iterator(Buckets+NumBuckets, Buckets+NumBuckets);
183  }
184
185  bool empty() const { return NumEntries == 0; }
186  unsigned size() const { return NumEntries; }
187
188  /// Grow the densemap so that it has at least Size buckets. Does not shrink
189  void resize(size_t Size) { grow(Size); }
190
191  void clear() {
192    // If the capacity of the array is huge, and the # elements used is small,
193    // shrink the array.
194    if (NumEntries * 4 < NumBuckets && NumBuckets > 64) {
195      shrink_and_clear();
196      return;
197    }
198
199    const KeyT EmptyKey = getEmptyKey(), TombstoneKey = getTombstoneKey();
200    for (BucketT *P = Buckets, *E = Buckets+NumBuckets; P != E; ++P) {
201      if (!KeyInfoT::isEqual(P->first, EmptyKey)) {
202        if (!KeyInfoT::isEqual(P->first, TombstoneKey)) {
203          P->second.~ValueT();
204          --NumEntries;
205        }
206        P->first = EmptyKey;
207      }
208    }
209    assert(NumEntries == 0 && "Node count imbalance!");
210    NumTombstones = 0;
211  }
212
213  /// count - Return true if the specified key is in the map.
214  bool count(const KeyT &Val) const {
215    BucketT *TheBucket;
216    return LookupBucketFor(Val, TheBucket);
217  }
218
219  iterator find(const KeyT &Val) {
220    BucketT *TheBucket;
221    if (LookupBucketFor(Val, TheBucket))
222      return iterator(TheBucket, Buckets+NumBuckets);
223    return end();
224  }
225  const_iterator find(const KeyT &Val) const {
226    BucketT *TheBucket;
227    if (LookupBucketFor(Val, TheBucket))
228      return const_iterator(TheBucket, Buckets+NumBuckets);
229    return end();
230  }
231
232  /// lookup - Return the entry for the specified key, or a default
233  /// constructed value if no such entry exists.
234  ValueT lookup(const KeyT &Val) const {
235    BucketT *TheBucket;
236    if (LookupBucketFor(Val, TheBucket))
237      return TheBucket->second;
238    return ValueT();
239  }
240
241  std::pair<iterator, bool> insert(const std::pair<KeyT, ValueT> &KV) {
242    BucketT *TheBucket;
243    if (LookupBucketFor(KV.first, TheBucket))
244      return std::make_pair(iterator(TheBucket, Buckets+NumBuckets),
245                            false); // Already in map.
246
247    // Otherwise, insert the new element.
248    TheBucket = InsertIntoBucket(KV.first, KV.second, TheBucket);
249    return std::make_pair(iterator(TheBucket, Buckets+NumBuckets),
250                          true);
251  }
252
253  /// insert - Range insertion of pairs.
254  template<typename InputIt>
255  void insert(InputIt I, InputIt E) {
256    for (; I != E; ++I)
257      insert(*I);
258  }
259
260
261  bool erase(const KeyT &Val) {
262    BucketT *TheBucket;
263    if (!LookupBucketFor(Val, TheBucket))
264      return false; // not in map.
265
266    TheBucket->second.~ValueT();
267    TheBucket->first = getTombstoneKey();
268    --NumEntries;
269    ++NumTombstones;
270    return true;
271  }
272  bool erase(iterator I) {
273    BucketT *TheBucket = &*I;
274    TheBucket->second.~ValueT();
275    TheBucket->first = getTombstoneKey();
276    --NumEntries;
277    ++NumTombstones;
278    return true;
279  }
280
281  value_type& FindAndConstruct(const KeyT &Key) {
282    BucketT *TheBucket;
283    if (LookupBucketFor(Key, TheBucket))
284      return *TheBucket;
285
286    return *InsertIntoBucket(Key, ValueT(), TheBucket);
287  }
288
289  ValueT &operator[](const KeyT &Key) {
290    return FindAndConstruct(Key).second;
291  }
292
293  DenseMap& operator=(const DenseMap& other) {
294    CopyFrom(other);
295    return *this;
296  }
297
298  /// isPointerIntoBucketsArray - Return true if the specified pointer points
299  /// somewhere into the DenseMap's array of buckets (i.e. either to a key or
300  /// value in the DenseMap).
301  bool isPointerIntoBucketsArray(const void *Ptr) const {
302    return Ptr >= Buckets && Ptr < Buckets+NumBuckets;
303  }
304
305  /// getPointerIntoBucketsArray() - Return an opaque pointer into the buckets
306  /// array.  In conjunction with the previous method, this can be used to
307  /// determine whether an insertion caused the DenseMap to reallocate.
308  const void *getPointerIntoBucketsArray() const { return Buckets; }
309
310private:
311  void CopyFrom(const DenseMap& other) {
312    if (NumBuckets != 0 && (!KeyInfoT::isPod() || !ValueInfoT::isPod())) {
313      const KeyT EmptyKey = getEmptyKey(), TombstoneKey = getTombstoneKey();
314      for (BucketT *P = Buckets, *E = Buckets+NumBuckets; P != E; ++P) {
315        if (!KeyInfoT::isEqual(P->first, EmptyKey) &&
316            !KeyInfoT::isEqual(P->first, TombstoneKey))
317          P->second.~ValueT();
318        P->first.~KeyT();
319      }
320    }
321
322    NumEntries = other.NumEntries;
323    NumTombstones = other.NumTombstones;
324
325    if (NumBuckets) {
326#ifndef NDEBUG
327      memset(Buckets, 0x5a, sizeof(BucketT)*NumBuckets);
328#endif
329      operator delete(Buckets);
330    }
331    Buckets = static_cast<BucketT*>(operator new(sizeof(BucketT) *
332                                                 other.NumBuckets));
333
334    if (KeyInfoT::isPod() && ValueInfoT::isPod())
335      memcpy(Buckets, other.Buckets, other.NumBuckets * sizeof(BucketT));
336    else
337      for (size_t i = 0; i < other.NumBuckets; ++i) {
338        new (&Buckets[i].first) KeyT(other.Buckets[i].first);
339        if (!KeyInfoT::isEqual(Buckets[i].first, getEmptyKey()) &&
340            !KeyInfoT::isEqual(Buckets[i].first, getTombstoneKey()))
341          new (&Buckets[i].second) ValueT(other.Buckets[i].second);
342      }
343    NumBuckets = other.NumBuckets;
344  }
345
346  BucketT *InsertIntoBucket(const KeyT &Key, const ValueT &Value,
347                            BucketT *TheBucket) {
348    // If the load of the hash table is more than 3/4, or if fewer than 1/8 of
349    // the buckets are empty (meaning that many are filled with tombstones),
350    // grow the table.
351    //
352    // The later case is tricky.  For example, if we had one empty bucket with
353    // tons of tombstones, failing lookups (e.g. for insertion) would have to
354    // probe almost the entire table until it found the empty bucket.  If the
355    // table completely filled with tombstones, no lookup would ever succeed,
356    // causing infinite loops in lookup.
357    ++NumEntries;
358    if (NumEntries*4 >= NumBuckets*3 ||
359        NumBuckets-(NumEntries+NumTombstones) < NumBuckets/8) {
360      this->grow(NumBuckets * 2);
361      LookupBucketFor(Key, TheBucket);
362    }
363
364    // If we are writing over a tombstone, remember this.
365    if (!KeyInfoT::isEqual(TheBucket->first, getEmptyKey()))
366      --NumTombstones;
367
368    TheBucket->first = Key;
369    new (&TheBucket->second) ValueT(Value);
370    return TheBucket;
371  }
372
373  static unsigned getHashValue(const KeyT &Val) {
374    return KeyInfoT::getHashValue(Val);
375  }
376  static const KeyT getEmptyKey() {
377    return KeyInfoT::getEmptyKey();
378  }
379  static const KeyT getTombstoneKey() {
380    return KeyInfoT::getTombstoneKey();
381  }
382
383  /// LookupBucketFor - Lookup the appropriate bucket for Val, returning it in
384  /// FoundBucket.  If the bucket contains the key and a value, this returns
385  /// true, otherwise it returns a bucket with an empty marker or tombstone and
386  /// returns false.
387  bool LookupBucketFor(const KeyT &Val, BucketT *&FoundBucket) const {
388    unsigned BucketNo = getHashValue(Val);
389    unsigned ProbeAmt = 1;
390    BucketT *BucketsPtr = Buckets;
391
392    // FoundTombstone - Keep track of whether we find a tombstone while probing.
393    BucketT *FoundTombstone = 0;
394    const KeyT EmptyKey = getEmptyKey();
395    const KeyT TombstoneKey = getTombstoneKey();
396    assert(!KeyInfoT::isEqual(Val, EmptyKey) &&
397           !KeyInfoT::isEqual(Val, TombstoneKey) &&
398           "Empty/Tombstone value shouldn't be inserted into map!");
399
400    while (1) {
401      BucketT *ThisBucket = BucketsPtr + (BucketNo & (NumBuckets-1));
402      // Found Val's bucket?  If so, return it.
403      if (KeyInfoT::isEqual(ThisBucket->first, Val)) {
404        FoundBucket = ThisBucket;
405        return true;
406      }
407
408      // If we found an empty bucket, the key doesn't exist in the set.
409      // Insert it and return the default value.
410      if (KeyInfoT::isEqual(ThisBucket->first, EmptyKey)) {
411        // If we've already seen a tombstone while probing, fill it in instead
412        // of the empty bucket we eventually probed to.
413        if (FoundTombstone) ThisBucket = FoundTombstone;
414        FoundBucket = FoundTombstone ? FoundTombstone : ThisBucket;
415        return false;
416      }
417
418      // If this is a tombstone, remember it.  If Val ends up not in the map, we
419      // prefer to return it than something that would require more probing.
420      if (KeyInfoT::isEqual(ThisBucket->first, TombstoneKey) && !FoundTombstone)
421        FoundTombstone = ThisBucket;  // Remember the first tombstone found.
422
423      // Otherwise, it's a hash collision or a tombstone, continue quadratic
424      // probing.
425      BucketNo += ProbeAmt++;
426    }
427  }
428
429  void init(unsigned InitBuckets) {
430    NumEntries = 0;
431    NumTombstones = 0;
432    NumBuckets = InitBuckets;
433    assert(InitBuckets && (InitBuckets & (InitBuckets-1)) == 0 &&
434           "# initial buckets must be a power of two!");
435    Buckets = static_cast<BucketT*>(operator new(sizeof(BucketT)*InitBuckets));
436    // Initialize all the keys to EmptyKey.
437    const KeyT EmptyKey = getEmptyKey();
438    for (unsigned i = 0; i != InitBuckets; ++i)
439      new (&Buckets[i].first) KeyT(EmptyKey);
440  }
441
442  void grow(unsigned AtLeast) {
443    unsigned OldNumBuckets = NumBuckets;
444    BucketT *OldBuckets = Buckets;
445
446    // Double the number of buckets.
447    while (NumBuckets <= AtLeast)
448      NumBuckets <<= 1;
449    NumTombstones = 0;
450    Buckets = static_cast<BucketT*>(operator new(sizeof(BucketT)*NumBuckets));
451
452    // Initialize all the keys to EmptyKey.
453    const KeyT EmptyKey = getEmptyKey();
454    for (unsigned i = 0, e = NumBuckets; i != e; ++i)
455      new (&Buckets[i].first) KeyT(EmptyKey);
456
457    // Insert all the old elements.
458    const KeyT TombstoneKey = getTombstoneKey();
459    for (BucketT *B = OldBuckets, *E = OldBuckets+OldNumBuckets; B != E; ++B) {
460      if (!KeyInfoT::isEqual(B->first, EmptyKey) &&
461          !KeyInfoT::isEqual(B->first, TombstoneKey)) {
462        // Insert the key/value into the new table.
463        BucketT *DestBucket;
464        bool FoundVal = LookupBucketFor(B->first, DestBucket);
465        FoundVal = FoundVal; // silence warning.
466        assert(!FoundVal && "Key already in new map?");
467        DestBucket->first = B->first;
468        new (&DestBucket->second) ValueT(B->second);
469
470        // Free the value.
471        B->second.~ValueT();
472      }
473      B->first.~KeyT();
474    }
475
476#ifndef NDEBUG
477    memset(OldBuckets, 0x5a, sizeof(BucketT)*OldNumBuckets);
478#endif
479    // Free the old table.
480    operator delete(OldBuckets);
481  }
482
483  void shrink_and_clear() {
484    unsigned OldNumBuckets = NumBuckets;
485    BucketT *OldBuckets = Buckets;
486
487    // Reduce the number of buckets.
488    NumBuckets = NumEntries > 32 ? 1 << (Log2_32_Ceil(NumEntries) + 1)
489                                 : 64;
490    NumTombstones = 0;
491    Buckets = static_cast<BucketT*>(operator new(sizeof(BucketT)*NumBuckets));
492
493    // Initialize all the keys to EmptyKey.
494    const KeyT EmptyKey = getEmptyKey();
495    for (unsigned i = 0, e = NumBuckets; i != e; ++i)
496      new (&Buckets[i].first) KeyT(EmptyKey);
497
498    // Free the old buckets.
499    const KeyT TombstoneKey = getTombstoneKey();
500    for (BucketT *B = OldBuckets, *E = OldBuckets+OldNumBuckets; B != E; ++B) {
501      if (!KeyInfoT::isEqual(B->first, EmptyKey) &&
502          !KeyInfoT::isEqual(B->first, TombstoneKey)) {
503        // Free the value.
504        B->second.~ValueT();
505      }
506      B->first.~KeyT();
507    }
508
509#ifndef NDEBUG
510    memset(OldBuckets, 0x5a, sizeof(BucketT)*OldNumBuckets);
511#endif
512    // Free the old table.
513    operator delete(OldBuckets);
514
515    NumEntries = 0;
516  }
517};
518
519template<typename KeyT, typename ValueT, typename KeyInfoT, typename ValueInfoT>
520class DenseMapIterator {
521  typedef std::pair<KeyT, ValueT> BucketT;
522protected:
523  const BucketT *Ptr, *End;
524public:
525  DenseMapIterator(void) : Ptr(0), End(0) {}
526
527  DenseMapIterator(const BucketT *Pos, const BucketT *E) : Ptr(Pos), End(E) {
528    AdvancePastEmptyBuckets();
529  }
530
531  std::pair<KeyT, ValueT> &operator*() const {
532    return *const_cast<BucketT*>(Ptr);
533  }
534  std::pair<KeyT, ValueT> *operator->() const {
535    return const_cast<BucketT*>(Ptr);
536  }
537
538  bool operator==(const DenseMapIterator &RHS) const {
539    return Ptr == RHS.Ptr;
540  }
541  bool operator!=(const DenseMapIterator &RHS) const {
542    return Ptr != RHS.Ptr;
543  }
544
545  inline DenseMapIterator& operator++() {          // Preincrement
546    ++Ptr;
547    AdvancePastEmptyBuckets();
548    return *this;
549  }
550  DenseMapIterator operator++(int) {        // Postincrement
551    DenseMapIterator tmp = *this; ++*this; return tmp;
552  }
553
554private:
555  void AdvancePastEmptyBuckets() {
556    const KeyT Empty = KeyInfoT::getEmptyKey();
557    const KeyT Tombstone = KeyInfoT::getTombstoneKey();
558
559    while (Ptr != End &&
560           (KeyInfoT::isEqual(Ptr->first, Empty) ||
561            KeyInfoT::isEqual(Ptr->first, Tombstone)))
562      ++Ptr;
563  }
564};
565
566template<typename KeyT, typename ValueT, typename KeyInfoT, typename ValueInfoT>
567class DenseMapConstIterator : public DenseMapIterator<KeyT, ValueT, KeyInfoT> {
568public:
569  DenseMapConstIterator(void) : DenseMapIterator<KeyT, ValueT, KeyInfoT>() {}
570  DenseMapConstIterator(const std::pair<KeyT, ValueT> *Pos,
571                        const std::pair<KeyT, ValueT> *E)
572    : DenseMapIterator<KeyT, ValueT, KeyInfoT>(Pos, E) {
573  }
574  const std::pair<KeyT, ValueT> &operator*() const {
575    return *this->Ptr;
576  }
577  const std::pair<KeyT, ValueT> *operator->() const {
578    return this->Ptr;
579  }
580};
581
582} // end namespace llvm
583
584#endif
585