FoldingSet.h revision 167b8bc24d4cc2789c682962b123877a73ad0568
1//===-- llvm/ADT/FoldingSet.h - Uniquing Hash Set ---------------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines a hash set that can be used to remove duplication of nodes
11// in a graph.  This code was originally created by Chris Lattner for use with
12// SelectionDAGCSEMap, but was isolated to provide use across the llvm code set.
13//
14//===----------------------------------------------------------------------===//
15
16#ifndef LLVM_ADT_FOLDINGSET_H
17#define LLVM_ADT_FOLDINGSET_H
18
19#include "llvm/Support/DataTypes.h"
20#include "llvm/ADT/SmallVector.h"
21#include <string>
22
23namespace llvm {
24  class APFloat;
25  class APInt;
26
27/// This folding set used for two purposes:
28///   1. Given information about a node we want to create, look up the unique
29///      instance of the node in the set.  If the node already exists, return
30///      it, otherwise return the bucket it should be inserted into.
31///   2. Given a node that has already been created, remove it from the set.
32///
33/// This class is implemented as a single-link chained hash table, where the
34/// "buckets" are actually the nodes themselves (the next pointer is in the
35/// node).  The last node points back to the bucket to simplified node removal.
36///
37/// Any node that is to be included in the folding set must be a subclass of
38/// FoldingSetNode.  The node class must also define a Profile method used to
39/// establish the unique bits of data for the node.  The Profile method is
40/// passed a FoldingSetNodeID object which is used to gather the bits.  Just
41/// call one of the Add* functions defined in the FoldingSetImpl::NodeID class.
42/// NOTE: That the folding set does not own the nodes and it is the
43/// responsibility of the user to dispose of the nodes.
44///
45/// Eg.
46///    class MyNode : public FoldingSetNode {
47///    private:
48///      std::string Name;
49///      unsigned Value;
50///    public:
51///      MyNode(const char *N, unsigned V) : Name(N), Value(V) {}
52///       ...
53///      void Profile(FoldingSetNodeID &ID) {
54///        ID.AddString(Name);
55///        ID.AddInteger(Value);
56///       }
57///       ...
58///     };
59///
60/// To define the folding set itself use the FoldingSet template;
61///
62/// Eg.
63///    FoldingSet<MyNode> MyFoldingSet;
64///
65/// Four public methods are available to manipulate the folding set;
66///
67/// 1) If you have an existing node that you want add to the set but unsure
68/// that the node might already exist then call;
69///
70///    MyNode *M = MyFoldingSet.GetOrInsertNode(N);
71///
72/// If The result is equal to the input then the node has been inserted.
73/// Otherwise, the result is the node existing in the folding set, and the
74/// input can be discarded (use the result instead.)
75///
76/// 2) If you are ready to construct a node but want to check if it already
77/// exists, then call FindNodeOrInsertPos with a FoldingSetNodeID of the bits to
78/// check;
79///
80///   FoldingSetNodeID ID;
81///   ID.AddString(Name);
82///   ID.AddInteger(Value);
83///   void *InsertPoint;
84///
85///    MyNode *M = MyFoldingSet.FindNodeOrInsertPos(ID, InsertPoint);
86///
87/// If found then M with be non-NULL, else InsertPoint will point to where it
88/// should be inserted using InsertNode.
89///
90/// 3) If you get a NULL result from FindNodeOrInsertPos then you can as a new
91/// node with FindNodeOrInsertPos;
92///
93///    InsertNode(N, InsertPoint);
94///
95/// 4) Finally, if you want to remove a node from the folding set call;
96///
97///    bool WasRemoved = RemoveNode(N);
98///
99/// The result indicates whether the node existed in the folding set.
100
101class FoldingSetNodeID;
102
103//===----------------------------------------------------------------------===//
104/// FoldingSetImpl - Implements the folding set functionality.  The main
105/// structure is an array of buckets.  Each bucket is indexed by the hash of
106/// the nodes it contains.  The bucket itself points to the nodes contained
107/// in the bucket via a singly linked list.  The last node in the list points
108/// back to the bucket to facilitate node removal.
109///
110class FoldingSetImpl {
111protected:
112  /// Buckets - Array of bucket chains.
113  ///
114  void **Buckets;
115
116  /// NumBuckets - Length of the Buckets array.  Always a power of 2.
117  ///
118  unsigned NumBuckets;
119
120  /// NumNodes - Number of nodes in the folding set. Growth occurs when NumNodes
121  /// is greater than twice the number of buckets.
122  unsigned NumNodes;
123
124public:
125  explicit FoldingSetImpl(unsigned Log2InitSize = 6);
126  virtual ~FoldingSetImpl();
127
128  //===--------------------------------------------------------------------===//
129  /// Node - This class is used to maintain the singly linked bucket list in
130  /// a folding set.
131  ///
132  class Node {
133  private:
134    // NextInFoldingSetBucket - next link in the bucket list.
135    void *NextInFoldingSetBucket;
136
137  public:
138
139    Node() : NextInFoldingSetBucket(0) {}
140
141    // Accessors
142    void *getNextInBucket() const { return NextInFoldingSetBucket; }
143    void SetNextInBucket(void *N) { NextInFoldingSetBucket = N; }
144  };
145
146  /// RemoveNode - Remove a node from the folding set, returning true if one
147  /// was removed or false if the node was not in the folding set.
148  bool RemoveNode(Node *N);
149
150  /// GetOrInsertNode - If there is an existing simple Node exactly
151  /// equal to the specified node, return it.  Otherwise, insert 'N' and return
152  /// it instead.
153  Node *GetOrInsertNode(Node *N);
154
155  /// FindNodeOrInsertPos - Look up the node specified by ID.  If it exists,
156  /// return it.  If not, return the insertion token that will make insertion
157  /// faster.
158  Node *FindNodeOrInsertPos(const FoldingSetNodeID &ID, void *&InsertPos);
159
160  /// InsertNode - Insert the specified node into the folding set, knowing that
161  /// it is not already in the folding set.  InsertPos must be obtained from
162  /// FindNodeOrInsertPos.
163  void InsertNode(Node *N, void *InsertPos);
164
165  /// size - Returns the number of nodes in the folding set.
166  unsigned size() const { return NumNodes; }
167
168private:
169
170  /// GrowHashTable - Double the size of the hash table and rehash everything.
171  ///
172  void GrowHashTable();
173
174protected:
175
176  /// GetNodeProfile - Instantiations of the FoldingSet template implement
177  /// this function to gather data bits for the given node.
178  virtual void GetNodeProfile(FoldingSetNodeID &ID, Node *N) const = 0;
179};
180
181//===--------------------------------------------------------------------===//
182/// FoldingSetNodeID - This class is used to gather all the unique data bits of
183/// a node.  When all the bits are gathered this class is used to produce a
184/// hash value for the node.
185///
186class FoldingSetNodeID {
187  /// Bits - Vector of all the data bits that make the node unique.
188  /// Use a SmallVector to avoid a heap allocation in the common case.
189  SmallVector<unsigned, 32> Bits;
190
191public:
192  FoldingSetNodeID() {}
193
194  /// getRawData - Return the ith entry in the Bits data.
195  ///
196  unsigned getRawData(unsigned i) const {
197    return Bits[i];
198  }
199
200  /// Add* - Add various data types to Bit data.
201  ///
202  void AddPointer(const void *Ptr);
203  void AddInteger(signed I);
204  void AddInteger(unsigned I);
205  void AddInteger(int64_t I);
206  void AddInteger(uint64_t I);
207  void AddFloat(float F);
208  void AddDouble(double D);
209  void AddAPFloat(const APFloat& apf);
210  void AddAPInt(const APInt& api);
211  void AddString(const std::string &String);
212
213  /// clear - Clear the accumulated profile, allowing this FoldingSetNodeID
214  ///  object to be used to compute a new profile.
215  inline void clear() { Bits.clear(); }
216
217  /// ComputeHash - Compute a strong hash value for this FoldingSetNodeID, used
218  ///  to lookup the node in the FoldingSetImpl.
219  unsigned ComputeHash() const;
220
221  /// operator== - Used to compare two nodes to each other.
222  ///
223  bool operator==(const FoldingSetNodeID &RHS) const;
224};
225
226// Convenience type to hide the implementation of the folding set.
227typedef FoldingSetImpl::Node FoldingSetNode;
228template<class T> class FoldingSetIterator;
229template<class T> class FoldingSetBucketIterator;
230
231//===----------------------------------------------------------------------===//
232/// FoldingSetTrait - This trait class is used to define behavior of how
233///  to "profile" (in the FoldingSet parlance) an object of a given type.
234///  The default behavior is to invoke a 'Profile' method on an object, but
235///  through template specialization the behavior can be tailored for specific
236///  types.  Combined with the FoldingSetNodeWrapper classs, one can add objects
237///  to FoldingSets that were not originally designed to have that behavior.
238///
239template<typename T> struct FoldingSetTrait {
240  static inline void Profile(const T& X, FoldingSetNodeID& ID) { X.Profile(ID);}
241  static inline void Profile(T& X, FoldingSetNodeID& ID) { X.Profile(ID); }
242};
243
244//===----------------------------------------------------------------------===//
245/// FoldingSet - This template class is used to instantiate a specialized
246/// implementation of the folding set to the node class T.  T must be a
247/// subclass of FoldingSetNode and implement a Profile function.
248///
249template<class T> class FoldingSet : public FoldingSetImpl {
250private:
251  /// GetNodeProfile - Each instantiatation of the FoldingSet needs to provide a
252  /// way to convert nodes into a unique specifier.
253  virtual void GetNodeProfile(FoldingSetNodeID &ID, Node *N) const {
254    T *TN = static_cast<T *>(N);
255    FoldingSetTrait<T>::Profile(*TN,ID);
256  }
257
258public:
259  explicit FoldingSet(unsigned Log2InitSize = 6)
260  : FoldingSetImpl(Log2InitSize)
261  {}
262
263  typedef FoldingSetIterator<T> iterator;
264  iterator begin() { return iterator(Buckets); }
265  iterator end() { return iterator(Buckets+NumBuckets); }
266
267  typedef FoldingSetIterator<const T> const_iterator;
268  const_iterator begin() const { return const_iterator(Buckets); }
269  const_iterator end() const { return const_iterator(Buckets+NumBuckets); }
270
271  typedef FoldingSetBucketIterator<T> bucket_iterator;
272
273  bucket_iterator bucket_begin(unsigned hash) {
274    return bucket_iterator(Buckets + (hash & (NumBuckets-1)));
275  }
276
277  bucket_iterator bucket_end(unsigned hash) {
278    return bucket_iterator(Buckets + (hash & (NumBuckets-1)), true);
279  }
280
281  /// GetOrInsertNode - If there is an existing simple Node exactly
282  /// equal to the specified node, return it.  Otherwise, insert 'N' and
283  /// return it instead.
284  T *GetOrInsertNode(Node *N) {
285    return static_cast<T *>(FoldingSetImpl::GetOrInsertNode(N));
286  }
287
288  /// FindNodeOrInsertPos - Look up the node specified by ID.  If it exists,
289  /// return it.  If not, return the insertion token that will make insertion
290  /// faster.
291  T *FindNodeOrInsertPos(const FoldingSetNodeID &ID, void *&InsertPos) {
292    return static_cast<T *>(FoldingSetImpl::FindNodeOrInsertPos(ID, InsertPos));
293  }
294};
295
296//===----------------------------------------------------------------------===//
297/// FoldingSetIteratorImpl - This is the common iterator support shared by all
298/// folding sets, which knows how to walk the folding set hash table.
299class FoldingSetIteratorImpl {
300protected:
301  FoldingSetNode *NodePtr;
302  FoldingSetIteratorImpl(void **Bucket);
303  void advance();
304
305public:
306  bool operator==(const FoldingSetIteratorImpl &RHS) const {
307    return NodePtr == RHS.NodePtr;
308  }
309  bool operator!=(const FoldingSetIteratorImpl &RHS) const {
310    return NodePtr != RHS.NodePtr;
311  }
312};
313
314
315template<class T>
316class FoldingSetIterator : public FoldingSetIteratorImpl {
317public:
318  FoldingSetIterator(void **Bucket) : FoldingSetIteratorImpl(Bucket) {}
319
320  T &operator*() const {
321    return *static_cast<T*>(NodePtr);
322  }
323
324  T *operator->() const {
325    return static_cast<T*>(NodePtr);
326  }
327
328  inline FoldingSetIterator& operator++() {          // Preincrement
329    advance();
330    return *this;
331  }
332  FoldingSetIterator operator++(int) {        // Postincrement
333    FoldingSetIterator tmp = *this; ++*this; return tmp;
334  }
335};
336
337//===----------------------------------------------------------------------===//
338/// FoldingSetBucketIteratorImpl - This is the common bucket iterator support
339///  shared by all folding sets, which knows how to walk a particular bucket
340///  of a folding set hash table.
341
342class FoldingSetBucketIteratorImpl {
343protected:
344  void *Ptr;
345
346  FoldingSetBucketIteratorImpl(void **Bucket);
347
348  FoldingSetBucketIteratorImpl(void **Bucket, bool)
349    : Ptr(reinterpret_cast<void*>(Bucket)) {}
350
351  void advance() {
352    void *Probe = static_cast<FoldingSetNode*>(Ptr)->getNextInBucket();
353    uintptr_t x = reinterpret_cast<uintptr_t>(Probe) & ~0x1;
354    Ptr = reinterpret_cast<void*>(x);
355  }
356
357public:
358  bool operator==(const FoldingSetBucketIteratorImpl &RHS) const {
359    return Ptr == RHS.Ptr;
360  }
361  bool operator!=(const FoldingSetBucketIteratorImpl &RHS) const {
362    return Ptr != RHS.Ptr;
363  }
364};
365
366
367template<class T>
368class FoldingSetBucketIterator : public FoldingSetBucketIteratorImpl {
369public:
370  FoldingSetBucketIterator(void **Bucket) :
371    FoldingSetBucketIteratorImpl(Bucket) {}
372
373  FoldingSetBucketIterator(void **Bucket, bool) :
374    FoldingSetBucketIteratorImpl(Bucket, true) {}
375
376  T& operator*() const { return *static_cast<T*>(Ptr); }
377  T* operator->() const { return static_cast<T*>(Ptr); }
378
379  inline FoldingSetBucketIterator& operator++() { // Preincrement
380    advance();
381    return *this;
382  }
383  FoldingSetBucketIterator operator++(int) {      // Postincrement
384    FoldingSetBucketIterator tmp = *this; ++*this; return tmp;
385  }
386};
387
388//===----------------------------------------------------------------------===//
389/// FoldingSetNodeWrapper - This template class is used to "wrap" arbitrary
390/// types in an enclosing object so that they can be inserted into FoldingSets.
391template <typename T>
392class FoldingSetNodeWrapper : public FoldingSetNode {
393  T data;
394public:
395  FoldingSetNodeWrapper(const T& x) : data(x) {}
396  virtual ~FoldingSetNodeWrapper() {}
397
398  template<typename A1>
399  explicit FoldingSetNodeWrapper(const A1& a1)
400    : data(a1) {}
401
402  template <typename A1, typename A2>
403  explicit FoldingSetNodeWrapper(const A1& a1, const A2& a2)
404    : data(a1,a2) {}
405
406  template <typename A1, typename A2, typename A3>
407  explicit FoldingSetNodeWrapper(const A1& a1, const A2& a2, const A3& a3)
408    : data(a1,a2,a3) {}
409
410  template <typename A1, typename A2, typename A3, typename A4>
411  explicit FoldingSetNodeWrapper(const A1& a1, const A2& a2, const A3& a3,
412                                 const A4& a4)
413    : data(a1,a2,a3,a4) {}
414
415  template <typename A1, typename A2, typename A3, typename A4, typename A5>
416  explicit FoldingSetNodeWrapper(const A1& a1, const A2& a2, const A3& a3,
417                                 const A4& a4, const A5& a5)
418  : data(a1,a2,a3,a4,a5) {}
419
420
421  void Profile(FoldingSetNodeID& ID) { FoldingSetTrait<T>::Profile(data, ID); }
422
423  T& getValue() { return data; }
424  const T& getValue() const { return data; }
425
426  operator T&() { return data; }
427  operator const T&() const { return data; }
428};
429
430} // End of namespace llvm.
431
432
433#endif
434
435