1//===--- llvm/ADT/SparseSet.h - Sparse set ----------------------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the SparseSet class derived from the version described in
11// Briggs, Torczon, "An efficient representation for sparse sets", ACM Letters
12// on Programming Languages and Systems, Volume 2 Issue 1-4, March-Dec.  1993.
13//
14// A sparse set holds a small number of objects identified by integer keys from
15// a moderately sized universe. The sparse set uses more memory than other
16// containers in order to provide faster operations.
17//
18//===----------------------------------------------------------------------===//
19
20#ifndef LLVM_ADT_SPARSESET_H
21#define LLVM_ADT_SPARSESET_H
22
23#include "llvm/ADT/STLExtras.h"
24#include "llvm/ADT/SmallVector.h"
25#include "llvm/Support/DataTypes.h"
26#include <limits>
27
28namespace llvm {
29
30/// SparseSetValTraits - Objects in a SparseSet are identified by keys that can
31/// be uniquely converted to a small integer less than the set's universe. This
32/// class allows the set to hold values that differ from the set's key type as
33/// long as an index can still be derived from the value. SparseSet never
34/// directly compares ValueT, only their indices, so it can map keys to
35/// arbitrary values. SparseSetValTraits computes the index from the value
36/// object. To compute the index from a key, SparseSet uses a separate
37/// KeyFunctorT template argument.
38///
39/// A simple type declaration, SparseSet<Type>, handles these cases:
40/// - unsigned key, identity index, identity value
41/// - unsigned key, identity index, fat value providing getSparseSetIndex()
42///
43/// The type declaration SparseSet<Type, UnaryFunction> handles:
44/// - unsigned key, remapped index, identity value (virtual registers)
45/// - pointer key, pointer-derived index, identity value (node+ID)
46/// - pointer key, pointer-derived index, fat value with getSparseSetIndex()
47///
48/// Only other, unexpected cases require specializing SparseSetValTraits.
49///
50/// For best results, ValueT should not require a destructor.
51///
52template<typename ValueT>
53struct SparseSetValTraits {
54  static unsigned getValIndex(const ValueT &Val) {
55    return Val.getSparseSetIndex();
56  }
57};
58
59/// SparseSetValFunctor - Helper class for selecting SparseSetValTraits. The
60/// generic implementation handles ValueT classes which either provide
61/// getSparseSetIndex() or specialize SparseSetValTraits<>.
62///
63template<typename KeyT, typename ValueT, typename KeyFunctorT>
64struct SparseSetValFunctor {
65  unsigned operator()(const ValueT &Val) const {
66    return SparseSetValTraits<ValueT>::getValIndex(Val);
67  }
68};
69
70/// SparseSetValFunctor<KeyT, KeyT> - Helper class for the common case of
71/// identity key/value sets.
72template<typename KeyT, typename KeyFunctorT>
73struct SparseSetValFunctor<KeyT, KeyT, KeyFunctorT> {
74  unsigned operator()(const KeyT &Key) const {
75    return KeyFunctorT()(Key);
76  }
77};
78
79/// SparseSet - Fast set implmentation for objects that can be identified by
80/// small unsigned keys.
81///
82/// SparseSet allocates memory proportional to the size of the key universe, so
83/// it is not recommended for building composite data structures.  It is useful
84/// for algorithms that require a single set with fast operations.
85///
86/// Compared to DenseSet and DenseMap, SparseSet provides constant-time fast
87/// clear() and iteration as fast as a vector.  The find(), insert(), and
88/// erase() operations are all constant time, and typically faster than a hash
89/// table.  The iteration order doesn't depend on numerical key values, it only
90/// depends on the order of insert() and erase() operations.  When no elements
91/// have been erased, the iteration order is the insertion order.
92///
93/// Compared to BitVector, SparseSet<unsigned> uses 8x-40x more memory, but
94/// offers constant-time clear() and size() operations as well as fast
95/// iteration independent on the size of the universe.
96///
97/// SparseSet contains a dense vector holding all the objects and a sparse
98/// array holding indexes into the dense vector.  Most of the memory is used by
99/// the sparse array which is the size of the key universe.  The SparseT
100/// template parameter provides a space/speed tradeoff for sets holding many
101/// elements.
102///
103/// When SparseT is uint32_t, find() only touches 2 cache lines, but the sparse
104/// array uses 4 x Universe bytes.
105///
106/// When SparseT is uint8_t (the default), find() touches up to 2+[N/256] cache
107/// lines, but the sparse array is 4x smaller.  N is the number of elements in
108/// the set.
109///
110/// For sets that may grow to thousands of elements, SparseT should be set to
111/// uint16_t or uint32_t.
112///
113/// @tparam ValueT      The type of objects in the set.
114/// @tparam KeyFunctorT A functor that computes an unsigned index from KeyT.
115/// @tparam SparseT     An unsigned integer type. See above.
116///
117template<typename ValueT,
118         typename KeyFunctorT = llvm::identity<unsigned>,
119         typename SparseT = uint8_t>
120class SparseSet {
121  static_assert(std::numeric_limits<SparseT>::is_integer &&
122                !std::numeric_limits<SparseT>::is_signed,
123                "SparseT must be an unsigned integer type");
124
125  typedef typename KeyFunctorT::argument_type KeyT;
126  typedef SmallVector<ValueT, 8> DenseT;
127  typedef unsigned size_type;
128  DenseT Dense;
129  SparseT *Sparse;
130  unsigned Universe;
131  KeyFunctorT KeyIndexOf;
132  SparseSetValFunctor<KeyT, ValueT, KeyFunctorT> ValIndexOf;
133
134  // Disable copy construction and assignment.
135  // This data structure is not meant to be used that way.
136  SparseSet(const SparseSet&) LLVM_DELETED_FUNCTION;
137  SparseSet &operator=(const SparseSet&) LLVM_DELETED_FUNCTION;
138
139public:
140  typedef ValueT value_type;
141  typedef ValueT &reference;
142  typedef const ValueT &const_reference;
143  typedef ValueT *pointer;
144  typedef const ValueT *const_pointer;
145
146  SparseSet() : Sparse(nullptr), Universe(0) {}
147  ~SparseSet() { free(Sparse); }
148
149  /// setUniverse - Set the universe size which determines the largest key the
150  /// set can hold.  The universe must be sized before any elements can be
151  /// added.
152  ///
153  /// @param U Universe size. All object keys must be less than U.
154  ///
155  void setUniverse(unsigned U) {
156    // It's not hard to resize the universe on a non-empty set, but it doesn't
157    // seem like a likely use case, so we can add that code when we need it.
158    assert(empty() && "Can only resize universe on an empty map");
159    // Hysteresis prevents needless reallocations.
160    if (U >= Universe/4 && U <= Universe)
161      return;
162    free(Sparse);
163    // The Sparse array doesn't actually need to be initialized, so malloc
164    // would be enough here, but that will cause tools like valgrind to
165    // complain about branching on uninitialized data.
166    Sparse = reinterpret_cast<SparseT*>(calloc(U, sizeof(SparseT)));
167    Universe = U;
168  }
169
170  // Import trivial vector stuff from DenseT.
171  typedef typename DenseT::iterator iterator;
172  typedef typename DenseT::const_iterator const_iterator;
173
174  const_iterator begin() const { return Dense.begin(); }
175  const_iterator end() const { return Dense.end(); }
176  iterator begin() { return Dense.begin(); }
177  iterator end() { return Dense.end(); }
178
179  /// empty - Returns true if the set is empty.
180  ///
181  /// This is not the same as BitVector::empty().
182  ///
183  bool empty() const { return Dense.empty(); }
184
185  /// size - Returns the number of elements in the set.
186  ///
187  /// This is not the same as BitVector::size() which returns the size of the
188  /// universe.
189  ///
190  size_type size() const { return Dense.size(); }
191
192  /// clear - Clears the set.  This is a very fast constant time operation.
193  ///
194  void clear() {
195    // Sparse does not need to be cleared, see find().
196    Dense.clear();
197  }
198
199  /// findIndex - Find an element by its index.
200  ///
201  /// @param   Idx A valid index to find.
202  /// @returns An iterator to the element identified by key, or end().
203  ///
204  iterator findIndex(unsigned Idx) {
205    assert(Idx < Universe && "Key out of range");
206    const unsigned Stride = std::numeric_limits<SparseT>::max() + 1u;
207    for (unsigned i = Sparse[Idx], e = size(); i < e; i += Stride) {
208      const unsigned FoundIdx = ValIndexOf(Dense[i]);
209      assert(FoundIdx < Universe && "Invalid key in set. Did object mutate?");
210      if (Idx == FoundIdx)
211        return begin() + i;
212      // Stride is 0 when SparseT >= unsigned.  We don't need to loop.
213      if (!Stride)
214        break;
215    }
216    return end();
217  }
218
219  /// find - Find an element by its key.
220  ///
221  /// @param   Key A valid key to find.
222  /// @returns An iterator to the element identified by key, or end().
223  ///
224  iterator find(const KeyT &Key) {
225    return findIndex(KeyIndexOf(Key));
226  }
227
228  const_iterator find(const KeyT &Key) const {
229    return const_cast<SparseSet*>(this)->findIndex(KeyIndexOf(Key));
230  }
231
232  /// count - Returns 1 if this set contains an element identified by Key,
233  /// 0 otherwise.
234  ///
235  size_type count(const KeyT &Key) const {
236    return find(Key) == end() ? 0 : 1;
237  }
238
239  /// insert - Attempts to insert a new element.
240  ///
241  /// If Val is successfully inserted, return (I, true), where I is an iterator
242  /// pointing to the newly inserted element.
243  ///
244  /// If the set already contains an element with the same key as Val, return
245  /// (I, false), where I is an iterator pointing to the existing element.
246  ///
247  /// Insertion invalidates all iterators.
248  ///
249  std::pair<iterator, bool> insert(const ValueT &Val) {
250    unsigned Idx = ValIndexOf(Val);
251    iterator I = findIndex(Idx);
252    if (I != end())
253      return std::make_pair(I, false);
254    Sparse[Idx] = size();
255    Dense.push_back(Val);
256    return std::make_pair(end() - 1, true);
257  }
258
259  /// array subscript - If an element already exists with this key, return it.
260  /// Otherwise, automatically construct a new value from Key, insert it,
261  /// and return the newly inserted element.
262  ValueT &operator[](const KeyT &Key) {
263    return *insert(ValueT(Key)).first;
264  }
265
266  /// erase - Erases an existing element identified by a valid iterator.
267  ///
268  /// This invalidates all iterators, but erase() returns an iterator pointing
269  /// to the next element.  This makes it possible to erase selected elements
270  /// while iterating over the set:
271  ///
272  ///   for (SparseSet::iterator I = Set.begin(); I != Set.end();)
273  ///     if (test(*I))
274  ///       I = Set.erase(I);
275  ///     else
276  ///       ++I;
277  ///
278  /// Note that end() changes when elements are erased, unlike std::list.
279  ///
280  iterator erase(iterator I) {
281    assert(unsigned(I - begin()) < size() && "Invalid iterator");
282    if (I != end() - 1) {
283      *I = Dense.back();
284      unsigned BackIdx = ValIndexOf(Dense.back());
285      assert(BackIdx < Universe && "Invalid key in set. Did object mutate?");
286      Sparse[BackIdx] = I - begin();
287    }
288    // This depends on SmallVector::pop_back() not invalidating iterators.
289    // std::vector::pop_back() doesn't give that guarantee.
290    Dense.pop_back();
291    return I;
292  }
293
294  /// erase - Erases an element identified by Key, if it exists.
295  ///
296  /// @param   Key The key identifying the element to erase.
297  /// @returns True when an element was erased, false if no element was found.
298  ///
299  bool erase(const KeyT &Key) {
300    iterator I = find(Key);
301    if (I == end())
302      return false;
303    erase(I);
304    return true;
305  }
306
307};
308
309} // end namespace llvm
310
311#endif
312