Twine.h revision 3f25ee080ca7c92ff735df29c78e7cfbd62c8cb6
1//===-- Twine.h - Fast Temporary String Concatenation -----------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9
10#ifndef LLVM_ADT_TWINE_H
11#define LLVM_ADT_TWINE_H
12
13#include "llvm/ADT/StringRef.h"
14#include "llvm/Support/DataTypes.h"
15#include <cassert>
16#include <string>
17
18namespace llvm {
19  template <typename T>
20  class SmallVectorImpl;
21  class StringRef;
22  class raw_ostream;
23
24  /// Twine - A lightweight data structure for efficiently representing the
25  /// concatenation of temporary values as strings.
26  ///
27  /// A Twine is a kind of rope, it represents a concatenated string using a
28  /// binary-tree, where the string is the preorder of the nodes. Since the
29  /// Twine can be efficiently rendered into a buffer when its result is used,
30  /// it avoids the cost of generating temporary values for intermediate string
31  /// results -- particularly in cases when the Twine result is never
32  /// required. By explicitly tracking the type of leaf nodes, we can also avoid
33  /// the creation of temporary strings for conversions operations (such as
34  /// appending an integer to a string).
35  ///
36  /// A Twine is not intended for use directly and should not be stored, its
37  /// implementation relies on the ability to store pointers to temporary stack
38  /// objects which may be deallocated at the end of a statement. Twines should
39  /// only be used accepted as const references in arguments, when an API wishes
40  /// to accept possibly-concatenated strings.
41  ///
42  /// Twines support a special 'null' value, which always concatenates to form
43  /// itself, and renders as an empty string. This can be returned from APIs to
44  /// effectively nullify any concatenations performed on the result.
45  ///
46  /// \b Implementation \n
47  ///
48  /// Given the nature of a Twine, it is not possible for the Twine's
49  /// concatenation method to construct interior nodes; the result must be
50  /// represented inside the returned value. For this reason a Twine object
51  /// actually holds two values, the left- and right-hand sides of a
52  /// concatenation. We also have nullary Twine objects, which are effectively
53  /// sentinel values that represent empty strings.
54  ///
55  /// Thus, a Twine can effectively have zero, one, or two children. The \see
56  /// isNullary(), \see isUnary(), and \see isBinary() predicates exist for
57  /// testing the number of children.
58  ///
59  /// We maintain a number of invariants on Twine objects (FIXME: Why):
60  ///  - Nullary twines are always represented with their Kind on the left-hand
61  ///    side, and the Empty kind on the right-hand side.
62  ///  - Unary twines are always represented with the value on the left-hand
63  ///    side, and the Empty kind on the right-hand side.
64  ///  - If a Twine has another Twine as a child, that child should always be
65  ///    binary (otherwise it could have been folded into the parent).
66  ///
67  /// These invariants are check by \see isValid().
68  ///
69  /// \b Efficiency Considerations \n
70  ///
71  /// The Twine is designed to yield efficient and small code for common
72  /// situations. For this reason, the concat() method is inlined so that
73  /// concatenations of leaf nodes can be optimized into stores directly into a
74  /// single stack allocated object.
75  ///
76  /// In practice, not all compilers can be trusted to optimize concat() fully,
77  /// so we provide two additional methods (and accompanying operator+
78  /// overloads) to guarantee that particularly important cases (cstring plus
79  /// StringRef) codegen as desired.
80  class Twine {
81    /// NodeKind - Represent the type of an argument.
82    enum NodeKind {
83      /// An empty string; the result of concatenating anything with it is also
84      /// empty.
85      NullKind,
86
87      /// The empty string.
88      EmptyKind,
89
90      /// A pointer to a Twine instance.
91      TwineKind,
92
93      /// A pointer to a C string instance.
94      CStringKind,
95
96      /// A pointer to an std::string instance.
97      StdStringKind,
98
99      /// A pointer to a StringRef instance.
100      StringRefKind,
101
102      /// A char value reinterpreted as a pointer, to render as a character.
103      CharKind,
104
105      /// An unsigned int value reinterpreted as a pointer, to render as an
106      /// unsigned decimal integer.
107      DecUIKind,
108
109      /// An int value reinterpreted as a pointer, to render as a signed
110      /// decimal integer.
111      DecIKind,
112
113      /// A pointer to an unsigned long value, to render as an unsigned decimal
114      /// integer.
115      DecULKind,
116
117      /// A pointer to a long value, to render as a signed decimal integer.
118      DecLKind,
119
120      /// A pointer to an unsigned long long value, to render as an unsigned
121      /// decimal integer.
122      DecULLKind,
123
124      /// A pointer to a long long value, to render as a signed decimal integer.
125      DecLLKind,
126
127      /// A pointer to a uint64_t value, to render as an unsigned hexadecimal
128      /// integer.
129      UHexKind
130    };
131
132    union Child
133    {
134      const Twine *twine;
135      const char *cString;
136      const std::string *stdString;
137      const StringRef *stringRef;
138      char character;
139      unsigned int decUI;
140      int decI;
141      const unsigned long *decUL;
142      const long *decL;
143      const unsigned long long *decULL;
144      const long long *decLL;
145      const uint64_t *uHex;
146    };
147
148  private:
149    /// LHS - The prefix in the concatenation, which may be uninitialized for
150    /// Null or Empty kinds.
151    Child LHS;
152    /// RHS - The suffix in the concatenation, which may be uninitialized for
153    /// Null or Empty kinds.
154    Child RHS;
155    // enums stored as unsigned chars to save on space while some compilers
156    // don't support specifying the backing type for an enum
157    /// LHSKind - The NodeKind of the left hand side, \see getLHSKind().
158    unsigned char LHSKind;
159    /// RHSKind - The NodeKind of the left hand side, \see getLHSKind().
160    unsigned char RHSKind;
161
162  private:
163    /// Construct a nullary twine; the kind must be NullKind or EmptyKind.
164    explicit Twine(NodeKind Kind)
165      : LHSKind(Kind), RHSKind(EmptyKind) {
166      assert(isNullary() && "Invalid kind!");
167    }
168
169    /// Construct a binary twine.
170    explicit Twine(const Twine &_LHS, const Twine &_RHS)
171      : LHSKind(TwineKind), RHSKind(TwineKind) {
172      LHS.twine = &_LHS;
173      RHS.twine = &_RHS;
174      assert(isValid() && "Invalid twine!");
175    }
176
177    /// Construct a twine from explicit values.
178    explicit Twine(Child _LHS, NodeKind _LHSKind,
179                   Child _RHS, NodeKind _RHSKind)
180      : LHS(_LHS), RHS(_RHS), LHSKind(_LHSKind), RHSKind(_RHSKind) {
181      assert(isValid() && "Invalid twine!");
182    }
183
184    /// isNull - Check for the null twine.
185    bool isNull() const {
186      return getLHSKind() == NullKind;
187    }
188
189    /// isEmpty - Check for the empty twine.
190    bool isEmpty() const {
191      return getLHSKind() == EmptyKind;
192    }
193
194    /// isNullary - Check if this is a nullary twine (null or empty).
195    bool isNullary() const {
196      return isNull() || isEmpty();
197    }
198
199    /// isUnary - Check if this is a unary twine.
200    bool isUnary() const {
201      return getRHSKind() == EmptyKind && !isNullary();
202    }
203
204    /// isBinary - Check if this is a binary twine.
205    bool isBinary() const {
206      return getLHSKind() != NullKind && getRHSKind() != EmptyKind;
207    }
208
209    /// isValid - Check if this is a valid twine (satisfying the invariants on
210    /// order and number of arguments).
211    bool isValid() const {
212      // Nullary twines always have Empty on the RHS.
213      if (isNullary() && getRHSKind() != EmptyKind)
214        return false;
215
216      // Null should never appear on the RHS.
217      if (getRHSKind() == NullKind)
218        return false;
219
220      // The RHS cannot be non-empty if the LHS is empty.
221      if (getRHSKind() != EmptyKind && getLHSKind() == EmptyKind)
222        return false;
223
224      // A twine child should always be binary.
225      if (getLHSKind() == TwineKind &&
226          !LHS.twine->isBinary())
227        return false;
228      if (getRHSKind() == TwineKind &&
229          !RHS.twine->isBinary())
230        return false;
231
232      return true;
233    }
234
235    /// getLHSKind - Get the NodeKind of the left-hand side.
236    NodeKind getLHSKind() const { return (NodeKind) LHSKind; }
237
238    /// getRHSKind - Get the NodeKind of the left-hand side.
239    NodeKind getRHSKind() const { return (NodeKind) RHSKind; }
240
241    /// printOneChild - Print one child from a twine.
242    void printOneChild(raw_ostream &OS, Child Ptr, NodeKind Kind) const;
243
244    /// printOneChildRepr - Print the representation of one child from a twine.
245    void printOneChildRepr(raw_ostream &OS, Child Ptr,
246                           NodeKind Kind) const;
247
248  public:
249    /// @name Constructors
250    /// @{
251
252    /// Construct from an empty string.
253    /*implicit*/ Twine() : LHSKind(EmptyKind), RHSKind(EmptyKind) {
254      assert(isValid() && "Invalid twine!");
255    }
256
257    /// Construct from a C string.
258    ///
259    /// We take care here to optimize "" into the empty twine -- this will be
260    /// optimized out for string constants. This allows Twine arguments have
261    /// default "" values, without introducing unnecessary string constants.
262    /*implicit*/ Twine(const char *Str)
263      : RHSKind(EmptyKind) {
264      if (Str[0] != '\0') {
265        LHS.cString = Str;
266        LHSKind = CStringKind;
267      } else
268        LHSKind = EmptyKind;
269
270      assert(isValid() && "Invalid twine!");
271    }
272
273    /// Construct from an std::string.
274    /*implicit*/ Twine(const std::string &Str)
275      : LHSKind(StdStringKind), RHSKind(EmptyKind) {
276      LHS.stdString = &Str;
277      assert(isValid() && "Invalid twine!");
278    }
279
280    /// Construct from a StringRef.
281    /*implicit*/ Twine(const StringRef &Str)
282      : LHSKind(StringRefKind), RHSKind(EmptyKind) {
283      LHS.stringRef = &Str;
284      assert(isValid() && "Invalid twine!");
285    }
286
287    /// Construct from a char.
288    explicit Twine(char Val)
289      : LHSKind(CharKind), RHSKind(EmptyKind) {
290      LHS.character = Val;
291    }
292
293    /// Construct from a signed char.
294    explicit Twine(signed char Val)
295      : LHSKind(CharKind), RHSKind(EmptyKind) {
296      LHS.character = static_cast<char>(Val);
297    }
298
299    /// Construct from an unsigned char.
300    explicit Twine(unsigned char Val)
301      : LHSKind(CharKind), RHSKind(EmptyKind) {
302      LHS.character = static_cast<char>(Val);
303    }
304
305    /// Construct a twine to print \arg Val as an unsigned decimal integer.
306    explicit Twine(unsigned Val)
307      : LHSKind(DecUIKind), RHSKind(EmptyKind) {
308      LHS.decUI = Val;
309    }
310
311    /// Construct a twine to print \arg Val as a signed decimal integer.
312    explicit Twine(int Val)
313      : LHSKind(DecIKind), RHSKind(EmptyKind) {
314      LHS.decI = Val;
315    }
316
317    /// Construct a twine to print \arg Val as an unsigned decimal integer.
318    explicit Twine(const unsigned long &Val)
319      : LHSKind(DecULKind), RHSKind(EmptyKind) {
320      LHS.decUL = &Val;
321    }
322
323    /// Construct a twine to print \arg Val as a signed decimal integer.
324    explicit Twine(const long &Val)
325      : LHSKind(DecLKind), RHSKind(EmptyKind) {
326      LHS.decL = &Val;
327    }
328
329    /// Construct a twine to print \arg Val as an unsigned decimal integer.
330    explicit Twine(const unsigned long long &Val)
331      : LHSKind(DecULLKind), RHSKind(EmptyKind) {
332      LHS.decULL = &Val;
333    }
334
335    /// Construct a twine to print \arg Val as a signed decimal integer.
336    explicit Twine(const long long &Val)
337      : LHSKind(DecLLKind), RHSKind(EmptyKind) {
338      LHS.decLL = &Val;
339    }
340
341    // FIXME: Unfortunately, to make sure this is as efficient as possible we
342    // need extra binary constructors from particular types. We can't rely on
343    // the compiler to be smart enough to fold operator+()/concat() down to the
344    // right thing. Yet.
345
346    /// Construct as the concatenation of a C string and a StringRef.
347    /*implicit*/ Twine(const char *_LHS, const StringRef &_RHS)
348      : LHSKind(CStringKind), RHSKind(StringRefKind) {
349      LHS.cString = _LHS;
350      RHS.stringRef = &_RHS;
351      assert(isValid() && "Invalid twine!");
352    }
353
354    /// Construct as the concatenation of a StringRef and a C string.
355    /*implicit*/ Twine(const StringRef &_LHS, const char *_RHS)
356      : LHSKind(StringRefKind), RHSKind(CStringKind) {
357      LHS.stringRef = &_LHS;
358      RHS.cString = _RHS;
359      assert(isValid() && "Invalid twine!");
360    }
361
362    /// Create a 'null' string, which is an empty string that always
363    /// concatenates to form another empty string.
364    static Twine createNull() {
365      return Twine(NullKind);
366    }
367
368    /// @}
369    /// @name Numeric Conversions
370    /// @{
371
372    // Construct a twine to print \arg Val as an unsigned hexadecimal integer.
373    static Twine utohexstr(const uint64_t &Val) {
374      Child LHS, RHS;
375      LHS.uHex = &Val;
376      RHS.twine = 0;
377      return Twine(LHS, UHexKind, RHS, EmptyKind);
378    }
379
380    /// @}
381    /// @name Predicate Operations
382    /// @{
383
384    /// isTriviallyEmpty - Check if this twine is trivially empty; a false
385    /// return value does not necessarily mean the twine is empty.
386    bool isTriviallyEmpty() const {
387      return isNullary();
388    }
389
390    /// isSingleStringRef - Return true if this twine can be dynamically
391    /// accessed as a single StringRef value with getSingleStringRef().
392    bool isSingleStringRef() const {
393      if (getRHSKind() != EmptyKind) return false;
394
395      switch (getLHSKind()) {
396      case EmptyKind:
397      case CStringKind:
398      case StdStringKind:
399      case StringRefKind:
400        return true;
401      default:
402        return false;
403      }
404    }
405
406    /// @}
407    /// @name String Operations
408    /// @{
409
410    Twine concat(const Twine &Suffix) const;
411
412    /// @}
413    /// @name Output & Conversion.
414    /// @{
415
416    /// str - Return the twine contents as a std::string.
417    std::string str() const;
418
419    /// toVector - Write the concatenated string into the given SmallString or
420    /// SmallVector.
421    void toVector(SmallVectorImpl<char> &Out) const;
422
423    /// getSingleStringRef - This returns the twine as a single StringRef.  This
424    /// method is only valid if isSingleStringRef() is true.
425    StringRef getSingleStringRef() const {
426      assert(isSingleStringRef() &&"This cannot be had as a single stringref!");
427      switch (getLHSKind()) {
428      default: assert(0 && "Out of sync with isSingleStringRef");
429      case EmptyKind:      return StringRef();
430      case CStringKind:    return StringRef(LHS.cString);
431      case StdStringKind:  return StringRef(*LHS.stdString);
432      case StringRefKind:  return *LHS.stringRef;
433      }
434    }
435
436    /// toStringRef - This returns the twine as a single StringRef if it can be
437    /// represented as such. Otherwise the twine is written into the given
438    /// SmallVector and a StringRef to the SmallVector's data is returned.
439    StringRef toStringRef(SmallVectorImpl<char> &Out) const;
440
441    /// toNullTerminatedStringRef - This returns the twine as a single null
442    /// terminated StringRef if it can be represented as such. Otherwise the
443    /// twine is written into the given SmallVector and a StringRef to the
444    /// SmallVector's data is returned.
445    ///
446    /// The returned StringRef's size does not include the null terminator.
447    StringRef toNullTerminatedStringRef(SmallVectorImpl<char> &Out) const;
448
449    /// print - Write the concatenated string represented by this twine to the
450    /// stream \arg OS.
451    void print(raw_ostream &OS) const;
452
453    /// dump - Dump the concatenated string represented by this twine to stderr.
454    void dump() const;
455
456    /// print - Write the representation of this twine to the stream \arg OS.
457    void printRepr(raw_ostream &OS) const;
458
459    /// dumpRepr - Dump the representation of this twine to stderr.
460    void dumpRepr() const;
461
462    /// @}
463  };
464
465  /// @name Twine Inline Implementations
466  /// @{
467
468  inline Twine Twine::concat(const Twine &Suffix) const {
469    // Concatenation with null is null.
470    if (isNull() || Suffix.isNull())
471      return Twine(NullKind);
472
473    // Concatenation with empty yields the other side.
474    if (isEmpty())
475      return Suffix;
476    if (Suffix.isEmpty())
477      return *this;
478
479    // Otherwise we need to create a new node, taking care to fold in unary
480    // twines.
481    Child NewLHS, NewRHS;
482    NewLHS.twine = this;
483    NewRHS.twine = &Suffix;
484    NodeKind NewLHSKind = TwineKind, NewRHSKind = TwineKind;
485    if (isUnary()) {
486      NewLHS = LHS;
487      NewLHSKind = getLHSKind();
488    }
489    if (Suffix.isUnary()) {
490      NewRHS = Suffix.LHS;
491      NewRHSKind = Suffix.getLHSKind();
492    }
493
494    return Twine(NewLHS, NewLHSKind, NewRHS, NewRHSKind);
495  }
496
497  inline Twine operator+(const Twine &LHS, const Twine &RHS) {
498    return LHS.concat(RHS);
499  }
500
501  /// Additional overload to guarantee simplified codegen; this is equivalent to
502  /// concat().
503
504  inline Twine operator+(const char *LHS, const StringRef &RHS) {
505    return Twine(LHS, RHS);
506  }
507
508  /// Additional overload to guarantee simplified codegen; this is equivalent to
509  /// concat().
510
511  inline Twine operator+(const StringRef &LHS, const char *RHS) {
512    return Twine(LHS, RHS);
513  }
514
515  inline raw_ostream &operator<<(raw_ostream &OS, const Twine &RHS) {
516    RHS.print(OS);
517    return OS;
518  }
519
520  /// @}
521}
522
523#endif
524