Twine.h revision b357e06f672996400343d38b08014a5b6a7d5b2d
1//===-- Twine.h - Fast Temporary String Concatenation -----------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9
10#ifndef LLVM_ADT_TWINE_H
11#define LLVM_ADT_TWINE_H
12
13#include "llvm/ADT/StringRef.h"
14#include "llvm/System/DataTypes.h"
15#include <cassert>
16#include <string>
17
18namespace llvm {
19  template <typename T>
20  class SmallVectorImpl;
21  class StringRef;
22  class raw_ostream;
23
24  /// Twine - A lightweight data structure for efficiently representing the
25  /// concatenation of temporary values as strings.
26  ///
27  /// A Twine is a kind of rope, it represents a concatenated string using a
28  /// binary-tree, where the string is the preorder of the nodes. Since the
29  /// Twine can be efficiently rendered into a buffer when its result is used,
30  /// it avoids the cost of generating temporary values for intermediate string
31  /// results -- particularly in cases when the Twine result is never
32  /// required. By explicitly tracking the type of leaf nodes, we can also avoid
33  /// the creation of temporary strings for conversions operations (such as
34  /// appending an integer to a string).
35  ///
36  /// A Twine is not intended for use directly and should not be stored, its
37  /// implementation relies on the ability to store pointers to temporary stack
38  /// objects which may be deallocated at the end of a statement. Twines should
39  /// only be used accepted as const references in arguments, when an API wishes
40  /// to accept possibly-concatenated strings.
41  ///
42  /// Twines support a special 'null' value, which always concatenates to form
43  /// itself, and renders as an empty string. This can be returned from APIs to
44  /// effectively nullify any concatenations performed on the result.
45  ///
46  /// \b Implementation \n
47  ///
48  /// Given the nature of a Twine, it is not possible for the Twine's
49  /// concatenation method to construct interior nodes; the result must be
50  /// represented inside the returned value. For this reason a Twine object
51  /// actually holds two values, the left- and right-hand sides of a
52  /// concatenation. We also have nullary Twine objects, which are effectively
53  /// sentinel values that represent empty strings.
54  ///
55  /// Thus, a Twine can effectively have zero, one, or two children. The \see
56  /// isNullary(), \see isUnary(), and \see isBinary() predicates exist for
57  /// testing the number of children.
58  ///
59  /// We maintain a number of invariants on Twine objects (FIXME: Why):
60  ///  - Nullary twines are always represented with their Kind on the left-hand
61  ///    side, and the Empty kind on the right-hand side.
62  ///  - Unary twines are always represented with the value on the left-hand
63  ///    side, and the Empty kind on the right-hand side.
64  ///  - If a Twine has another Twine as a child, that child should always be
65  ///    binary (otherwise it could have been folded into the parent).
66  ///
67  /// These invariants are check by \see isValid().
68  ///
69  /// \b Efficiency Considerations \n
70  ///
71  /// The Twine is designed to yield efficient and small code for common
72  /// situations. For this reason, the concat() method is inlined so that
73  /// concatenations of leaf nodes can be optimized into stores directly into a
74  /// single stack allocated object.
75  ///
76  /// In practice, not all compilers can be trusted to optimize concat() fully,
77  /// so we provide two additional methods (and accompanying operator+
78  /// overloads) to guarantee that particularly important cases (cstring plus
79  /// StringRef) codegen as desired.
80  class Twine {
81    /// NodeKind - Represent the type of an argument.
82    enum NodeKind {
83      /// An empty string; the result of concatenating anything with it is also
84      /// empty.
85      NullKind,
86
87      /// The empty string.
88      EmptyKind,
89
90      /// A pointer to a Twine instance.
91      TwineKind,
92
93      /// A pointer to a C string instance.
94      CStringKind,
95
96      /// A pointer to an std::string instance.
97      StdStringKind,
98
99      /// A pointer to a StringRef instance.
100      StringRefKind,
101
102      /// A pointer to an unsigned int value, to render as an unsigned decimal
103      /// integer.
104      DecUIKind,
105
106      /// A pointer to an int value, to render as a signed decimal integer.
107      DecIKind,
108
109      /// A pointer to an unsigned long value, to render as an unsigned decimal
110      /// integer.
111      DecULKind,
112
113      /// A pointer to a long value, to render as a signed decimal integer.
114      DecLKind,
115
116      /// A pointer to an unsigned long long value, to render as an unsigned
117      /// decimal integer.
118      DecULLKind,
119
120      /// A pointer to a long long value, to render as a signed decimal integer.
121      DecLLKind,
122
123      /// A pointer to a uint64_t value, to render as an unsigned hexadecimal
124      /// integer.
125      UHexKind
126    };
127
128  private:
129    /// LHS - The prefix in the concatenation, which may be uninitialized for
130    /// Null or Empty kinds.
131    const void *LHS;
132    /// RHS - The suffix in the concatenation, which may be uninitialized for
133    /// Null or Empty kinds.
134    const void *RHS;
135    /// LHSKind - The NodeKind of the left hand side, \see getLHSKind().
136    unsigned char LHSKind;
137    /// RHSKind - The NodeKind of the left hand side, \see getLHSKind().
138    unsigned char RHSKind;
139
140  private:
141    /// Construct a nullary twine; the kind must be NullKind or EmptyKind.
142    explicit Twine(NodeKind Kind)
143      : LHSKind(Kind), RHSKind(EmptyKind) {
144      assert(isNullary() && "Invalid kind!");
145    }
146
147    /// Construct a binary twine.
148    explicit Twine(const Twine &_LHS, const Twine &_RHS)
149      : LHS(&_LHS), RHS(&_RHS), LHSKind(TwineKind), RHSKind(TwineKind) {
150      assert(isValid() && "Invalid twine!");
151    }
152
153    /// Construct a twine from explicit values.
154    explicit Twine(const void *_LHS, NodeKind _LHSKind,
155                   const void *_RHS, NodeKind _RHSKind)
156      : LHS(_LHS), RHS(_RHS), LHSKind(_LHSKind), RHSKind(_RHSKind) {
157      assert(isValid() && "Invalid twine!");
158    }
159
160    /// isNull - Check for the null twine.
161    bool isNull() const {
162      return getLHSKind() == NullKind;
163    }
164
165    /// isEmpty - Check for the empty twine.
166    bool isEmpty() const {
167      return getLHSKind() == EmptyKind;
168    }
169
170    /// isNullary - Check if this is a nullary twine (null or empty).
171    bool isNullary() const {
172      return isNull() || isEmpty();
173    }
174
175    /// isUnary - Check if this is a unary twine.
176    bool isUnary() const {
177      return getRHSKind() == EmptyKind && !isNullary();
178    }
179
180    /// isBinary - Check if this is a binary twine.
181    bool isBinary() const {
182      return getLHSKind() != NullKind && getRHSKind() != EmptyKind;
183    }
184
185    /// isValid - Check if this is a valid twine (satisfying the invariants on
186    /// order and number of arguments).
187    bool isValid() const {
188      // Nullary twines always have Empty on the RHS.
189      if (isNullary() && getRHSKind() != EmptyKind)
190        return false;
191
192      // Null should never appear on the RHS.
193      if (getRHSKind() == NullKind)
194        return false;
195
196      // The RHS cannot be non-empty if the LHS is empty.
197      if (getRHSKind() != EmptyKind && getLHSKind() == EmptyKind)
198        return false;
199
200      // A twine child should always be binary.
201      if (getLHSKind() == TwineKind &&
202          !static_cast<const Twine*>(LHS)->isBinary())
203        return false;
204      if (getRHSKind() == TwineKind &&
205          !static_cast<const Twine*>(RHS)->isBinary())
206        return false;
207
208      return true;
209    }
210
211    /// getLHSKind - Get the NodeKind of the left-hand side.
212    NodeKind getLHSKind() const { return (NodeKind) LHSKind; }
213
214    /// getRHSKind - Get the NodeKind of the left-hand side.
215    NodeKind getRHSKind() const { return (NodeKind) RHSKind; }
216
217    /// printOneChild - Print one child from a twine.
218    void printOneChild(raw_ostream &OS, const void *Ptr, NodeKind Kind) const;
219
220    /// printOneChildRepr - Print the representation of one child from a twine.
221    void printOneChildRepr(raw_ostream &OS, const void *Ptr,
222                           NodeKind Kind) const;
223
224  public:
225    /// @name Constructors
226    /// @{
227
228    /// Construct from an empty string.
229    /*implicit*/ Twine() : LHSKind(EmptyKind), RHSKind(EmptyKind) {
230      assert(isValid() && "Invalid twine!");
231    }
232
233    /// Construct from a C string.
234    ///
235    /// We take care here to optimize "" into the empty twine -- this will be
236    /// optimized out for string constants. This allows Twine arguments have
237    /// default "" values, without introducing unnecessary string constants.
238    /*implicit*/ Twine(const char *Str)
239      : RHSKind(EmptyKind) {
240      if (Str[0] != '\0') {
241        LHS = Str;
242        LHSKind = CStringKind;
243      } else
244        LHSKind = EmptyKind;
245
246      assert(isValid() && "Invalid twine!");
247    }
248
249    /// Construct from an std::string.
250    /*implicit*/ Twine(const std::string &Str)
251      : LHS(&Str), LHSKind(StdStringKind), RHSKind(EmptyKind) {
252      assert(isValid() && "Invalid twine!");
253    }
254
255    /// Construct from a StringRef.
256    /*implicit*/ Twine(const StringRef &Str)
257      : LHS(&Str), LHSKind(StringRefKind), RHSKind(EmptyKind) {
258      assert(isValid() && "Invalid twine!");
259    }
260
261    /// Construct a twine to print \arg Val as an unsigned decimal integer.
262    explicit Twine(const unsigned int &Val)
263      : LHS(&Val), LHSKind(DecUIKind), RHSKind(EmptyKind) {
264    }
265
266    /// Construct a twine to print \arg Val as a signed decimal integer.
267    explicit Twine(const int &Val)
268      : LHS(&Val), LHSKind(DecIKind), RHSKind(EmptyKind) {
269    }
270
271    /// Construct a twine to print \arg Val as an unsigned decimal integer.
272    explicit Twine(const unsigned long &Val)
273      : LHS(&Val), LHSKind(DecULKind), RHSKind(EmptyKind) {
274    }
275
276    /// Construct a twine to print \arg Val as a signed decimal integer.
277    explicit Twine(const long &Val)
278      : LHS(&Val), LHSKind(DecLKind), RHSKind(EmptyKind) {
279    }
280
281    /// Construct a twine to print \arg Val as an unsigned decimal integer.
282    explicit Twine(const unsigned long long &Val)
283      : LHS(&Val), LHSKind(DecULLKind), RHSKind(EmptyKind) {
284    }
285
286    /// Construct a twine to print \arg Val as a signed decimal integer.
287    explicit Twine(const long long &Val)
288      : LHS(&Val), LHSKind(DecLLKind), RHSKind(EmptyKind) {
289    }
290
291    // FIXME: Unfortunately, to make sure this is as efficient as possible we
292    // need extra binary constructors from particular types. We can't rely on
293    // the compiler to be smart enough to fold operator+()/concat() down to the
294    // right thing. Yet.
295
296    /// Construct as the concatenation of a C string and a StringRef.
297    /*implicit*/ Twine(const char *_LHS, const StringRef &_RHS)
298      : LHS(_LHS), RHS(&_RHS), LHSKind(CStringKind), RHSKind(StringRefKind) {
299      assert(isValid() && "Invalid twine!");
300    }
301
302    /// Construct as the concatenation of a StringRef and a C string.
303    /*implicit*/ Twine(const StringRef &_LHS, const char *_RHS)
304      : LHS(&_LHS), RHS(_RHS), LHSKind(StringRefKind), RHSKind(CStringKind) {
305      assert(isValid() && "Invalid twine!");
306    }
307
308    /// Create a 'null' string, which is an empty string that always
309    /// concatenates to form another empty string.
310    static Twine createNull() {
311      return Twine(NullKind);
312    }
313
314    /// @}
315    /// @name Numeric Conversions
316    /// @{
317
318    // Construct a twine to print \arg Val as an unsigned hexadecimal integer.
319    static Twine utohexstr(const uint64_t &Val) {
320      return Twine(&Val, UHexKind, 0, EmptyKind);
321    }
322
323    /// @}
324    /// @name Predicate Operations
325    /// @{
326
327    /// isTriviallyEmpty - Check if this twine is trivially empty; a false
328    /// return value does not necessarily mean the twine is empty.
329    bool isTriviallyEmpty() const {
330      return isNullary();
331    }
332
333    /// isSingleStringRef - Return true if this twine can be dynamically
334    /// accessed as a single StringRef value with getSingleStringRef().
335    bool isSingleStringRef() const {
336      if (getRHSKind() != EmptyKind) return false;
337
338      switch (getLHSKind()) {
339      case EmptyKind:
340      case CStringKind:
341      case StdStringKind:
342      case StringRefKind:
343        return true;
344      default:
345        return false;
346      }
347    }
348
349    /// @}
350    /// @name String Operations
351    /// @{
352
353    Twine concat(const Twine &Suffix) const;
354
355    /// @}
356    /// @name Output & Conversion.
357    /// @{
358
359    /// str - Return the twine contents as a std::string.
360    std::string str() const;
361
362    /// toVector - Write the concatenated string into the given SmallString or
363    /// SmallVector.
364    void toVector(SmallVectorImpl<char> &Out) const;
365
366    /// getSingleStringRef - This returns the twine as a single StringRef.  This
367    /// method is only valid if isSingleStringRef() is true.
368    StringRef getSingleStringRef() const {
369      assert(isSingleStringRef() &&"This cannot be had as a single stringref!");
370      switch (getLHSKind()) {
371      default: assert(0 && "Out of sync with isSingleStringRef");
372      case EmptyKind:      return StringRef();
373      case CStringKind:    return StringRef((const char*)LHS);
374      case StdStringKind:  return StringRef(*(const std::string*)LHS);
375      case StringRefKind:  return *(const StringRef*)LHS;
376      }
377    }
378
379    /// toStringRef - This returns the twine as a single StringRef if it can be
380    /// represented as such. Otherwise the twine is written into the given
381    /// SmallVector and a StringRef to the SmallVector's data is returned.
382    StringRef toStringRef(SmallVectorImpl<char> &Out) const;
383
384    /// print - Write the concatenated string represented by this twine to the
385    /// stream \arg OS.
386    void print(raw_ostream &OS) const;
387
388    /// dump - Dump the concatenated string represented by this twine to stderr.
389    void dump() const;
390
391    /// print - Write the representation of this twine to the stream \arg OS.
392    void printRepr(raw_ostream &OS) const;
393
394    /// dumpRepr - Dump the representation of this twine to stderr.
395    void dumpRepr() const;
396
397    /// @}
398  };
399
400  /// @name Twine Inline Implementations
401  /// @{
402
403  inline Twine Twine::concat(const Twine &Suffix) const {
404    // Concatenation with null is null.
405    if (isNull() || Suffix.isNull())
406      return Twine(NullKind);
407
408    // Concatenation with empty yields the other side.
409    if (isEmpty())
410      return Suffix;
411    if (Suffix.isEmpty())
412      return *this;
413
414    // Otherwise we need to create a new node, taking care to fold in unary
415    // twines.
416    const void *NewLHS = this, *NewRHS = &Suffix;
417    NodeKind NewLHSKind = TwineKind, NewRHSKind = TwineKind;
418    if (isUnary()) {
419      NewLHS = LHS;
420      NewLHSKind = getLHSKind();
421    }
422    if (Suffix.isUnary()) {
423      NewRHS = Suffix.LHS;
424      NewRHSKind = Suffix.getLHSKind();
425    }
426
427    return Twine(NewLHS, NewLHSKind, NewRHS, NewRHSKind);
428  }
429
430  inline Twine operator+(const Twine &LHS, const Twine &RHS) {
431    return LHS.concat(RHS);
432  }
433
434  /// Additional overload to guarantee simplified codegen; this is equivalent to
435  /// concat().
436
437  inline Twine operator+(const char *LHS, const StringRef &RHS) {
438    return Twine(LHS, RHS);
439  }
440
441  /// Additional overload to guarantee simplified codegen; this is equivalent to
442  /// concat().
443
444  inline Twine operator+(const StringRef &LHS, const char *RHS) {
445    return Twine(LHS, RHS);
446  }
447
448  inline raw_ostream &operator<<(raw_ostream &OS, const Twine &RHS) {
449    RHS.print(OS);
450    return OS;
451  }
452
453  /// @}
454}
455
456#endif
457