FoldingSet.h revision d6a2aab53e3c4fcd53399cfa6f66d62913e53663
1//===-- llvm/ADT/FoldingSet.h - Uniquing Hash Set ---------------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines a hash set that can be used to remove duplication of nodes
11// in a graph.  This code was originally created by Chris Lattner for use with
12// SelectionDAGCSEMap, but was isolated to provide use across the llvm code set.
13//
14//===----------------------------------------------------------------------===//
15
16#ifndef LLVM_ADT_FOLDINGSET_H
17#define LLVM_ADT_FOLDINGSET_H
18
19#include "llvm/Support/DataTypes.h"
20#include "llvm/ADT/SmallVector.h"
21#include <string>
22#include <iterator>
23
24namespace llvm {
25  class APFloat;
26  class APInt;
27
28/// This folding set used for two purposes:
29///   1. Given information about a node we want to create, look up the unique
30///      instance of the node in the set.  If the node already exists, return
31///      it, otherwise return the bucket it should be inserted into.
32///   2. Given a node that has already been created, remove it from the set.
33///
34/// This class is implemented as a single-link chained hash table, where the
35/// "buckets" are actually the nodes themselves (the next pointer is in the
36/// node).  The last node points back to the bucket to simplify node removal.
37///
38/// Any node that is to be included in the folding set must be a subclass of
39/// FoldingSetNode.  The node class must also define a Profile method used to
40/// establish the unique bits of data for the node.  The Profile method is
41/// passed a FoldingSetNodeID object which is used to gather the bits.  Just
42/// call one of the Add* functions defined in the FoldingSetImpl::NodeID class.
43/// NOTE: That the folding set does not own the nodes and it is the
44/// responsibility of the user to dispose of the nodes.
45///
46/// Eg.
47///    class MyNode : public FoldingSetNode {
48///    private:
49///      std::string Name;
50///      unsigned Value;
51///    public:
52///      MyNode(const char *N, unsigned V) : Name(N), Value(V) {}
53///       ...
54///      void Profile(FoldingSetNodeID &ID) const {
55///        ID.AddString(Name);
56///        ID.AddInteger(Value);
57///       }
58///       ...
59///     };
60///
61/// To define the folding set itself use the FoldingSet template;
62///
63/// Eg.
64///    FoldingSet<MyNode> MyFoldingSet;
65///
66/// Four public methods are available to manipulate the folding set;
67///
68/// 1) If you have an existing node that you want add to the set but unsure
69/// that the node might already exist then call;
70///
71///    MyNode *M = MyFoldingSet.GetOrInsertNode(N);
72///
73/// If The result is equal to the input then the node has been inserted.
74/// Otherwise, the result is the node existing in the folding set, and the
75/// input can be discarded (use the result instead.)
76///
77/// 2) If you are ready to construct a node but want to check if it already
78/// exists, then call FindNodeOrInsertPos with a FoldingSetNodeID of the bits to
79/// check;
80///
81///   FoldingSetNodeID ID;
82///   ID.AddString(Name);
83///   ID.AddInteger(Value);
84///   void *InsertPoint;
85///
86///    MyNode *M = MyFoldingSet.FindNodeOrInsertPos(ID, InsertPoint);
87///
88/// If found then M with be non-NULL, else InsertPoint will point to where it
89/// should be inserted using InsertNode.
90///
91/// 3) If you get a NULL result from FindNodeOrInsertPos then you can as a new
92/// node with FindNodeOrInsertPos;
93///
94///    InsertNode(N, InsertPoint);
95///
96/// 4) Finally, if you want to remove a node from the folding set call;
97///
98///    bool WasRemoved = RemoveNode(N);
99///
100/// The result indicates whether the node existed in the folding set.
101
102class FoldingSetNodeID;
103
104//===----------------------------------------------------------------------===//
105/// FoldingSetImpl - Implements the folding set functionality.  The main
106/// structure is an array of buckets.  Each bucket is indexed by the hash of
107/// the nodes it contains.  The bucket itself points to the nodes contained
108/// in the bucket via a singly linked list.  The last node in the list points
109/// back to the bucket to facilitate node removal.
110///
111class FoldingSetImpl {
112protected:
113  /// Buckets - Array of bucket chains.
114  ///
115  void **Buckets;
116
117  /// NumBuckets - Length of the Buckets array.  Always a power of 2.
118  ///
119  unsigned NumBuckets;
120
121  /// NumNodes - Number of nodes in the folding set. Growth occurs when NumNodes
122  /// is greater than twice the number of buckets.
123  unsigned NumNodes;
124
125public:
126  explicit FoldingSetImpl(unsigned Log2InitSize = 6);
127  virtual ~FoldingSetImpl();
128
129  //===--------------------------------------------------------------------===//
130  /// Node - This class is used to maintain the singly linked bucket list in
131  /// a folding set.
132  ///
133  class Node {
134  private:
135    // NextInFoldingSetBucket - next link in the bucket list.
136    void *NextInFoldingSetBucket;
137
138  public:
139
140    Node() : NextInFoldingSetBucket(0) {}
141
142    // Accessors
143    void *getNextInBucket() const { return NextInFoldingSetBucket; }
144    void SetNextInBucket(void *N) { NextInFoldingSetBucket = N; }
145  };
146
147  /// clear - Remove all nodes from the folding set.
148  void clear();
149
150  /// RemoveNode - Remove a node from the folding set, returning true if one
151  /// was removed or false if the node was not in the folding set.
152  bool RemoveNode(Node *N);
153
154  /// GetOrInsertNode - If there is an existing simple Node exactly
155  /// equal to the specified node, return it.  Otherwise, insert 'N' and return
156  /// it instead.
157  Node *GetOrInsertNode(Node *N);
158
159  /// FindNodeOrInsertPos - Look up the node specified by ID.  If it exists,
160  /// return it.  If not, return the insertion token that will make insertion
161  /// faster.
162  Node *FindNodeOrInsertPos(const FoldingSetNodeID &ID, void *&InsertPos);
163
164  /// InsertNode - Insert the specified node into the folding set, knowing that
165  /// it is not already in the folding set.  InsertPos must be obtained from
166  /// FindNodeOrInsertPos.
167  void InsertNode(Node *N, void *InsertPos);
168
169  /// size - Returns the number of nodes in the folding set.
170  unsigned size() const { return NumNodes; }
171
172  /// empty - Returns true if there are no nodes in the folding set.
173  bool empty() const { return NumNodes == 0; }
174
175private:
176
177  /// GrowHashTable - Double the size of the hash table and rehash everything.
178  ///
179  void GrowHashTable();
180
181protected:
182
183  /// GetNodeProfile - Instantiations of the FoldingSet template implement
184  /// this function to gather data bits for the given node.
185  virtual void GetNodeProfile(FoldingSetNodeID &ID, Node *N) const = 0;
186};
187
188//===----------------------------------------------------------------------===//
189/// FoldingSetTrait - This trait class is used to define behavior of how
190///  to "profile" (in the FoldingSet parlance) an object of a given type.
191///  The default behavior is to invoke a 'Profile' method on an object, but
192///  through template specialization the behavior can be tailored for specific
193///  types.  Combined with the FoldingSetNodeWrapper classs, one can add objects
194///  to FoldingSets that were not originally designed to have that behavior.
195///
196template<typename T> struct FoldingSetTrait {
197  static inline void Profile(const T& X, FoldingSetNodeID& ID) { X.Profile(ID);}
198  static inline void Profile(T& X, FoldingSetNodeID& ID) { X.Profile(ID); }
199};
200
201//===--------------------------------------------------------------------===//
202/// FoldingSetNodeID - This class is used to gather all the unique data bits of
203/// a node.  When all the bits are gathered this class is used to produce a
204/// hash value for the node.
205///
206class FoldingSetNodeID {
207  /// Bits - Vector of all the data bits that make the node unique.
208  /// Use a SmallVector to avoid a heap allocation in the common case.
209  SmallVector<unsigned, 32> Bits;
210
211public:
212  FoldingSetNodeID() {}
213
214  /// getRawData - Return the ith entry in the Bits data.
215  ///
216  unsigned getRawData(unsigned i) const {
217    return Bits[i];
218  }
219
220  /// Add* - Add various data types to Bit data.
221  ///
222  void AddPointer(const void *Ptr);
223  void AddInteger(signed I);
224  void AddInteger(unsigned I);
225  void AddInteger(long I);
226  void AddInteger(unsigned long I);
227  void AddInteger(long long I);
228  void AddInteger(unsigned long long I);
229  void AddBoolean(bool B) { AddInteger(B ? 1U : 0U); }
230  void AddString(const char* String, const char* End);
231  void AddString(const std::string &String);
232  void AddString(const char* String);
233
234  template <typename T>
235  inline void Add(const T& x) { FoldingSetTrait<T>::Profile(x, *this); }
236
237  /// clear - Clear the accumulated profile, allowing this FoldingSetNodeID
238  ///  object to be used to compute a new profile.
239  inline void clear() { Bits.clear(); }
240
241  /// ComputeHash - Compute a strong hash value for this FoldingSetNodeID, used
242  ///  to lookup the node in the FoldingSetImpl.
243  unsigned ComputeHash() const;
244
245  /// operator== - Used to compare two nodes to each other.
246  ///
247  bool operator==(const FoldingSetNodeID &RHS) const;
248};
249
250// Convenience type to hide the implementation of the folding set.
251typedef FoldingSetImpl::Node FoldingSetNode;
252template<class T> class FoldingSetIterator;
253template<class T> class FoldingSetBucketIterator;
254
255//===----------------------------------------------------------------------===//
256/// FoldingSet - This template class is used to instantiate a specialized
257/// implementation of the folding set to the node class T.  T must be a
258/// subclass of FoldingSetNode and implement a Profile function.
259///
260template<class T> class FoldingSet : public FoldingSetImpl {
261private:
262  /// GetNodeProfile - Each instantiatation of the FoldingSet needs to provide a
263  /// way to convert nodes into a unique specifier.
264  virtual void GetNodeProfile(FoldingSetNodeID &ID, Node *N) const {
265    T *TN = static_cast<T *>(N);
266    FoldingSetTrait<T>::Profile(*TN,ID);
267  }
268
269public:
270  explicit FoldingSet(unsigned Log2InitSize = 6)
271  : FoldingSetImpl(Log2InitSize)
272  {}
273
274  typedef FoldingSetIterator<T> iterator;
275  iterator begin() { return iterator(Buckets); }
276  iterator end() { return iterator(Buckets+NumBuckets); }
277
278  typedef FoldingSetIterator<const T> const_iterator;
279  const_iterator begin() const { return const_iterator(Buckets); }
280  const_iterator end() const { return const_iterator(Buckets+NumBuckets); }
281
282  typedef FoldingSetBucketIterator<T> bucket_iterator;
283
284  bucket_iterator bucket_begin(unsigned hash) {
285    return bucket_iterator(Buckets + (hash & (NumBuckets-1)));
286  }
287
288  bucket_iterator bucket_end(unsigned hash) {
289    return bucket_iterator(Buckets + (hash & (NumBuckets-1)), true);
290  }
291
292  /// GetOrInsertNode - If there is an existing simple Node exactly
293  /// equal to the specified node, return it.  Otherwise, insert 'N' and
294  /// return it instead.
295  T *GetOrInsertNode(Node *N) {
296    return static_cast<T *>(FoldingSetImpl::GetOrInsertNode(N));
297  }
298
299  /// FindNodeOrInsertPos - Look up the node specified by ID.  If it exists,
300  /// return it.  If not, return the insertion token that will make insertion
301  /// faster.
302  T *FindNodeOrInsertPos(const FoldingSetNodeID &ID, void *&InsertPos) {
303    return static_cast<T *>(FoldingSetImpl::FindNodeOrInsertPos(ID, InsertPos));
304  }
305};
306
307//===----------------------------------------------------------------------===//
308/// FoldingSetIteratorImpl - This is the common iterator support shared by all
309/// folding sets, which knows how to walk the folding set hash table.
310class FoldingSetIteratorImpl {
311protected:
312  FoldingSetNode *NodePtr;
313  FoldingSetIteratorImpl(void **Bucket);
314  void advance();
315
316public:
317  bool operator==(const FoldingSetIteratorImpl &RHS) const {
318    return NodePtr == RHS.NodePtr;
319  }
320  bool operator!=(const FoldingSetIteratorImpl &RHS) const {
321    return NodePtr != RHS.NodePtr;
322  }
323};
324
325
326template<class T>
327class FoldingSetIterator : public FoldingSetIteratorImpl {
328public:
329  explicit FoldingSetIterator(void **Bucket) : FoldingSetIteratorImpl(Bucket) {}
330
331  T &operator*() const {
332    return *static_cast<T*>(NodePtr);
333  }
334
335  T *operator->() const {
336    return static_cast<T*>(NodePtr);
337  }
338
339  inline FoldingSetIterator& operator++() {          // Preincrement
340    advance();
341    return *this;
342  }
343  FoldingSetIterator operator++(int) {        // Postincrement
344    FoldingSetIterator tmp = *this; ++*this; return tmp;
345  }
346};
347
348//===----------------------------------------------------------------------===//
349/// FoldingSetBucketIteratorImpl - This is the common bucket iterator support
350///  shared by all folding sets, which knows how to walk a particular bucket
351///  of a folding set hash table.
352
353class FoldingSetBucketIteratorImpl {
354protected:
355  void *Ptr;
356
357  explicit FoldingSetBucketIteratorImpl(void **Bucket);
358
359  FoldingSetBucketIteratorImpl(void **Bucket, bool)
360    : Ptr(Bucket) {}
361
362  void advance() {
363    void *Probe = static_cast<FoldingSetNode*>(Ptr)->getNextInBucket();
364    uintptr_t x = reinterpret_cast<uintptr_t>(Probe) & ~0x1;
365    Ptr = reinterpret_cast<void*>(x);
366  }
367
368public:
369  bool operator==(const FoldingSetBucketIteratorImpl &RHS) const {
370    return Ptr == RHS.Ptr;
371  }
372  bool operator!=(const FoldingSetBucketIteratorImpl &RHS) const {
373    return Ptr != RHS.Ptr;
374  }
375};
376
377
378template<class T>
379class FoldingSetBucketIterator : public FoldingSetBucketIteratorImpl {
380public:
381  explicit FoldingSetBucketIterator(void **Bucket) :
382    FoldingSetBucketIteratorImpl(Bucket) {}
383
384  FoldingSetBucketIterator(void **Bucket, bool) :
385    FoldingSetBucketIteratorImpl(Bucket, true) {}
386
387  T& operator*() const { return *static_cast<T*>(Ptr); }
388  T* operator->() const { return static_cast<T*>(Ptr); }
389
390  inline FoldingSetBucketIterator& operator++() { // Preincrement
391    advance();
392    return *this;
393  }
394  FoldingSetBucketIterator operator++(int) {      // Postincrement
395    FoldingSetBucketIterator tmp = *this; ++*this; return tmp;
396  }
397};
398
399//===----------------------------------------------------------------------===//
400/// FoldingSetNodeWrapper - This template class is used to "wrap" arbitrary
401/// types in an enclosing object so that they can be inserted into FoldingSets.
402template <typename T>
403class FoldingSetNodeWrapper : public FoldingSetNode {
404  T data;
405public:
406  explicit FoldingSetNodeWrapper(const T& x) : data(x) {}
407  virtual ~FoldingSetNodeWrapper() {}
408
409  template<typename A1>
410  explicit FoldingSetNodeWrapper(const A1& a1)
411    : data(a1) {}
412
413  template <typename A1, typename A2>
414  explicit FoldingSetNodeWrapper(const A1& a1, const A2& a2)
415    : data(a1,a2) {}
416
417  template <typename A1, typename A2, typename A3>
418  explicit FoldingSetNodeWrapper(const A1& a1, const A2& a2, const A3& a3)
419    : data(a1,a2,a3) {}
420
421  template <typename A1, typename A2, typename A3, typename A4>
422  explicit FoldingSetNodeWrapper(const A1& a1, const A2& a2, const A3& a3,
423                                 const A4& a4)
424    : data(a1,a2,a3,a4) {}
425
426  template <typename A1, typename A2, typename A3, typename A4, typename A5>
427  explicit FoldingSetNodeWrapper(const A1& a1, const A2& a2, const A3& a3,
428                                 const A4& a4, const A5& a5)
429  : data(a1,a2,a3,a4,a5) {}
430
431
432  void Profile(FoldingSetNodeID& ID) { FoldingSetTrait<T>::Profile(data, ID); }
433
434  T& getValue() { return data; }
435  const T& getValue() const { return data; }
436
437  operator T&() { return data; }
438  operator const T&() const { return data; }
439};
440
441//===----------------------------------------------------------------------===//
442/// FastFoldingSetNode - This is a subclass of FoldingSetNode which stores
443/// a FoldingSetNodeID value rather than requiring the node to recompute it
444/// each time it is needed. This trades space for speed (which can be
445/// significant if the ID is long), and it also permits nodes to drop
446/// information that would otherwise only be required for recomputing an ID.
447class FastFoldingSetNode : public FoldingSetNode {
448  FoldingSetNodeID FastID;
449protected:
450  explicit FastFoldingSetNode(const FoldingSetNodeID &ID) : FastID(ID) {}
451public:
452  void Profile(FoldingSetNodeID& ID) { ID = FastID; }
453};
454
455//===----------------------------------------------------------------------===//
456// Partial specializations of FoldingSetTrait.
457
458template<typename T> struct FoldingSetTrait<T*> {
459  static inline void Profile(const T* X, FoldingSetNodeID& ID) {
460    ID.AddPointer(X);
461  }
462  static inline void Profile(T* X, FoldingSetNodeID& ID) {
463    ID.AddPointer(X);
464  }
465};
466
467template<typename T> struct FoldingSetTrait<const T*> {
468  static inline void Profile(const T* X, FoldingSetNodeID& ID) {
469    ID.AddPointer(X);
470  }
471};
472
473} // End of namespace llvm.
474
475#endif
476