FoldingSet.h revision c899b33b830c360e53eb35440a1371542925414f
1//===-- llvm/ADT/FoldingSet.h - Uniquing Hash Set ---------------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines a hash set that can be used to remove duplication of nodes
11// in a graph.  This code was originally created by Chris Lattner for use with
12// SelectionDAGCSEMap, but was isolated to provide use across the llvm code set.
13//
14//===----------------------------------------------------------------------===//
15
16#ifndef LLVM_ADT_FOLDINGSET_H
17#define LLVM_ADT_FOLDINGSET_H
18
19#include "llvm/Support/DataTypes.h"
20#include "llvm/ADT/SmallVector.h"
21#include <string>
22
23namespace llvm {
24  class APFloat;
25
26/// This folding set used for two purposes:
27///   1. Given information about a node we want to create, look up the unique
28///      instance of the node in the set.  If the node already exists, return
29///      it, otherwise return the bucket it should be inserted into.
30///   2. Given a node that has already been created, remove it from the set.
31///
32/// This class is implemented as a single-link chained hash table, where the
33/// "buckets" are actually the nodes themselves (the next pointer is in the
34/// node).  The last node points back to the bucket to simplified node removal.
35///
36/// Any node that is to be included in the folding set must be a subclass of
37/// FoldingSetNode.  The node class must also define a Profile method used to
38/// establish the unique bits of data for the node.  The Profile method is
39/// passed a FoldingSetNodeID object which is used to gather the bits.  Just
40/// call one of the Add* functions defined in the FoldingSetImpl::NodeID class.
41/// NOTE: That the folding set does not own the nodes and it is the
42/// responsibility of the user to dispose of the nodes.
43///
44/// Eg.
45///    class MyNode : public FoldingSetNode {
46///    private:
47///      std::string Name;
48///      unsigned Value;
49///    public:
50///      MyNode(const char *N, unsigned V) : Name(N), Value(V) {}
51///       ...
52///      void Profile(FoldingSetNodeID &ID) {
53///        ID.AddString(Name);
54///        ID.AddInteger(Value);
55///       }
56///       ...
57///     };
58///
59/// To define the folding set itself use the FoldingSet template;
60///
61/// Eg.
62///    FoldingSet<MyNode> MyFoldingSet;
63///
64/// Four public methods are available to manipulate the folding set;
65///
66/// 1) If you have an existing node that you want add to the set but unsure
67/// that the node might already exist then call;
68///
69///    MyNode *M = MyFoldingSet.GetOrInsertNode(N);
70///
71/// If The result is equal to the input then the node has been inserted.
72/// Otherwise, the result is the node existing in the folding set, and the
73/// input can be discarded (use the result instead.)
74///
75/// 2) If you are ready to construct a node but want to check if it already
76/// exists, then call FindNodeOrInsertPos with a FoldingSetNodeID of the bits to
77/// check;
78///
79///   FoldingSetNodeID ID;
80///   ID.AddString(Name);
81///   ID.AddInteger(Value);
82///   void *InsertPoint;
83///
84///    MyNode *M = MyFoldingSet.FindNodeOrInsertPos(ID, InsertPoint);
85///
86/// If found then M with be non-NULL, else InsertPoint will point to where it
87/// should be inserted using InsertNode.
88///
89/// 3) If you get a NULL result from FindNodeOrInsertPos then you can as a new
90/// node with FindNodeOrInsertPos;
91///
92///    InsertNode(N, InsertPoint);
93///
94/// 4) Finally, if you want to remove a node from the folding set call;
95///
96///    bool WasRemoved = RemoveNode(N);
97///
98/// The result indicates whether the node existed in the folding set.
99
100class FoldingSetNodeID;
101
102//===----------------------------------------------------------------------===//
103/// FoldingSetImpl - Implements the folding set functionality.  The main
104/// structure is an array of buckets.  Each bucket is indexed by the hash of
105/// the nodes it contains.  The bucket itself points to the nodes contained
106/// in the bucket via a singly linked list.  The last node in the list points
107/// back to the bucket to facilitate node removal.
108///
109class FoldingSetImpl {
110protected:
111  /// Buckets - Array of bucket chains.
112  ///
113  void **Buckets;
114
115  /// NumBuckets - Length of the Buckets array.  Always a power of 2.
116  ///
117  unsigned NumBuckets;
118
119  /// NumNodes - Number of nodes in the folding set. Growth occurs when NumNodes
120  /// is greater than twice the number of buckets.
121  unsigned NumNodes;
122
123public:
124  explicit FoldingSetImpl(unsigned Log2InitSize = 6);
125  virtual ~FoldingSetImpl();
126
127  //===--------------------------------------------------------------------===//
128  /// Node - This class is used to maintain the singly linked bucket list in
129  /// a folding set.
130  ///
131  class Node {
132  private:
133    // NextInFoldingSetBucket - next link in the bucket list.
134    void *NextInFoldingSetBucket;
135
136  public:
137
138    Node() : NextInFoldingSetBucket(0) {}
139
140    // Accessors
141    void *getNextInBucket() const { return NextInFoldingSetBucket; }
142    void SetNextInBucket(void *N) { NextInFoldingSetBucket = N; }
143  };
144
145  /// RemoveNode - Remove a node from the folding set, returning true if one
146  /// was removed or false if the node was not in the folding set.
147  bool RemoveNode(Node *N);
148
149  /// GetOrInsertNode - If there is an existing simple Node exactly
150  /// equal to the specified node, return it.  Otherwise, insert 'N' and return
151  /// it instead.
152  Node *GetOrInsertNode(Node *N);
153
154  /// FindNodeOrInsertPos - Look up the node specified by ID.  If it exists,
155  /// return it.  If not, return the insertion token that will make insertion
156  /// faster.
157  Node *FindNodeOrInsertPos(const FoldingSetNodeID &ID, void *&InsertPos);
158
159  /// InsertNode - Insert the specified node into the folding set, knowing that
160  /// it is not already in the folding set.  InsertPos must be obtained from
161  /// FindNodeOrInsertPos.
162  void InsertNode(Node *N, void *InsertPos);
163
164  /// size - Returns the number of nodes in the folding set.
165  unsigned size() const { return NumNodes; }
166
167private:
168
169  /// GrowHashTable - Double the size of the hash table and rehash everything.
170  ///
171  void GrowHashTable();
172
173protected:
174
175  /// GetNodeProfile - Instantiations of the FoldingSet template implement
176  /// this function to gather data bits for the given node.
177  virtual void GetNodeProfile(FoldingSetNodeID &ID, Node *N) const = 0;
178};
179
180//===--------------------------------------------------------------------===//
181/// FoldingSetNodeID - This class is used to gather all the unique data bits of
182/// a node.  When all the bits are gathered this class is used to produce a
183/// hash value for the node.
184///
185class FoldingSetNodeID {
186  /// Bits - Vector of all the data bits that make the node unique.
187  /// Use a SmallVector to avoid a heap allocation in the common case.
188  SmallVector<unsigned, 32> Bits;
189
190public:
191  FoldingSetNodeID() {}
192
193  /// getRawData - Return the ith entry in the Bits data.
194  ///
195  unsigned getRawData(unsigned i) const {
196    return Bits[i];
197  }
198
199  /// Add* - Add various data types to Bit data.
200  ///
201  void AddPointer(const void *Ptr);
202  void AddInteger(signed I);
203  void AddInteger(unsigned I);
204  void AddInteger(int64_t I);
205  void AddInteger(uint64_t I);
206  void AddFloat(float F);
207  void AddDouble(double D);
208  void AddAPFloat(const APFloat& apf);
209  void AddString(const std::string &String);
210
211  /// clear - Clear the accumulated profile, allowing this FoldingSetNodeID
212  ///  object to be used to compute a new profile.
213  inline void clear() { Bits.clear(); }
214
215  /// ComputeHash - Compute a strong hash value for this FoldingSetNodeID, used
216  ///  to lookup the node in the FoldingSetImpl.
217  unsigned ComputeHash() const;
218
219  /// operator== - Used to compare two nodes to each other.
220  ///
221  bool operator==(const FoldingSetNodeID &RHS) const;
222};
223
224// Convenience type to hide the implementation of the folding set.
225typedef FoldingSetImpl::Node FoldingSetNode;
226template<class T> class FoldingSetIterator;
227
228//===----------------------------------------------------------------------===//
229/// FoldingSetTrait - This trait class is used to define behavior of how
230///  to "profile" (in the FoldingSet parlance) an object of a given type.
231///  The default behavior is to invoke a 'Profile' method on an object, but
232///  through template specialization the behavior can be tailored for specific
233///  types.  Combined with the FoldingSetNodeWrapper classs, one can add objects
234///  to FoldingSets that were not originally designed to have that behavior.
235///
236template<typename T> struct FoldingSetTrait {
237  static inline void Profile(const T& X, FoldingSetNodeID& ID) { X.Profile(ID);}
238  static inline void Profile(T& X, FoldingSetNodeID& ID) { X.Profile(ID); }
239};
240
241//===----------------------------------------------------------------------===//
242/// FoldingSet - This template class is used to instantiate a specialized
243/// implementation of the folding set to the node class T.  T must be a
244/// subclass of FoldingSetNode and implement a Profile function.
245///
246template<class T> class FoldingSet : public FoldingSetImpl {
247private:
248  /// GetNodeProfile - Each instantiatation of the FoldingSet needs to provide a
249  /// way to convert nodes into a unique specifier.
250  virtual void GetNodeProfile(FoldingSetNodeID &ID, Node *N) const {
251    T *TN = static_cast<T *>(N);
252    FoldingSetTrait<T>::Profile(*TN,ID);
253  }
254
255public:
256  explicit FoldingSet(unsigned Log2InitSize = 6)
257  : FoldingSetImpl(Log2InitSize)
258  {}
259
260  typedef FoldingSetIterator<T> iterator;
261  iterator begin() { return iterator(Buckets); }
262  iterator end() { return iterator(Buckets+NumBuckets); }
263
264  typedef FoldingSetIterator<const T> const_iterator;
265  const_iterator begin() const { return const_iterator(Buckets); }
266  const_iterator end() const { return const_iterator(Buckets+NumBuckets); }
267
268  /// GetOrInsertNode - If there is an existing simple Node exactly
269  /// equal to the specified node, return it.  Otherwise, insert 'N' and
270  /// return it instead.
271  T *GetOrInsertNode(Node *N) {
272    return static_cast<T *>(FoldingSetImpl::GetOrInsertNode(N));
273  }
274
275  /// FindNodeOrInsertPos - Look up the node specified by ID.  If it exists,
276  /// return it.  If not, return the insertion token that will make insertion
277  /// faster.
278  T *FindNodeOrInsertPos(const FoldingSetNodeID &ID, void *&InsertPos) {
279    return static_cast<T *>(FoldingSetImpl::FindNodeOrInsertPos(ID, InsertPos));
280  }
281};
282
283//===----------------------------------------------------------------------===//
284/// FoldingSetIteratorImpl - This is the common iterator support shared by all
285/// folding sets, which knows how to walk the folding set hash table.
286class FoldingSetIteratorImpl {
287protected:
288  FoldingSetNode *NodePtr;
289  FoldingSetIteratorImpl(void **Bucket);
290  void advance();
291
292public:
293  bool operator==(const FoldingSetIteratorImpl &RHS) const {
294    return NodePtr == RHS.NodePtr;
295  }
296  bool operator!=(const FoldingSetIteratorImpl &RHS) const {
297    return NodePtr != RHS.NodePtr;
298  }
299};
300
301
302template<class T>
303class FoldingSetIterator : public FoldingSetIteratorImpl {
304public:
305  FoldingSetIterator(void **Bucket) : FoldingSetIteratorImpl(Bucket) {}
306
307  T &operator*() const {
308    return *static_cast<T*>(NodePtr);
309  }
310
311  T *operator->() const {
312    return static_cast<T*>(NodePtr);
313  }
314
315  inline FoldingSetIterator& operator++() {          // Preincrement
316    advance();
317    return *this;
318  }
319  FoldingSetIterator operator++(int) {        // Postincrement
320    FoldingSetIterator tmp = *this; ++*this; return tmp;
321  }
322};
323
324//===----------------------------------------------------------------------===//
325/// FoldingSetNodeWrapper - This template class is used to "wrap" arbitrary
326/// types in an enclosing object so that they can be inserted into FoldingSets.
327template <typename T>
328class FoldingSetNodeWrapper : public FoldingSetNode {
329  T data;
330public:
331  FoldingSetNodeWrapper(const T& x) : data(x) {}
332  virtual ~FoldingSetNodeWrapper();
333
334  template<typename A1>
335  explicit FoldingSetNodeWrapper(const A1& a1)
336    : data(a1) {}
337
338  template <typename A1, typename A2>
339  explicit FoldingSetNodeWrapper(const A1& a1, const A2& a2)
340    : data(a1,a2) {}
341
342  template <typename A1, typename A2, typename A3>
343  explicit FoldingSetNodeWrapper(const A1& a1, const A2& a2, const A3& a3)
344    : data(a1,a2,a3) {}
345
346  template <typename A1, typename A2, typename A3, typename A4>
347  explicit FoldingSetNodeWrapper(const A1& a1, const A2& a2, const A3& a3,
348                                 const A4& a4)
349    : data(a1,a2,a3,a4) {}
350
351  template <typename A1, typename A2, typename A3, typename A4, typename A5>
352  explicit FoldingSetNodeWrapper(const A1& a1, const A2& a2, const A3& a3,
353                                 const A4& a4, const A5& a5)
354  : data(a1,a2,a3,a4,a5) {}
355
356
357  void Profile(FoldingSetNodeID& ID) { FoldingSetTrait<T>::Profile(data, ID); }
358
359  operator T&() { return data; }
360  operator const T&() const { return data; }
361};
362
363} // End of namespace llvm.
364
365
366#endif
367
368