1//===-- Twine.h - Fast Temporary String Concatenation -----------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9
10#ifndef LLVM_ADT_TWINE_H
11#define LLVM_ADT_TWINE_H
12
13#include "llvm/ADT/StringRef.h"
14#include "llvm/Support/DataTypes.h"
15#include "llvm/Support/ErrorHandling.h"
16#include <cassert>
17#include <string>
18
19namespace llvm {
20  template <typename T>
21  class SmallVectorImpl;
22  class StringRef;
23  class raw_ostream;
24
25  /// Twine - A lightweight data structure for efficiently representing the
26  /// concatenation of temporary values as strings.
27  ///
28  /// A Twine is a kind of rope, it represents a concatenated string using a
29  /// binary-tree, where the string is the preorder of the nodes. Since the
30  /// Twine can be efficiently rendered into a buffer when its result is used,
31  /// it avoids the cost of generating temporary values for intermediate string
32  /// results -- particularly in cases when the Twine result is never
33  /// required. By explicitly tracking the type of leaf nodes, we can also avoid
34  /// the creation of temporary strings for conversions operations (such as
35  /// appending an integer to a string).
36  ///
37  /// A Twine is not intended for use directly and should not be stored, its
38  /// implementation relies on the ability to store pointers to temporary stack
39  /// objects which may be deallocated at the end of a statement. Twines should
40  /// only be used accepted as const references in arguments, when an API wishes
41  /// to accept possibly-concatenated strings.
42  ///
43  /// Twines support a special 'null' value, which always concatenates to form
44  /// itself, and renders as an empty string. This can be returned from APIs to
45  /// effectively nullify any concatenations performed on the result.
46  ///
47  /// \b Implementation
48  ///
49  /// Given the nature of a Twine, it is not possible for the Twine's
50  /// concatenation method to construct interior nodes; the result must be
51  /// represented inside the returned value. For this reason a Twine object
52  /// actually holds two values, the left- and right-hand sides of a
53  /// concatenation. We also have nullary Twine objects, which are effectively
54  /// sentinel values that represent empty strings.
55  ///
56  /// Thus, a Twine can effectively have zero, one, or two children. The \see
57  /// isNullary(), \see isUnary(), and \see isBinary() predicates exist for
58  /// testing the number of children.
59  ///
60  /// We maintain a number of invariants on Twine objects (FIXME: Why):
61  ///  - Nullary twines are always represented with their Kind on the left-hand
62  ///    side, and the Empty kind on the right-hand side.
63  ///  - Unary twines are always represented with the value on the left-hand
64  ///    side, and the Empty kind on the right-hand side.
65  ///  - If a Twine has another Twine as a child, that child should always be
66  ///    binary (otherwise it could have been folded into the parent).
67  ///
68  /// These invariants are check by \see isValid().
69  ///
70  /// \b Efficiency Considerations
71  ///
72  /// The Twine is designed to yield efficient and small code for common
73  /// situations. For this reason, the concat() method is inlined so that
74  /// concatenations of leaf nodes can be optimized into stores directly into a
75  /// single stack allocated object.
76  ///
77  /// In practice, not all compilers can be trusted to optimize concat() fully,
78  /// so we provide two additional methods (and accompanying operator+
79  /// overloads) to guarantee that particularly important cases (cstring plus
80  /// StringRef) codegen as desired.
81  class Twine {
82    /// NodeKind - Represent the type of an argument.
83    enum NodeKind {
84      /// An empty string; the result of concatenating anything with it is also
85      /// empty.
86      NullKind,
87
88      /// The empty string.
89      EmptyKind,
90
91      /// A pointer to a Twine instance.
92      TwineKind,
93
94      /// A pointer to a C string instance.
95      CStringKind,
96
97      /// A pointer to an std::string instance.
98      StdStringKind,
99
100      /// A pointer to a StringRef instance.
101      StringRefKind,
102
103      /// A char value reinterpreted as a pointer, to render as a character.
104      CharKind,
105
106      /// An unsigned int value reinterpreted as a pointer, to render as an
107      /// unsigned decimal integer.
108      DecUIKind,
109
110      /// An int value reinterpreted as a pointer, to render as a signed
111      /// decimal integer.
112      DecIKind,
113
114      /// A pointer to an unsigned long value, to render as an unsigned decimal
115      /// integer.
116      DecULKind,
117
118      /// A pointer to a long value, to render as a signed decimal integer.
119      DecLKind,
120
121      /// A pointer to an unsigned long long value, to render as an unsigned
122      /// decimal integer.
123      DecULLKind,
124
125      /// A pointer to a long long value, to render as a signed decimal integer.
126      DecLLKind,
127
128      /// A pointer to a uint64_t value, to render as an unsigned hexadecimal
129      /// integer.
130      UHexKind
131    };
132
133    union Child
134    {
135      const Twine *twine;
136      const char *cString;
137      const std::string *stdString;
138      const StringRef *stringRef;
139      char character;
140      unsigned int decUI;
141      int decI;
142      const unsigned long *decUL;
143      const long *decL;
144      const unsigned long long *decULL;
145      const long long *decLL;
146      const uint64_t *uHex;
147    };
148
149  private:
150    /// LHS - The prefix in the concatenation, which may be uninitialized for
151    /// Null or Empty kinds.
152    Child LHS;
153    /// RHS - The suffix in the concatenation, which may be uninitialized for
154    /// Null or Empty kinds.
155    Child RHS;
156    // enums stored as unsigned chars to save on space while some compilers
157    // don't support specifying the backing type for an enum
158    /// LHSKind - The NodeKind of the left hand side, \see getLHSKind().
159    unsigned char LHSKind;
160    /// RHSKind - The NodeKind of the left hand side, \see getLHSKind().
161    unsigned char RHSKind;
162
163  private:
164    /// Construct a nullary twine; the kind must be NullKind or EmptyKind.
165    explicit Twine(NodeKind Kind)
166      : LHSKind(Kind), RHSKind(EmptyKind) {
167      assert(isNullary() && "Invalid kind!");
168    }
169
170    /// Construct a binary twine.
171    explicit Twine(const Twine &_LHS, const Twine &_RHS)
172      : LHSKind(TwineKind), RHSKind(TwineKind) {
173      LHS.twine = &_LHS;
174      RHS.twine = &_RHS;
175      assert(isValid() && "Invalid twine!");
176    }
177
178    /// Construct a twine from explicit values.
179    explicit Twine(Child _LHS, NodeKind _LHSKind,
180                   Child _RHS, NodeKind _RHSKind)
181      : LHS(_LHS), RHS(_RHS), LHSKind(_LHSKind), RHSKind(_RHSKind) {
182      assert(isValid() && "Invalid twine!");
183    }
184
185    /// Since the intended use of twines is as temporary objects, assignments
186    /// when concatenating might cause undefined behavior or stack corruptions
187    Twine &operator=(const Twine &Other) LLVM_DELETED_FUNCTION;
188
189    /// isNull - Check for the null twine.
190    bool isNull() const {
191      return getLHSKind() == NullKind;
192    }
193
194    /// isEmpty - Check for the empty twine.
195    bool isEmpty() const {
196      return getLHSKind() == EmptyKind;
197    }
198
199    /// isNullary - Check if this is a nullary twine (null or empty).
200    bool isNullary() const {
201      return isNull() || isEmpty();
202    }
203
204    /// isUnary - Check if this is a unary twine.
205    bool isUnary() const {
206      return getRHSKind() == EmptyKind && !isNullary();
207    }
208
209    /// isBinary - Check if this is a binary twine.
210    bool isBinary() const {
211      return getLHSKind() != NullKind && getRHSKind() != EmptyKind;
212    }
213
214    /// isValid - Check if this is a valid twine (satisfying the invariants on
215    /// order and number of arguments).
216    bool isValid() const {
217      // Nullary twines always have Empty on the RHS.
218      if (isNullary() && getRHSKind() != EmptyKind)
219        return false;
220
221      // Null should never appear on the RHS.
222      if (getRHSKind() == NullKind)
223        return false;
224
225      // The RHS cannot be non-empty if the LHS is empty.
226      if (getRHSKind() != EmptyKind && getLHSKind() == EmptyKind)
227        return false;
228
229      // A twine child should always be binary.
230      if (getLHSKind() == TwineKind &&
231          !LHS.twine->isBinary())
232        return false;
233      if (getRHSKind() == TwineKind &&
234          !RHS.twine->isBinary())
235        return false;
236
237      return true;
238    }
239
240    /// getLHSKind - Get the NodeKind of the left-hand side.
241    NodeKind getLHSKind() const { return (NodeKind) LHSKind; }
242
243    /// getRHSKind - Get the NodeKind of the right-hand side.
244    NodeKind getRHSKind() const { return (NodeKind) RHSKind; }
245
246    /// printOneChild - Print one child from a twine.
247    void printOneChild(raw_ostream &OS, Child Ptr, NodeKind Kind) const;
248
249    /// printOneChildRepr - Print the representation of one child from a twine.
250    void printOneChildRepr(raw_ostream &OS, Child Ptr,
251                           NodeKind Kind) const;
252
253  public:
254    /// @name Constructors
255    /// @{
256
257    /// Construct from an empty string.
258    /*implicit*/ Twine() : LHSKind(EmptyKind), RHSKind(EmptyKind) {
259      assert(isValid() && "Invalid twine!");
260    }
261
262    /// Construct from a C string.
263    ///
264    /// We take care here to optimize "" into the empty twine -- this will be
265    /// optimized out for string constants. This allows Twine arguments have
266    /// default "" values, without introducing unnecessary string constants.
267    /*implicit*/ Twine(const char *Str)
268      : RHSKind(EmptyKind) {
269      if (Str[0] != '\0') {
270        LHS.cString = Str;
271        LHSKind = CStringKind;
272      } else
273        LHSKind = EmptyKind;
274
275      assert(isValid() && "Invalid twine!");
276    }
277
278    /// Construct from an std::string.
279    /*implicit*/ Twine(const std::string &Str)
280      : LHSKind(StdStringKind), RHSKind(EmptyKind) {
281      LHS.stdString = &Str;
282      assert(isValid() && "Invalid twine!");
283    }
284
285    /// Construct from a StringRef.
286    /*implicit*/ Twine(const StringRef &Str)
287      : LHSKind(StringRefKind), RHSKind(EmptyKind) {
288      LHS.stringRef = &Str;
289      assert(isValid() && "Invalid twine!");
290    }
291
292    /// Construct from a char.
293    explicit Twine(char Val)
294      : LHSKind(CharKind), RHSKind(EmptyKind) {
295      LHS.character = Val;
296    }
297
298    /// Construct from a signed char.
299    explicit Twine(signed char Val)
300      : LHSKind(CharKind), RHSKind(EmptyKind) {
301      LHS.character = static_cast<char>(Val);
302    }
303
304    /// Construct from an unsigned char.
305    explicit Twine(unsigned char Val)
306      : LHSKind(CharKind), RHSKind(EmptyKind) {
307      LHS.character = static_cast<char>(Val);
308    }
309
310    /// Construct a twine to print \p Val as an unsigned decimal integer.
311    explicit Twine(unsigned Val)
312      : LHSKind(DecUIKind), RHSKind(EmptyKind) {
313      LHS.decUI = Val;
314    }
315
316    /// Construct a twine to print \p Val as a signed decimal integer.
317    explicit Twine(int Val)
318      : LHSKind(DecIKind), RHSKind(EmptyKind) {
319      LHS.decI = Val;
320    }
321
322    /// Construct a twine to print \p Val as an unsigned decimal integer.
323    explicit Twine(const unsigned long &Val)
324      : LHSKind(DecULKind), RHSKind(EmptyKind) {
325      LHS.decUL = &Val;
326    }
327
328    /// Construct a twine to print \p Val as a signed decimal integer.
329    explicit Twine(const long &Val)
330      : LHSKind(DecLKind), RHSKind(EmptyKind) {
331      LHS.decL = &Val;
332    }
333
334    /// Construct a twine to print \p Val as an unsigned decimal integer.
335    explicit Twine(const unsigned long long &Val)
336      : LHSKind(DecULLKind), RHSKind(EmptyKind) {
337      LHS.decULL = &Val;
338    }
339
340    /// Construct a twine to print \p Val as a signed decimal integer.
341    explicit Twine(const long long &Val)
342      : LHSKind(DecLLKind), RHSKind(EmptyKind) {
343      LHS.decLL = &Val;
344    }
345
346    // FIXME: Unfortunately, to make sure this is as efficient as possible we
347    // need extra binary constructors from particular types. We can't rely on
348    // the compiler to be smart enough to fold operator+()/concat() down to the
349    // right thing. Yet.
350
351    /// Construct as the concatenation of a C string and a StringRef.
352    /*implicit*/ Twine(const char *_LHS, const StringRef &_RHS)
353      : LHSKind(CStringKind), RHSKind(StringRefKind) {
354      LHS.cString = _LHS;
355      RHS.stringRef = &_RHS;
356      assert(isValid() && "Invalid twine!");
357    }
358
359    /// Construct as the concatenation of a StringRef and a C string.
360    /*implicit*/ Twine(const StringRef &_LHS, const char *_RHS)
361      : LHSKind(StringRefKind), RHSKind(CStringKind) {
362      LHS.stringRef = &_LHS;
363      RHS.cString = _RHS;
364      assert(isValid() && "Invalid twine!");
365    }
366
367    /// Create a 'null' string, which is an empty string that always
368    /// concatenates to form another empty string.
369    static Twine createNull() {
370      return Twine(NullKind);
371    }
372
373    /// @}
374    /// @name Numeric Conversions
375    /// @{
376
377    // Construct a twine to print \p Val as an unsigned hexadecimal integer.
378    static Twine utohexstr(const uint64_t &Val) {
379      Child LHS, RHS;
380      LHS.uHex = &Val;
381      RHS.twine = nullptr;
382      return Twine(LHS, UHexKind, RHS, EmptyKind);
383    }
384
385    /// @}
386    /// @name Predicate Operations
387    /// @{
388
389    /// isTriviallyEmpty - Check if this twine is trivially empty; a false
390    /// return value does not necessarily mean the twine is empty.
391    bool isTriviallyEmpty() const {
392      return isNullary();
393    }
394
395    /// isSingleStringRef - Return true if this twine can be dynamically
396    /// accessed as a single StringRef value with getSingleStringRef().
397    bool isSingleStringRef() const {
398      if (getRHSKind() != EmptyKind) return false;
399
400      switch (getLHSKind()) {
401      case EmptyKind:
402      case CStringKind:
403      case StdStringKind:
404      case StringRefKind:
405        return true;
406      default:
407        return false;
408      }
409    }
410
411    /// @}
412    /// @name String Operations
413    /// @{
414
415    Twine concat(const Twine &Suffix) const;
416
417    /// @}
418    /// @name Output & Conversion.
419    /// @{
420
421    /// str - Return the twine contents as a std::string.
422    std::string str() const;
423
424    /// toVector - Write the concatenated string into the given SmallString or
425    /// SmallVector.
426    void toVector(SmallVectorImpl<char> &Out) const;
427
428    /// getSingleStringRef - This returns the twine as a single StringRef.  This
429    /// method is only valid if isSingleStringRef() is true.
430    StringRef getSingleStringRef() const {
431      assert(isSingleStringRef() &&"This cannot be had as a single stringref!");
432      switch (getLHSKind()) {
433      default: llvm_unreachable("Out of sync with isSingleStringRef");
434      case EmptyKind:      return StringRef();
435      case CStringKind:    return StringRef(LHS.cString);
436      case StdStringKind:  return StringRef(*LHS.stdString);
437      case StringRefKind:  return *LHS.stringRef;
438      }
439    }
440
441    /// toStringRef - This returns the twine as a single StringRef if it can be
442    /// represented as such. Otherwise the twine is written into the given
443    /// SmallVector and a StringRef to the SmallVector's data is returned.
444    StringRef toStringRef(SmallVectorImpl<char> &Out) const;
445
446    /// toNullTerminatedStringRef - This returns the twine as a single null
447    /// terminated StringRef if it can be represented as such. Otherwise the
448    /// twine is written into the given SmallVector and a StringRef to the
449    /// SmallVector's data is returned.
450    ///
451    /// The returned StringRef's size does not include the null terminator.
452    StringRef toNullTerminatedStringRef(SmallVectorImpl<char> &Out) const;
453
454    /// Write the concatenated string represented by this twine to the
455    /// stream \p OS.
456    void print(raw_ostream &OS) const;
457
458    /// Dump the concatenated string represented by this twine to stderr.
459    void dump() const;
460
461    /// Write the representation of this twine to the stream \p OS.
462    void printRepr(raw_ostream &OS) const;
463
464    /// Dump the representation of this twine to stderr.
465    void dumpRepr() const;
466
467    /// @}
468  };
469
470  /// @name Twine Inline Implementations
471  /// @{
472
473  inline Twine Twine::concat(const Twine &Suffix) const {
474    // Concatenation with null is null.
475    if (isNull() || Suffix.isNull())
476      return Twine(NullKind);
477
478    // Concatenation with empty yields the other side.
479    if (isEmpty())
480      return Suffix;
481    if (Suffix.isEmpty())
482      return *this;
483
484    // Otherwise we need to create a new node, taking care to fold in unary
485    // twines.
486    Child NewLHS, NewRHS;
487    NewLHS.twine = this;
488    NewRHS.twine = &Suffix;
489    NodeKind NewLHSKind = TwineKind, NewRHSKind = TwineKind;
490    if (isUnary()) {
491      NewLHS = LHS;
492      NewLHSKind = getLHSKind();
493    }
494    if (Suffix.isUnary()) {
495      NewRHS = Suffix.LHS;
496      NewRHSKind = Suffix.getLHSKind();
497    }
498
499    return Twine(NewLHS, NewLHSKind, NewRHS, NewRHSKind);
500  }
501
502  inline Twine operator+(const Twine &LHS, const Twine &RHS) {
503    return LHS.concat(RHS);
504  }
505
506  /// Additional overload to guarantee simplified codegen; this is equivalent to
507  /// concat().
508
509  inline Twine operator+(const char *LHS, const StringRef &RHS) {
510    return Twine(LHS, RHS);
511  }
512
513  /// Additional overload to guarantee simplified codegen; this is equivalent to
514  /// concat().
515
516  inline Twine operator+(const StringRef &LHS, const char *RHS) {
517    return Twine(LHS, RHS);
518  }
519
520  inline raw_ostream &operator<<(raw_ostream &OS, const Twine &RHS) {
521    RHS.print(OS);
522    return OS;
523  }
524
525  /// @}
526}
527
528#endif
529