1//===-- llvm/ADT/Hashing.h - Utilities for hashing --------------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the newly proposed standard C++ interfaces for hashing
11// arbitrary data and building hash functions for user-defined types. This
12// interface was originally proposed in N3333[1] and is currently under review
13// for inclusion in a future TR and/or standard.
14//
15// The primary interfaces provide are comprised of one type and three functions:
16//
17//  -- 'hash_code' class is an opaque type representing the hash code for some
18//     data. It is the intended product of hashing, and can be used to implement
19//     hash tables, checksumming, and other common uses of hashes. It is not an
20//     integer type (although it can be converted to one) because it is risky
21//     to assume much about the internals of a hash_code. In particular, each
22//     execution of the program has a high probability of producing a different
23//     hash_code for a given input. Thus their values are not stable to save or
24//     persist, and should only be used during the execution for the
25//     construction of hashing datastructures.
26//
27//  -- 'hash_value' is a function designed to be overloaded for each
28//     user-defined type which wishes to be used within a hashing context. It
29//     should be overloaded within the user-defined type's namespace and found
30//     via ADL. Overloads for primitive types are provided by this library.
31//
32//  -- 'hash_combine' and 'hash_combine_range' are functions designed to aid
33//      programmers in easily and intuitively combining a set of data into
34//      a single hash_code for their object. They should only logically be used
35//      within the implementation of a 'hash_value' routine or similar context.
36//
37// Note that 'hash_combine_range' contains very special logic for hashing
38// a contiguous array of integers or pointers. This logic is *extremely* fast,
39// on a modern Intel "Gainestown" Xeon (Nehalem uarch) @2.2 GHz, these were
40// benchmarked at over 6.5 GiB/s for large keys, and <20 cycles/hash for keys
41// under 32-bytes.
42//
43//===----------------------------------------------------------------------===//
44
45#ifndef LLVM_ADT_HASHING_H
46#define LLVM_ADT_HASHING_H
47
48#include "llvm/Support/DataTypes.h"
49#include "llvm/Support/Host.h"
50#include "llvm/Support/SwapByteOrder.h"
51#include "llvm/Support/type_traits.h"
52#include <algorithm>
53#include <cassert>
54#include <cstring>
55#include <iterator>
56#include <utility>
57
58// Allow detecting C++11 feature availability when building with Clang without
59// breaking other compilers.
60#ifndef __has_feature
61# define __has_feature(x) 0
62#endif
63
64namespace llvm {
65
66/// \brief An opaque object representing a hash code.
67///
68/// This object represents the result of hashing some entity. It is intended to
69/// be used to implement hashtables or other hashing-based data structures.
70/// While it wraps and exposes a numeric value, this value should not be
71/// trusted to be stable or predictable across processes or executions.
72///
73/// In order to obtain the hash_code for an object 'x':
74/// \code
75///   using llvm::hash_value;
76///   llvm::hash_code code = hash_value(x);
77/// \endcode
78class hash_code {
79  size_t value;
80
81public:
82  /// \brief Default construct a hash_code.
83  /// Note that this leaves the value uninitialized.
84  hash_code() {}
85
86  /// \brief Form a hash code directly from a numerical value.
87  hash_code(size_t value) : value(value) {}
88
89  /// \brief Convert the hash code to its numerical value for use.
90  /*explicit*/ operator size_t() const { return value; }
91
92  friend bool operator==(const hash_code &lhs, const hash_code &rhs) {
93    return lhs.value == rhs.value;
94  }
95  friend bool operator!=(const hash_code &lhs, const hash_code &rhs) {
96    return lhs.value != rhs.value;
97  }
98
99  /// \brief Allow a hash_code to be directly run through hash_value.
100  friend size_t hash_value(const hash_code &code) { return code.value; }
101};
102
103/// \brief Compute a hash_code for any integer value.
104///
105/// Note that this function is intended to compute the same hash_code for
106/// a particular value without regard to the pre-promotion type. This is in
107/// contrast to hash_combine which may produce different hash_codes for
108/// differing argument types even if they would implicit promote to a common
109/// type without changing the value.
110template <typename T>
111typename std::enable_if<is_integral_or_enum<T>::value, hash_code>::type
112hash_value(T value);
113
114/// \brief Compute a hash_code for a pointer's address.
115///
116/// N.B.: This hashes the *address*. Not the value and not the type.
117template <typename T> hash_code hash_value(const T *ptr);
118
119/// \brief Compute a hash_code for a pair of objects.
120template <typename T, typename U>
121hash_code hash_value(const std::pair<T, U> &arg);
122
123/// \brief Compute a hash_code for a standard string.
124template <typename T>
125hash_code hash_value(const std::basic_string<T> &arg);
126
127
128/// \brief Override the execution seed with a fixed value.
129///
130/// This hashing library uses a per-execution seed designed to change on each
131/// run with high probability in order to ensure that the hash codes are not
132/// attackable and to ensure that output which is intended to be stable does
133/// not rely on the particulars of the hash codes produced.
134///
135/// That said, there are use cases where it is important to be able to
136/// reproduce *exactly* a specific behavior. To that end, we provide a function
137/// which will forcibly set the seed to a fixed value. This must be done at the
138/// start of the program, before any hashes are computed. Also, it cannot be
139/// undone. This makes it thread-hostile and very hard to use outside of
140/// immediately on start of a simple program designed for reproducible
141/// behavior.
142void set_fixed_execution_hash_seed(size_t fixed_value);
143
144
145// All of the implementation details of actually computing the various hash
146// code values are held within this namespace. These routines are included in
147// the header file mainly to allow inlining and constant propagation.
148namespace hashing {
149namespace detail {
150
151inline uint64_t fetch64(const char *p) {
152  uint64_t result;
153  memcpy(&result, p, sizeof(result));
154  if (sys::IsBigEndianHost)
155    sys::swapByteOrder(result);
156  return result;
157}
158
159inline uint32_t fetch32(const char *p) {
160  uint32_t result;
161  memcpy(&result, p, sizeof(result));
162  if (sys::IsBigEndianHost)
163    sys::swapByteOrder(result);
164  return result;
165}
166
167/// Some primes between 2^63 and 2^64 for various uses.
168static const uint64_t k0 = 0xc3a5c85c97cb3127ULL;
169static const uint64_t k1 = 0xb492b66fbe98f273ULL;
170static const uint64_t k2 = 0x9ae16a3b2f90404fULL;
171static const uint64_t k3 = 0xc949d7c7509e6557ULL;
172
173/// \brief Bitwise right rotate.
174/// Normally this will compile to a single instruction, especially if the
175/// shift is a manifest constant.
176inline uint64_t rotate(uint64_t val, size_t shift) {
177  // Avoid shifting by 64: doing so yields an undefined result.
178  return shift == 0 ? val : ((val >> shift) | (val << (64 - shift)));
179}
180
181inline uint64_t shift_mix(uint64_t val) {
182  return val ^ (val >> 47);
183}
184
185inline uint64_t hash_16_bytes(uint64_t low, uint64_t high) {
186  // Murmur-inspired hashing.
187  const uint64_t kMul = 0x9ddfea08eb382d69ULL;
188  uint64_t a = (low ^ high) * kMul;
189  a ^= (a >> 47);
190  uint64_t b = (high ^ a) * kMul;
191  b ^= (b >> 47);
192  b *= kMul;
193  return b;
194}
195
196inline uint64_t hash_1to3_bytes(const char *s, size_t len, uint64_t seed) {
197  uint8_t a = s[0];
198  uint8_t b = s[len >> 1];
199  uint8_t c = s[len - 1];
200  uint32_t y = static_cast<uint32_t>(a) + (static_cast<uint32_t>(b) << 8);
201  uint32_t z = len + (static_cast<uint32_t>(c) << 2);
202  return shift_mix(y * k2 ^ z * k3 ^ seed) * k2;
203}
204
205inline uint64_t hash_4to8_bytes(const char *s, size_t len, uint64_t seed) {
206  uint64_t a = fetch32(s);
207  return hash_16_bytes(len + (a << 3), seed ^ fetch32(s + len - 4));
208}
209
210inline uint64_t hash_9to16_bytes(const char *s, size_t len, uint64_t seed) {
211  uint64_t a = fetch64(s);
212  uint64_t b = fetch64(s + len - 8);
213  return hash_16_bytes(seed ^ a, rotate(b + len, len)) ^ b;
214}
215
216inline uint64_t hash_17to32_bytes(const char *s, size_t len, uint64_t seed) {
217  uint64_t a = fetch64(s) * k1;
218  uint64_t b = fetch64(s + 8);
219  uint64_t c = fetch64(s + len - 8) * k2;
220  uint64_t d = fetch64(s + len - 16) * k0;
221  return hash_16_bytes(rotate(a - b, 43) + rotate(c ^ seed, 30) + d,
222                       a + rotate(b ^ k3, 20) - c + len + seed);
223}
224
225inline uint64_t hash_33to64_bytes(const char *s, size_t len, uint64_t seed) {
226  uint64_t z = fetch64(s + 24);
227  uint64_t a = fetch64(s) + (len + fetch64(s + len - 16)) * k0;
228  uint64_t b = rotate(a + z, 52);
229  uint64_t c = rotate(a, 37);
230  a += fetch64(s + 8);
231  c += rotate(a, 7);
232  a += fetch64(s + 16);
233  uint64_t vf = a + z;
234  uint64_t vs = b + rotate(a, 31) + c;
235  a = fetch64(s + 16) + fetch64(s + len - 32);
236  z = fetch64(s + len - 8);
237  b = rotate(a + z, 52);
238  c = rotate(a, 37);
239  a += fetch64(s + len - 24);
240  c += rotate(a, 7);
241  a += fetch64(s + len - 16);
242  uint64_t wf = a + z;
243  uint64_t ws = b + rotate(a, 31) + c;
244  uint64_t r = shift_mix((vf + ws) * k2 + (wf + vs) * k0);
245  return shift_mix((seed ^ (r * k0)) + vs) * k2;
246}
247
248inline uint64_t hash_short(const char *s, size_t length, uint64_t seed) {
249  if (length >= 4 && length <= 8)
250    return hash_4to8_bytes(s, length, seed);
251  if (length > 8 && length <= 16)
252    return hash_9to16_bytes(s, length, seed);
253  if (length > 16 && length <= 32)
254    return hash_17to32_bytes(s, length, seed);
255  if (length > 32)
256    return hash_33to64_bytes(s, length, seed);
257  if (length != 0)
258    return hash_1to3_bytes(s, length, seed);
259
260  return k2 ^ seed;
261}
262
263/// \brief The intermediate state used during hashing.
264/// Currently, the algorithm for computing hash codes is based on CityHash and
265/// keeps 56 bytes of arbitrary state.
266struct hash_state {
267  uint64_t h0, h1, h2, h3, h4, h5, h6;
268
269  /// \brief Create a new hash_state structure and initialize it based on the
270  /// seed and the first 64-byte chunk.
271  /// This effectively performs the initial mix.
272  static hash_state create(const char *s, uint64_t seed) {
273    hash_state state = {
274      0, seed, hash_16_bytes(seed, k1), rotate(seed ^ k1, 49),
275      seed * k1, shift_mix(seed), 0 };
276    state.h6 = hash_16_bytes(state.h4, state.h5);
277    state.mix(s);
278    return state;
279  }
280
281  /// \brief Mix 32-bytes from the input sequence into the 16-bytes of 'a'
282  /// and 'b', including whatever is already in 'a' and 'b'.
283  static void mix_32_bytes(const char *s, uint64_t &a, uint64_t &b) {
284    a += fetch64(s);
285    uint64_t c = fetch64(s + 24);
286    b = rotate(b + a + c, 21);
287    uint64_t d = a;
288    a += fetch64(s + 8) + fetch64(s + 16);
289    b += rotate(a, 44) + d;
290    a += c;
291  }
292
293  /// \brief Mix in a 64-byte buffer of data.
294  /// We mix all 64 bytes even when the chunk length is smaller, but we
295  /// record the actual length.
296  void mix(const char *s) {
297    h0 = rotate(h0 + h1 + h3 + fetch64(s + 8), 37) * k1;
298    h1 = rotate(h1 + h4 + fetch64(s + 48), 42) * k1;
299    h0 ^= h6;
300    h1 += h3 + fetch64(s + 40);
301    h2 = rotate(h2 + h5, 33) * k1;
302    h3 = h4 * k1;
303    h4 = h0 + h5;
304    mix_32_bytes(s, h3, h4);
305    h5 = h2 + h6;
306    h6 = h1 + fetch64(s + 16);
307    mix_32_bytes(s + 32, h5, h6);
308    std::swap(h2, h0);
309  }
310
311  /// \brief Compute the final 64-bit hash code value based on the current
312  /// state and the length of bytes hashed.
313  uint64_t finalize(size_t length) {
314    return hash_16_bytes(hash_16_bytes(h3, h5) + shift_mix(h1) * k1 + h2,
315                         hash_16_bytes(h4, h6) + shift_mix(length) * k1 + h0);
316  }
317};
318
319
320/// \brief A global, fixed seed-override variable.
321///
322/// This variable can be set using the \see llvm::set_fixed_execution_seed
323/// function. See that function for details. Do not, under any circumstances,
324/// set or read this variable.
325extern size_t fixed_seed_override;
326
327inline size_t get_execution_seed() {
328  // FIXME: This needs to be a per-execution seed. This is just a placeholder
329  // implementation. Switching to a per-execution seed is likely to flush out
330  // instability bugs and so will happen as its own commit.
331  //
332  // However, if there is a fixed seed override set the first time this is
333  // called, return that instead of the per-execution seed.
334  const uint64_t seed_prime = 0xff51afd7ed558ccdULL;
335  static size_t seed = fixed_seed_override ? fixed_seed_override
336                                           : (size_t)seed_prime;
337  return seed;
338}
339
340
341/// \brief Trait to indicate whether a type's bits can be hashed directly.
342///
343/// A type trait which is true if we want to combine values for hashing by
344/// reading the underlying data. It is false if values of this type must
345/// first be passed to hash_value, and the resulting hash_codes combined.
346//
347// FIXME: We want to replace is_integral_or_enum and is_pointer here with
348// a predicate which asserts that comparing the underlying storage of two
349// values of the type for equality is equivalent to comparing the two values
350// for equality. For all the platforms we care about, this holds for integers
351// and pointers, but there are platforms where it doesn't and we would like to
352// support user-defined types which happen to satisfy this property.
353template <typename T> struct is_hashable_data
354  : std::integral_constant<bool, ((is_integral_or_enum<T>::value ||
355                                   std::is_pointer<T>::value) &&
356                                  64 % sizeof(T) == 0)> {};
357
358// Special case std::pair to detect when both types are viable and when there
359// is no alignment-derived padding in the pair. This is a bit of a lie because
360// std::pair isn't truly POD, but it's close enough in all reasonable
361// implementations for our use case of hashing the underlying data.
362template <typename T, typename U> struct is_hashable_data<std::pair<T, U> >
363  : std::integral_constant<bool, (is_hashable_data<T>::value &&
364                                  is_hashable_data<U>::value &&
365                                  (sizeof(T) + sizeof(U)) ==
366                                   sizeof(std::pair<T, U>))> {};
367
368/// \brief Helper to get the hashable data representation for a type.
369/// This variant is enabled when the type itself can be used.
370template <typename T>
371typename std::enable_if<is_hashable_data<T>::value, T>::type
372get_hashable_data(const T &value) {
373  return value;
374}
375/// \brief Helper to get the hashable data representation for a type.
376/// This variant is enabled when we must first call hash_value and use the
377/// result as our data.
378template <typename T>
379typename std::enable_if<!is_hashable_data<T>::value, size_t>::type
380get_hashable_data(const T &value) {
381  using ::llvm::hash_value;
382  return hash_value(value);
383}
384
385/// \brief Helper to store data from a value into a buffer and advance the
386/// pointer into that buffer.
387///
388/// This routine first checks whether there is enough space in the provided
389/// buffer, and if not immediately returns false. If there is space, it
390/// copies the underlying bytes of value into the buffer, advances the
391/// buffer_ptr past the copied bytes, and returns true.
392template <typename T>
393bool store_and_advance(char *&buffer_ptr, char *buffer_end, const T& value,
394                       size_t offset = 0) {
395  size_t store_size = sizeof(value) - offset;
396  if (buffer_ptr + store_size > buffer_end)
397    return false;
398  const char *value_data = reinterpret_cast<const char *>(&value);
399  memcpy(buffer_ptr, value_data + offset, store_size);
400  buffer_ptr += store_size;
401  return true;
402}
403
404/// \brief Implement the combining of integral values into a hash_code.
405///
406/// This overload is selected when the value type of the iterator is
407/// integral. Rather than computing a hash_code for each object and then
408/// combining them, this (as an optimization) directly combines the integers.
409template <typename InputIteratorT>
410hash_code hash_combine_range_impl(InputIteratorT first, InputIteratorT last) {
411  const size_t seed = get_execution_seed();
412  char buffer[64], *buffer_ptr = buffer;
413  char *const buffer_end = std::end(buffer);
414  while (first != last && store_and_advance(buffer_ptr, buffer_end,
415                                            get_hashable_data(*first)))
416    ++first;
417  if (first == last)
418    return hash_short(buffer, buffer_ptr - buffer, seed);
419  assert(buffer_ptr == buffer_end);
420
421  hash_state state = state.create(buffer, seed);
422  size_t length = 64;
423  while (first != last) {
424    // Fill up the buffer. We don't clear it, which re-mixes the last round
425    // when only a partial 64-byte chunk is left.
426    buffer_ptr = buffer;
427    while (first != last && store_and_advance(buffer_ptr, buffer_end,
428                                              get_hashable_data(*first)))
429      ++first;
430
431    // Rotate the buffer if we did a partial fill in order to simulate doing
432    // a mix of the last 64-bytes. That is how the algorithm works when we
433    // have a contiguous byte sequence, and we want to emulate that here.
434    std::rotate(buffer, buffer_ptr, buffer_end);
435
436    // Mix this chunk into the current state.
437    state.mix(buffer);
438    length += buffer_ptr - buffer;
439  };
440
441  return state.finalize(length);
442}
443
444/// \brief Implement the combining of integral values into a hash_code.
445///
446/// This overload is selected when the value type of the iterator is integral
447/// and when the input iterator is actually a pointer. Rather than computing
448/// a hash_code for each object and then combining them, this (as an
449/// optimization) directly combines the integers. Also, because the integers
450/// are stored in contiguous memory, this routine avoids copying each value
451/// and directly reads from the underlying memory.
452template <typename ValueT>
453typename std::enable_if<is_hashable_data<ValueT>::value, hash_code>::type
454hash_combine_range_impl(ValueT *first, ValueT *last) {
455  const size_t seed = get_execution_seed();
456  const char *s_begin = reinterpret_cast<const char *>(first);
457  const char *s_end = reinterpret_cast<const char *>(last);
458  const size_t length = std::distance(s_begin, s_end);
459  if (length <= 64)
460    return hash_short(s_begin, length, seed);
461
462  const char *s_aligned_end = s_begin + (length & ~63);
463  hash_state state = state.create(s_begin, seed);
464  s_begin += 64;
465  while (s_begin != s_aligned_end) {
466    state.mix(s_begin);
467    s_begin += 64;
468  }
469  if (length & 63)
470    state.mix(s_end - 64);
471
472  return state.finalize(length);
473}
474
475} // namespace detail
476} // namespace hashing
477
478
479/// \brief Compute a hash_code for a sequence of values.
480///
481/// This hashes a sequence of values. It produces the same hash_code as
482/// 'hash_combine(a, b, c, ...)', but can run over arbitrary sized sequences
483/// and is significantly faster given pointers and types which can be hashed as
484/// a sequence of bytes.
485template <typename InputIteratorT>
486hash_code hash_combine_range(InputIteratorT first, InputIteratorT last) {
487  return ::llvm::hashing::detail::hash_combine_range_impl(first, last);
488}
489
490
491// Implementation details for hash_combine.
492namespace hashing {
493namespace detail {
494
495/// \brief Helper class to manage the recursive combining of hash_combine
496/// arguments.
497///
498/// This class exists to manage the state and various calls involved in the
499/// recursive combining of arguments used in hash_combine. It is particularly
500/// useful at minimizing the code in the recursive calls to ease the pain
501/// caused by a lack of variadic functions.
502struct hash_combine_recursive_helper {
503  char buffer[64];
504  hash_state state;
505  const size_t seed;
506
507public:
508  /// \brief Construct a recursive hash combining helper.
509  ///
510  /// This sets up the state for a recursive hash combine, including getting
511  /// the seed and buffer setup.
512  hash_combine_recursive_helper()
513    : seed(get_execution_seed()) {}
514
515  /// \brief Combine one chunk of data into the current in-flight hash.
516  ///
517  /// This merges one chunk of data into the hash. First it tries to buffer
518  /// the data. If the buffer is full, it hashes the buffer into its
519  /// hash_state, empties it, and then merges the new chunk in. This also
520  /// handles cases where the data straddles the end of the buffer.
521  template <typename T>
522  char *combine_data(size_t &length, char *buffer_ptr, char *buffer_end, T data) {
523    if (!store_and_advance(buffer_ptr, buffer_end, data)) {
524      // Check for skew which prevents the buffer from being packed, and do
525      // a partial store into the buffer to fill it. This is only a concern
526      // with the variadic combine because that formation can have varying
527      // argument types.
528      size_t partial_store_size = buffer_end - buffer_ptr;
529      memcpy(buffer_ptr, &data, partial_store_size);
530
531      // If the store fails, our buffer is full and ready to hash. We have to
532      // either initialize the hash state (on the first full buffer) or mix
533      // this buffer into the existing hash state. Length tracks the *hashed*
534      // length, not the buffered length.
535      if (length == 0) {
536        state = state.create(buffer, seed);
537        length = 64;
538      } else {
539        // Mix this chunk into the current state and bump length up by 64.
540        state.mix(buffer);
541        length += 64;
542      }
543      // Reset the buffer_ptr to the head of the buffer for the next chunk of
544      // data.
545      buffer_ptr = buffer;
546
547      // Try again to store into the buffer -- this cannot fail as we only
548      // store types smaller than the buffer.
549      if (!store_and_advance(buffer_ptr, buffer_end, data,
550                             partial_store_size))
551        abort();
552    }
553    return buffer_ptr;
554  }
555
556#if defined(__has_feature) && __has_feature(__cxx_variadic_templates__)
557
558  /// \brief Recursive, variadic combining method.
559  ///
560  /// This function recurses through each argument, combining that argument
561  /// into a single hash.
562  template <typename T, typename ...Ts>
563  hash_code combine(size_t length, char *buffer_ptr, char *buffer_end,
564                    const T &arg, const Ts &...args) {
565    buffer_ptr = combine_data(length, buffer_ptr, buffer_end, get_hashable_data(arg));
566
567    // Recurse to the next argument.
568    return combine(length, buffer_ptr, buffer_end, args...);
569  }
570
571#else
572  // Manually expanded recursive combining methods. See variadic above for
573  // documentation.
574
575  template <typename T1, typename T2, typename T3, typename T4, typename T5,
576            typename T6>
577  hash_code combine(size_t length, char *buffer_ptr, char *buffer_end,
578                    const T1 &arg1, const T2 &arg2, const T3 &arg3,
579                    const T4 &arg4, const T5 &arg5, const T6 &arg6) {
580    buffer_ptr = combine_data(length, buffer_ptr, buffer_end, get_hashable_data(arg1));
581    return combine(length, buffer_ptr, buffer_end, arg2, arg3, arg4, arg5, arg6);
582  }
583  template <typename T1, typename T2, typename T3, typename T4, typename T5>
584  hash_code combine(size_t length, char *buffer_ptr, char *buffer_end,
585                    const T1 &arg1, const T2 &arg2, const T3 &arg3,
586                    const T4 &arg4, const T5 &arg5) {
587    buffer_ptr = combine_data(length, buffer_ptr, buffer_end, get_hashable_data(arg1));
588    return combine(length, buffer_ptr, buffer_end, arg2, arg3, arg4, arg5);
589  }
590  template <typename T1, typename T2, typename T3, typename T4>
591  hash_code combine(size_t length, char *buffer_ptr, char *buffer_end,
592                    const T1 &arg1, const T2 &arg2, const T3 &arg3,
593                    const T4 &arg4) {
594    buffer_ptr = combine_data(length, buffer_ptr, buffer_end, get_hashable_data(arg1));
595    return combine(length, buffer_ptr, buffer_end, arg2, arg3, arg4);
596  }
597  template <typename T1, typename T2, typename T3>
598  hash_code combine(size_t length, char *buffer_ptr, char *buffer_end,
599                    const T1 &arg1, const T2 &arg2, const T3 &arg3) {
600    buffer_ptr = combine_data(length, buffer_ptr, buffer_end, get_hashable_data(arg1));
601    return combine(length, buffer_ptr, buffer_end, arg2, arg3);
602  }
603  template <typename T1, typename T2>
604  hash_code combine(size_t length, char *buffer_ptr, char *buffer_end,
605                    const T1 &arg1, const T2 &arg2) {
606    buffer_ptr = combine_data(length, buffer_ptr, buffer_end, get_hashable_data(arg1));
607    return combine(length, buffer_ptr, buffer_end, arg2);
608  }
609  template <typename T1>
610  hash_code combine(size_t length, char *buffer_ptr, char *buffer_end,
611                    const T1 &arg1) {
612    buffer_ptr = combine_data(length, buffer_ptr, buffer_end, get_hashable_data(arg1));
613    return combine(length, buffer_ptr, buffer_end);
614  }
615
616#endif
617
618  /// \brief Base case for recursive, variadic combining.
619  ///
620  /// The base case when combining arguments recursively is reached when all
621  /// arguments have been handled. It flushes the remaining buffer and
622  /// constructs a hash_code.
623  hash_code combine(size_t length, char *buffer_ptr, char *buffer_end) {
624    // Check whether the entire set of values fit in the buffer. If so, we'll
625    // use the optimized short hashing routine and skip state entirely.
626    if (length == 0)
627      return hash_short(buffer, buffer_ptr - buffer, seed);
628
629    // Mix the final buffer, rotating it if we did a partial fill in order to
630    // simulate doing a mix of the last 64-bytes. That is how the algorithm
631    // works when we have a contiguous byte sequence, and we want to emulate
632    // that here.
633    std::rotate(buffer, buffer_ptr, buffer_end);
634
635    // Mix this chunk into the current state.
636    state.mix(buffer);
637    length += buffer_ptr - buffer;
638
639    return state.finalize(length);
640  }
641};
642
643} // namespace detail
644} // namespace hashing
645
646
647#if __has_feature(__cxx_variadic_templates__)
648
649/// \brief Combine values into a single hash_code.
650///
651/// This routine accepts a varying number of arguments of any type. It will
652/// attempt to combine them into a single hash_code. For user-defined types it
653/// attempts to call a \see hash_value overload (via ADL) for the type. For
654/// integer and pointer types it directly combines their data into the
655/// resulting hash_code.
656///
657/// The result is suitable for returning from a user's hash_value
658/// *implementation* for their user-defined type. Consumers of a type should
659/// *not* call this routine, they should instead call 'hash_value'.
660template <typename ...Ts> hash_code hash_combine(const Ts &...args) {
661  // Recursively hash each argument using a helper class.
662  ::llvm::hashing::detail::hash_combine_recursive_helper helper;
663  return helper.combine(0, helper.buffer, helper.buffer + 64, args...);
664}
665
666#else
667
668// What follows are manually exploded overloads for each argument width. See
669// the above variadic definition for documentation and specification.
670
671template <typename T1, typename T2, typename T3, typename T4, typename T5,
672          typename T6>
673hash_code hash_combine(const T1 &arg1, const T2 &arg2, const T3 &arg3,
674                       const T4 &arg4, const T5 &arg5, const T6 &arg6) {
675  ::llvm::hashing::detail::hash_combine_recursive_helper helper;
676  return helper.combine(0, helper.buffer, helper.buffer + 64,
677                        arg1, arg2, arg3, arg4, arg5, arg6);
678}
679template <typename T1, typename T2, typename T3, typename T4, typename T5>
680hash_code hash_combine(const T1 &arg1, const T2 &arg2, const T3 &arg3,
681                       const T4 &arg4, const T5 &arg5) {
682  ::llvm::hashing::detail::hash_combine_recursive_helper helper;
683  return helper.combine(0, helper.buffer, helper.buffer + 64,
684                        arg1, arg2, arg3, arg4, arg5);
685}
686template <typename T1, typename T2, typename T3, typename T4>
687hash_code hash_combine(const T1 &arg1, const T2 &arg2, const T3 &arg3,
688                       const T4 &arg4) {
689  ::llvm::hashing::detail::hash_combine_recursive_helper helper;
690  return helper.combine(0, helper.buffer, helper.buffer + 64,
691                        arg1, arg2, arg3, arg4);
692}
693template <typename T1, typename T2, typename T3>
694hash_code hash_combine(const T1 &arg1, const T2 &arg2, const T3 &arg3) {
695  ::llvm::hashing::detail::hash_combine_recursive_helper helper;
696  return helper.combine(0, helper.buffer, helper.buffer + 64, arg1, arg2, arg3);
697}
698template <typename T1, typename T2>
699hash_code hash_combine(const T1 &arg1, const T2 &arg2) {
700  ::llvm::hashing::detail::hash_combine_recursive_helper helper;
701  return helper.combine(0, helper.buffer, helper.buffer + 64, arg1, arg2);
702}
703template <typename T1>
704hash_code hash_combine(const T1 &arg1) {
705  ::llvm::hashing::detail::hash_combine_recursive_helper helper;
706  return helper.combine(0, helper.buffer, helper.buffer + 64, arg1);
707}
708
709#endif
710
711
712// Implementation details for implementations of hash_value overloads provided
713// here.
714namespace hashing {
715namespace detail {
716
717/// \brief Helper to hash the value of a single integer.
718///
719/// Overloads for smaller integer types are not provided to ensure consistent
720/// behavior in the presence of integral promotions. Essentially,
721/// "hash_value('4')" and "hash_value('0' + 4)" should be the same.
722inline hash_code hash_integer_value(uint64_t value) {
723  // Similar to hash_4to8_bytes but using a seed instead of length.
724  const uint64_t seed = get_execution_seed();
725  const char *s = reinterpret_cast<const char *>(&value);
726  const uint64_t a = fetch32(s);
727  return hash_16_bytes(seed + (a << 3), fetch32(s + 4));
728}
729
730} // namespace detail
731} // namespace hashing
732
733// Declared and documented above, but defined here so that any of the hashing
734// infrastructure is available.
735template <typename T>
736typename std::enable_if<is_integral_or_enum<T>::value, hash_code>::type
737hash_value(T value) {
738  return ::llvm::hashing::detail::hash_integer_value(value);
739}
740
741// Declared and documented above, but defined here so that any of the hashing
742// infrastructure is available.
743template <typename T> hash_code hash_value(const T *ptr) {
744  return ::llvm::hashing::detail::hash_integer_value(
745    reinterpret_cast<uintptr_t>(ptr));
746}
747
748// Declared and documented above, but defined here so that any of the hashing
749// infrastructure is available.
750template <typename T, typename U>
751hash_code hash_value(const std::pair<T, U> &arg) {
752  return hash_combine(arg.first, arg.second);
753}
754
755// Declared and documented above, but defined here so that any of the hashing
756// infrastructure is available.
757template <typename T>
758hash_code hash_value(const std::basic_string<T> &arg) {
759  return hash_combine_range(arg.begin(), arg.end());
760}
761
762} // namespace llvm
763
764#endif
765