Twine.h revision 50bee42b54cd9aec5f49566307df2b0cf23afcf6
1//===-- Twine.h - Fast Temporary String Concatenation -----------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9
10#ifndef LLVM_ADT_TWINE_H
11#define LLVM_ADT_TWINE_H
12
13#include "llvm/ADT/StringRef.h"
14#include "llvm/Support/DataTypes.h"
15#include "llvm/Support/ErrorHandling.h"
16#include <cassert>
17#include <string>
18
19namespace llvm {
20  template <typename T>
21  class SmallVectorImpl;
22  class StringRef;
23  class raw_ostream;
24
25  /// Twine - A lightweight data structure for efficiently representing the
26  /// concatenation of temporary values as strings.
27  ///
28  /// A Twine is a kind of rope, it represents a concatenated string using a
29  /// binary-tree, where the string is the preorder of the nodes. Since the
30  /// Twine can be efficiently rendered into a buffer when its result is used,
31  /// it avoids the cost of generating temporary values for intermediate string
32  /// results -- particularly in cases when the Twine result is never
33  /// required. By explicitly tracking the type of leaf nodes, we can also avoid
34  /// the creation of temporary strings for conversions operations (such as
35  /// appending an integer to a string).
36  ///
37  /// A Twine is not intended for use directly and should not be stored, its
38  /// implementation relies on the ability to store pointers to temporary stack
39  /// objects which may be deallocated at the end of a statement. Twines should
40  /// only be used accepted as const references in arguments, when an API wishes
41  /// to accept possibly-concatenated strings.
42  ///
43  /// Twines support a special 'null' value, which always concatenates to form
44  /// itself, and renders as an empty string. This can be returned from APIs to
45  /// effectively nullify any concatenations performed on the result.
46  ///
47  /// \b Implementation \n
48  ///
49  /// Given the nature of a Twine, it is not possible for the Twine's
50  /// concatenation method to construct interior nodes; the result must be
51  /// represented inside the returned value. For this reason a Twine object
52  /// actually holds two values, the left- and right-hand sides of a
53  /// concatenation. We also have nullary Twine objects, which are effectively
54  /// sentinel values that represent empty strings.
55  ///
56  /// Thus, a Twine can effectively have zero, one, or two children. The \see
57  /// isNullary(), \see isUnary(), and \see isBinary() predicates exist for
58  /// testing the number of children.
59  ///
60  /// We maintain a number of invariants on Twine objects (FIXME: Why):
61  ///  - Nullary twines are always represented with their Kind on the left-hand
62  ///    side, and the Empty kind on the right-hand side.
63  ///  - Unary twines are always represented with the value on the left-hand
64  ///    side, and the Empty kind on the right-hand side.
65  ///  - If a Twine has another Twine as a child, that child should always be
66  ///    binary (otherwise it could have been folded into the parent).
67  ///
68  /// These invariants are check by \see isValid().
69  ///
70  /// \b Efficiency Considerations \n
71  ///
72  /// The Twine is designed to yield efficient and small code for common
73  /// situations. For this reason, the concat() method is inlined so that
74  /// concatenations of leaf nodes can be optimized into stores directly into a
75  /// single stack allocated object.
76  ///
77  /// In practice, not all compilers can be trusted to optimize concat() fully,
78  /// so we provide two additional methods (and accompanying operator+
79  /// overloads) to guarantee that particularly important cases (cstring plus
80  /// StringRef) codegen as desired.
81  class Twine {
82    /// NodeKind - Represent the type of an argument.
83    enum NodeKind {
84      /// An empty string; the result of concatenating anything with it is also
85      /// empty.
86      NullKind,
87
88      /// The empty string.
89      EmptyKind,
90
91      /// A pointer to a Twine instance.
92      TwineKind,
93
94      /// A pointer to a C string instance.
95      CStringKind,
96
97      /// A pointer to an std::string instance.
98      StdStringKind,
99
100      /// A pointer to a StringRef instance.
101      StringRefKind,
102
103      /// A char value reinterpreted as a pointer, to render as a character.
104      CharKind,
105
106      /// An unsigned int value reinterpreted as a pointer, to render as an
107      /// unsigned decimal integer.
108      DecUIKind,
109
110      /// An int value reinterpreted as a pointer, to render as a signed
111      /// decimal integer.
112      DecIKind,
113
114      /// A pointer to an unsigned long value, to render as an unsigned decimal
115      /// integer.
116      DecULKind,
117
118      /// A pointer to a long value, to render as a signed decimal integer.
119      DecLKind,
120
121      /// A pointer to an unsigned long long value, to render as an unsigned
122      /// decimal integer.
123      DecULLKind,
124
125      /// A pointer to a long long value, to render as a signed decimal integer.
126      DecLLKind,
127
128      /// A pointer to a uint64_t value, to render as an unsigned hexadecimal
129      /// integer.
130      UHexKind
131    };
132
133    union Child
134    {
135      const Twine *twine;
136      const char *cString;
137      const std::string *stdString;
138      const StringRef *stringRef;
139      char character;
140      unsigned int decUI;
141      int decI;
142      const unsigned long *decUL;
143      const long *decL;
144      const unsigned long long *decULL;
145      const long long *decLL;
146      const uint64_t *uHex;
147    };
148
149  private:
150    /// LHS - The prefix in the concatenation, which may be uninitialized for
151    /// Null or Empty kinds.
152    Child LHS;
153    /// RHS - The suffix in the concatenation, which may be uninitialized for
154    /// Null or Empty kinds.
155    Child RHS;
156    // enums stored as unsigned chars to save on space while some compilers
157    // don't support specifying the backing type for an enum
158    /// LHSKind - The NodeKind of the left hand side, \see getLHSKind().
159    unsigned char LHSKind;
160    /// RHSKind - The NodeKind of the left hand side, \see getLHSKind().
161    unsigned char RHSKind;
162
163  private:
164    /// Construct a nullary twine; the kind must be NullKind or EmptyKind.
165    explicit Twine(NodeKind Kind)
166      : LHSKind(Kind), RHSKind(EmptyKind) {
167      assert(isNullary() && "Invalid kind!");
168    }
169
170    /// Construct a binary twine.
171    explicit Twine(const Twine &_LHS, const Twine &_RHS)
172      : LHSKind(TwineKind), RHSKind(TwineKind) {
173      LHS.twine = &_LHS;
174      RHS.twine = &_RHS;
175      assert(isValid() && "Invalid twine!");
176    }
177
178    /// Construct a twine from explicit values.
179    explicit Twine(Child _LHS, NodeKind _LHSKind,
180                   Child _RHS, NodeKind _RHSKind)
181      : LHS(_LHS), RHS(_RHS), LHSKind(_LHSKind), RHSKind(_RHSKind) {
182      assert(isValid() && "Invalid twine!");
183    }
184
185    /// isNull - Check for the null twine.
186    bool isNull() const {
187      return getLHSKind() == NullKind;
188    }
189
190    /// isEmpty - Check for the empty twine.
191    bool isEmpty() const {
192      return getLHSKind() == EmptyKind;
193    }
194
195    /// isNullary - Check if this is a nullary twine (null or empty).
196    bool isNullary() const {
197      return isNull() || isEmpty();
198    }
199
200    /// isUnary - Check if this is a unary twine.
201    bool isUnary() const {
202      return getRHSKind() == EmptyKind && !isNullary();
203    }
204
205    /// isBinary - Check if this is a binary twine.
206    bool isBinary() const {
207      return getLHSKind() != NullKind && getRHSKind() != EmptyKind;
208    }
209
210    /// isValid - Check if this is a valid twine (satisfying the invariants on
211    /// order and number of arguments).
212    bool isValid() const {
213      // Nullary twines always have Empty on the RHS.
214      if (isNullary() && getRHSKind() != EmptyKind)
215        return false;
216
217      // Null should never appear on the RHS.
218      if (getRHSKind() == NullKind)
219        return false;
220
221      // The RHS cannot be non-empty if the LHS is empty.
222      if (getRHSKind() != EmptyKind && getLHSKind() == EmptyKind)
223        return false;
224
225      // A twine child should always be binary.
226      if (getLHSKind() == TwineKind &&
227          !LHS.twine->isBinary())
228        return false;
229      if (getRHSKind() == TwineKind &&
230          !RHS.twine->isBinary())
231        return false;
232
233      return true;
234    }
235
236    /// getLHSKind - Get the NodeKind of the left-hand side.
237    NodeKind getLHSKind() const { return (NodeKind) LHSKind; }
238
239    /// getRHSKind - Get the NodeKind of the left-hand side.
240    NodeKind getRHSKind() const { return (NodeKind) RHSKind; }
241
242    /// printOneChild - Print one child from a twine.
243    void printOneChild(raw_ostream &OS, Child Ptr, NodeKind Kind) const;
244
245    /// printOneChildRepr - Print the representation of one child from a twine.
246    void printOneChildRepr(raw_ostream &OS, Child Ptr,
247                           NodeKind Kind) const;
248
249  public:
250    /// @name Constructors
251    /// @{
252
253    /// Construct from an empty string.
254    /*implicit*/ Twine() : LHSKind(EmptyKind), RHSKind(EmptyKind) {
255      assert(isValid() && "Invalid twine!");
256    }
257
258    /// Construct from a C string.
259    ///
260    /// We take care here to optimize "" into the empty twine -- this will be
261    /// optimized out for string constants. This allows Twine arguments have
262    /// default "" values, without introducing unnecessary string constants.
263    /*implicit*/ Twine(const char *Str)
264      : RHSKind(EmptyKind) {
265      if (Str[0] != '\0') {
266        LHS.cString = Str;
267        LHSKind = CStringKind;
268      } else
269        LHSKind = EmptyKind;
270
271      assert(isValid() && "Invalid twine!");
272    }
273
274    /// Construct from an std::string.
275    /*implicit*/ Twine(const std::string &Str)
276      : LHSKind(StdStringKind), RHSKind(EmptyKind) {
277      LHS.stdString = &Str;
278      assert(isValid() && "Invalid twine!");
279    }
280
281    /// Construct from a StringRef.
282    /*implicit*/ Twine(const StringRef &Str)
283      : LHSKind(StringRefKind), RHSKind(EmptyKind) {
284      LHS.stringRef = &Str;
285      assert(isValid() && "Invalid twine!");
286    }
287
288    /// Construct from a char.
289    explicit Twine(char Val)
290      : LHSKind(CharKind), RHSKind(EmptyKind) {
291      LHS.character = Val;
292    }
293
294    /// Construct from a signed char.
295    explicit Twine(signed char Val)
296      : LHSKind(CharKind), RHSKind(EmptyKind) {
297      LHS.character = static_cast<char>(Val);
298    }
299
300    /// Construct from an unsigned char.
301    explicit Twine(unsigned char Val)
302      : LHSKind(CharKind), RHSKind(EmptyKind) {
303      LHS.character = static_cast<char>(Val);
304    }
305
306    /// Construct a twine to print \arg Val as an unsigned decimal integer.
307    explicit Twine(unsigned Val)
308      : LHSKind(DecUIKind), RHSKind(EmptyKind) {
309      LHS.decUI = Val;
310    }
311
312    /// Construct a twine to print \arg Val as a signed decimal integer.
313    explicit Twine(int Val)
314      : LHSKind(DecIKind), RHSKind(EmptyKind) {
315      LHS.decI = Val;
316    }
317
318    /// Construct a twine to print \arg Val as an unsigned decimal integer.
319    explicit Twine(const unsigned long &Val)
320      : LHSKind(DecULKind), RHSKind(EmptyKind) {
321      LHS.decUL = &Val;
322    }
323
324    /// Construct a twine to print \arg Val as a signed decimal integer.
325    explicit Twine(const long &Val)
326      : LHSKind(DecLKind), RHSKind(EmptyKind) {
327      LHS.decL = &Val;
328    }
329
330    /// Construct a twine to print \arg Val as an unsigned decimal integer.
331    explicit Twine(const unsigned long long &Val)
332      : LHSKind(DecULLKind), RHSKind(EmptyKind) {
333      LHS.decULL = &Val;
334    }
335
336    /// Construct a twine to print \arg Val as a signed decimal integer.
337    explicit Twine(const long long &Val)
338      : LHSKind(DecLLKind), RHSKind(EmptyKind) {
339      LHS.decLL = &Val;
340    }
341
342    // FIXME: Unfortunately, to make sure this is as efficient as possible we
343    // need extra binary constructors from particular types. We can't rely on
344    // the compiler to be smart enough to fold operator+()/concat() down to the
345    // right thing. Yet.
346
347    /// Construct as the concatenation of a C string and a StringRef.
348    /*implicit*/ Twine(const char *_LHS, const StringRef &_RHS)
349      : LHSKind(CStringKind), RHSKind(StringRefKind) {
350      LHS.cString = _LHS;
351      RHS.stringRef = &_RHS;
352      assert(isValid() && "Invalid twine!");
353    }
354
355    /// Construct as the concatenation of a StringRef and a C string.
356    /*implicit*/ Twine(const StringRef &_LHS, const char *_RHS)
357      : LHSKind(StringRefKind), RHSKind(CStringKind) {
358      LHS.stringRef = &_LHS;
359      RHS.cString = _RHS;
360      assert(isValid() && "Invalid twine!");
361    }
362
363    /// Create a 'null' string, which is an empty string that always
364    /// concatenates to form another empty string.
365    static Twine createNull() {
366      return Twine(NullKind);
367    }
368
369    /// @}
370    /// @name Numeric Conversions
371    /// @{
372
373    // Construct a twine to print \arg Val as an unsigned hexadecimal integer.
374    static Twine utohexstr(const uint64_t &Val) {
375      Child LHS, RHS;
376      LHS.uHex = &Val;
377      RHS.twine = 0;
378      return Twine(LHS, UHexKind, RHS, EmptyKind);
379    }
380
381    /// @}
382    /// @name Predicate Operations
383    /// @{
384
385    /// isTriviallyEmpty - Check if this twine is trivially empty; a false
386    /// return value does not necessarily mean the twine is empty.
387    bool isTriviallyEmpty() const {
388      return isNullary();
389    }
390
391    /// isSingleStringRef - Return true if this twine can be dynamically
392    /// accessed as a single StringRef value with getSingleStringRef().
393    bool isSingleStringRef() const {
394      if (getRHSKind() != EmptyKind) return false;
395
396      switch (getLHSKind()) {
397      case EmptyKind:
398      case CStringKind:
399      case StdStringKind:
400      case StringRefKind:
401        return true;
402      default:
403        return false;
404      }
405    }
406
407    /// @}
408    /// @name String Operations
409    /// @{
410
411    Twine concat(const Twine &Suffix) const;
412
413    /// @}
414    /// @name Output & Conversion.
415    /// @{
416
417    /// str - Return the twine contents as a std::string.
418    std::string str() const;
419
420    /// toVector - Write the concatenated string into the given SmallString or
421    /// SmallVector.
422    void toVector(SmallVectorImpl<char> &Out) const;
423
424    /// getSingleStringRef - This returns the twine as a single StringRef.  This
425    /// method is only valid if isSingleStringRef() is true.
426    StringRef getSingleStringRef() const {
427      assert(isSingleStringRef() &&"This cannot be had as a single stringref!");
428      switch (getLHSKind()) {
429      default: llvm_unreachable("Out of sync with isSingleStringRef");
430      case EmptyKind:      return StringRef();
431      case CStringKind:    return StringRef(LHS.cString);
432      case StdStringKind:  return StringRef(*LHS.stdString);
433      case StringRefKind:  return *LHS.stringRef;
434      }
435    }
436
437    /// toStringRef - This returns the twine as a single StringRef if it can be
438    /// represented as such. Otherwise the twine is written into the given
439    /// SmallVector and a StringRef to the SmallVector's data is returned.
440    StringRef toStringRef(SmallVectorImpl<char> &Out) const;
441
442    /// toNullTerminatedStringRef - This returns the twine as a single null
443    /// terminated StringRef if it can be represented as such. Otherwise the
444    /// twine is written into the given SmallVector and a StringRef to the
445    /// SmallVector's data is returned.
446    ///
447    /// The returned StringRef's size does not include the null terminator.
448    StringRef toNullTerminatedStringRef(SmallVectorImpl<char> &Out) const;
449
450    /// print - Write the concatenated string represented by this twine to the
451    /// stream \arg OS.
452    void print(raw_ostream &OS) const;
453
454    /// dump - Dump the concatenated string represented by this twine to stderr.
455    void dump() const;
456
457    /// print - Write the representation of this twine to the stream \arg OS.
458    void printRepr(raw_ostream &OS) const;
459
460    /// dumpRepr - Dump the representation of this twine to stderr.
461    void dumpRepr() const;
462
463    /// @}
464  };
465
466  /// @name Twine Inline Implementations
467  /// @{
468
469  inline Twine Twine::concat(const Twine &Suffix) const {
470    // Concatenation with null is null.
471    if (isNull() || Suffix.isNull())
472      return Twine(NullKind);
473
474    // Concatenation with empty yields the other side.
475    if (isEmpty())
476      return Suffix;
477    if (Suffix.isEmpty())
478      return *this;
479
480    // Otherwise we need to create a new node, taking care to fold in unary
481    // twines.
482    Child NewLHS, NewRHS;
483    NewLHS.twine = this;
484    NewRHS.twine = &Suffix;
485    NodeKind NewLHSKind = TwineKind, NewRHSKind = TwineKind;
486    if (isUnary()) {
487      NewLHS = LHS;
488      NewLHSKind = getLHSKind();
489    }
490    if (Suffix.isUnary()) {
491      NewRHS = Suffix.LHS;
492      NewRHSKind = Suffix.getLHSKind();
493    }
494
495    return Twine(NewLHS, NewLHSKind, NewRHS, NewRHSKind);
496  }
497
498  inline Twine operator+(const Twine &LHS, const Twine &RHS) {
499    return LHS.concat(RHS);
500  }
501
502  /// Additional overload to guarantee simplified codegen; this is equivalent to
503  /// concat().
504
505  inline Twine operator+(const char *LHS, const StringRef &RHS) {
506    return Twine(LHS, RHS);
507  }
508
509  /// Additional overload to guarantee simplified codegen; this is equivalent to
510  /// concat().
511
512  inline Twine operator+(const StringRef &LHS, const char *RHS) {
513    return Twine(LHS, RHS);
514  }
515
516  inline raw_ostream &operator<<(raw_ostream &OS, const Twine &RHS) {
517    RHS.print(OS);
518    return OS;
519  }
520
521  /// @}
522}
523
524#endif
525