ilist.h revision 345b378309eabd74a7a43f095dca9a4894bc371e
1//==-- llvm/ADT/ilist.h - Intrusive Linked List Template ---------*- C++ -*-==//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines classes to implement an intrusive doubly linked list class
11// (i.e. each node of the list must contain a next and previous field for the
12// list.
13//
14// The ilist_traits trait class is used to gain access to the next and previous
15// fields of the node type that the list is instantiated with.  If it is not
16// specialized, the list defaults to using the getPrev(), getNext() method calls
17// to get the next and previous pointers.
18//
19// The ilist class itself, should be a plug in replacement for list, assuming
20// that the nodes contain next/prev pointers.  This list replacement does not
21// provide a constant time size() method, so be careful to use empty() when you
22// really want to know if it's empty.
23//
24// The ilist class is implemented by allocating a 'tail' node when the list is
25// created (using ilist_traits<>::createSentinel()).  This tail node is
26// absolutely required because the user must be able to compute end()-1. Because
27// of this, users of the direct next/prev links will see an extra link on the
28// end of the list, which should be ignored.
29//
30// Requirements for a user of this list:
31//
32//   1. The user must provide {g|s}et{Next|Prev} methods, or specialize
33//      ilist_traits to provide an alternate way of getting and setting next and
34//      prev links.
35//
36//===----------------------------------------------------------------------===//
37
38#ifndef LLVM_ADT_ILIST_H
39#define LLVM_ADT_ILIST_H
40
41#include <cassert>
42#include <cstddef>
43#include <iterator>
44
45namespace llvm {
46
47template<typename NodeTy, typename Traits> class iplist;
48template<typename NodeTy> class ilist_iterator;
49
50/// ilist_nextprev_traits - A fragment for template traits for intrusive list
51/// that provides default next/prev implementations for common operations.
52///
53template<typename NodeTy>
54struct ilist_nextprev_traits {
55  static NodeTy *getPrev(NodeTy *N) { return N->getPrev(); }
56  static NodeTy *getNext(NodeTy *N) { return N->getNext(); }
57  static const NodeTy *getPrev(const NodeTy *N) { return N->getPrev(); }
58  static const NodeTy *getNext(const NodeTy *N) { return N->getNext(); }
59
60  static void setPrev(NodeTy *N, NodeTy *Prev) { N->setPrev(Prev); }
61  static void setNext(NodeTy *N, NodeTy *Next) { N->setNext(Next); }
62};
63
64template<typename NodeTy>
65struct ilist_traits;
66
67/// ilist_sentinel_traits - A fragment for template traits for intrusive list
68/// that provides default sentinel implementations for common operations.
69///
70/// ilist_sentinel_traits implements a lazy dynamic sentinel allocation
71/// strategy. The sentinel is stored in the prev field of ilist's Head.
72///
73template<typename NodeTy>
74struct ilist_sentinel_traits {
75  /// createSentinel - create the dynamic sentinel
76  static NodeTy *createSentinel() { return new NodeTy(); }
77
78  /// destroySentinel - deallocate the dynamic sentinel
79  static void destroySentinel(NodeTy *N) { delete N; }
80
81  /// provideInitialHead - when constructing an ilist, provide a starting
82  /// value for its Head
83  /// @return null node to indicate that it needs to be allocated later
84  static NodeTy *provideInitialHead() { return 0; }
85
86  /// ensureHead - make sure that Head is either already
87  /// initialized or assigned a fresh sentinel
88  /// @return the sentinel
89  static NodeTy *ensureHead(NodeTy *&Head) {
90    if (!Head) {
91      Head = ilist_traits<NodeTy>::createSentinel();
92      ilist_traits<NodeTy>::noteHead(Head, Head);
93      ilist_traits<NodeTy>::setNext(Head, 0);
94      return Head;
95    }
96    return ilist_traits<NodeTy>::getPrev(Head);
97  }
98
99  /// noteHead - stash the sentinel into its default location
100  static void noteHead(NodeTy *NewHead, NodeTy *Sentinel) {
101    ilist_traits<NodeTy>::setPrev(NewHead, Sentinel);
102  }
103};
104
105/// ilist_node_traits - A fragment for template traits for intrusive list
106/// that provides default node related operations.
107///
108template<typename NodeTy>
109struct ilist_node_traits {
110  static NodeTy *createNode(const NodeTy &V) { return new NodeTy(V); }
111  static void deleteNode(NodeTy *V) { delete V; }
112
113  void addNodeToList(NodeTy *) {}
114  void removeNodeFromList(NodeTy *) {}
115  void transferNodesFromList(ilist_node_traits &    /*SrcTraits*/,
116                             ilist_iterator<NodeTy> /*first*/,
117                             ilist_iterator<NodeTy> /*last*/) {}
118};
119
120/// ilist_default_traits - Default template traits for intrusive list.
121/// By inheriting from this, you can easily use default implementations
122/// for all common operations.
123///
124template<typename NodeTy>
125struct ilist_default_traits : public ilist_nextprev_traits<NodeTy>,
126                              public ilist_sentinel_traits<NodeTy>,
127                              public ilist_node_traits<NodeTy> {
128};
129
130// Template traits for intrusive list.  By specializing this template class, you
131// can change what next/prev fields are used to store the links...
132template<typename NodeTy>
133struct ilist_traits : public ilist_default_traits<NodeTy> {};
134
135// Const traits are the same as nonconst traits...
136template<typename Ty>
137struct ilist_traits<const Ty> : public ilist_traits<Ty> {};
138
139//===----------------------------------------------------------------------===//
140// ilist_iterator<Node> - Iterator for intrusive list.
141//
142template<typename NodeTy>
143class ilist_iterator
144  : public std::iterator<std::bidirectional_iterator_tag, NodeTy, ptrdiff_t> {
145
146public:
147  typedef ilist_traits<NodeTy> Traits;
148  typedef std::iterator<std::bidirectional_iterator_tag,
149                        NodeTy, ptrdiff_t> super;
150
151  typedef typename super::value_type value_type;
152  typedef typename super::difference_type difference_type;
153  typedef typename super::pointer pointer;
154  typedef typename super::reference reference;
155private:
156  pointer NodePtr;
157
158  // ilist_iterator is not a random-access iterator, but it has an
159  // implicit conversion to pointer-type, which is. Declare (but
160  // don't define) these functions as private to help catch
161  // accidental misuse.
162  void operator[](difference_type) const;
163  void operator+(difference_type) const;
164  void operator-(difference_type) const;
165  void operator+=(difference_type) const;
166  void operator-=(difference_type) const;
167  template<class T> void operator<(T) const;
168  template<class T> void operator<=(T) const;
169  template<class T> void operator>(T) const;
170  template<class T> void operator>=(T) const;
171  template<class T> void operator-(T) const;
172public:
173
174  ilist_iterator(pointer NP) : NodePtr(NP) {}
175  ilist_iterator(reference NR) : NodePtr(&NR) {}
176  ilist_iterator() : NodePtr(0) {}
177
178  // This is templated so that we can allow constructing a const iterator from
179  // a nonconst iterator...
180  template<class node_ty>
181  ilist_iterator(const ilist_iterator<node_ty> &RHS)
182    : NodePtr(RHS.getNodePtrUnchecked()) {}
183
184  // This is templated so that we can allow assigning to a const iterator from
185  // a nonconst iterator...
186  template<class node_ty>
187  const ilist_iterator &operator=(const ilist_iterator<node_ty> &RHS) {
188    NodePtr = RHS.getNodePtrUnchecked();
189    return *this;
190  }
191
192  // Accessors...
193  operator pointer() const {
194    return NodePtr;
195  }
196
197  reference operator*() const {
198    return *NodePtr;
199  }
200  pointer operator->() const { return &operator*(); }
201
202  // Comparison operators
203  bool operator==(const ilist_iterator &RHS) const {
204    return NodePtr == RHS.NodePtr;
205  }
206  bool operator!=(const ilist_iterator &RHS) const {
207    return NodePtr != RHS.NodePtr;
208  }
209
210  // Increment and decrement operators...
211  ilist_iterator &operator--() {      // predecrement - Back up
212    NodePtr = Traits::getPrev(NodePtr);
213    assert(NodePtr && "--'d off the beginning of an ilist!");
214    return *this;
215  }
216  ilist_iterator &operator++() {      // preincrement - Advance
217    NodePtr = Traits::getNext(NodePtr);
218    return *this;
219  }
220  ilist_iterator operator--(int) {    // postdecrement operators...
221    ilist_iterator tmp = *this;
222    --*this;
223    return tmp;
224  }
225  ilist_iterator operator++(int) {    // postincrement operators...
226    ilist_iterator tmp = *this;
227    ++*this;
228    return tmp;
229  }
230
231  // Internal interface, do not use...
232  pointer getNodePtrUnchecked() const { return NodePtr; }
233};
234
235// do not implement. this is to catch errors when people try to use
236// them as random access iterators
237template<typename T>
238void operator-(int, ilist_iterator<T>);
239template<typename T>
240void operator-(ilist_iterator<T>,int);
241
242template<typename T>
243void operator+(int, ilist_iterator<T>);
244template<typename T>
245void operator+(ilist_iterator<T>,int);
246
247// operator!=/operator== - Allow mixed comparisons without dereferencing
248// the iterator, which could very likely be pointing to end().
249template<typename T>
250bool operator!=(const T* LHS, const ilist_iterator<const T> &RHS) {
251  return LHS != RHS.getNodePtrUnchecked();
252}
253template<typename T>
254bool operator==(const T* LHS, const ilist_iterator<const T> &RHS) {
255  return LHS == RHS.getNodePtrUnchecked();
256}
257template<typename T>
258bool operator!=(T* LHS, const ilist_iterator<T> &RHS) {
259  return LHS != RHS.getNodePtrUnchecked();
260}
261template<typename T>
262bool operator==(T* LHS, const ilist_iterator<T> &RHS) {
263  return LHS == RHS.getNodePtrUnchecked();
264}
265
266
267// Allow ilist_iterators to convert into pointers to a node automatically when
268// used by the dyn_cast, cast, isa mechanisms...
269
270template<typename From> struct simplify_type;
271
272template<typename NodeTy> struct simplify_type<ilist_iterator<NodeTy> > {
273  typedef NodeTy* SimpleType;
274
275  static SimpleType getSimplifiedValue(const ilist_iterator<NodeTy> &Node) {
276    return &*Node;
277  }
278};
279template<typename NodeTy> struct simplify_type<const ilist_iterator<NodeTy> > {
280  typedef NodeTy* SimpleType;
281
282  static SimpleType getSimplifiedValue(const ilist_iterator<NodeTy> &Node) {
283    return &*Node;
284  }
285};
286
287
288//===----------------------------------------------------------------------===//
289//
290/// iplist - The subset of list functionality that can safely be used on nodes
291/// of polymorphic types, i.e. a heterogenous list with a common base class that
292/// holds the next/prev pointers.  The only state of the list itself is a single
293/// pointer to the head of the list.
294///
295/// This list can be in one of three interesting states:
296/// 1. The list may be completely unconstructed.  In this case, the head
297///    pointer is null.  When in this form, any query for an iterator (e.g.
298///    begin() or end()) causes the list to transparently change to state #2.
299/// 2. The list may be empty, but contain a sentinel for the end iterator. This
300///    sentinel is created by the Traits::createSentinel method and is a link
301///    in the list.  When the list is empty, the pointer in the iplist points
302///    to the sentinel.  Once the sentinel is constructed, it
303///    is not destroyed until the list is.
304/// 3. The list may contain actual objects in it, which are stored as a doubly
305///    linked list of nodes.  One invariant of the list is that the predecessor
306///    of the first node in the list always points to the last node in the list,
307///    and the successor pointer for the sentinel (which always stays at the
308///    end of the list) is always null.
309///
310template<typename NodeTy, typename Traits=ilist_traits<NodeTy> >
311class iplist : public Traits {
312  mutable NodeTy *Head;
313
314  // Use the prev node pointer of 'head' as the tail pointer.  This is really a
315  // circularly linked list where we snip the 'next' link from the sentinel node
316  // back to the first node in the list (to preserve assertions about going off
317  // the end of the list).
318  NodeTy *getTail() { return this->ensureHead(Head); }
319  const NodeTy *getTail() const { return this->ensureHead(Head); }
320  void setTail(NodeTy *N) const { this->noteHead(Head, N); }
321
322  /// CreateLazySentinel - This method verifies whether the sentinel for the
323  /// list has been created and lazily makes it if not.
324  void CreateLazySentinel() const {
325    this->ensureHead(Head);
326  }
327
328  static bool op_less(NodeTy &L, NodeTy &R) { return L < R; }
329  static bool op_equal(NodeTy &L, NodeTy &R) { return L == R; }
330
331  // No fundamental reason why iplist can't be copyable, but the default
332  // copy/copy-assign won't do.
333  iplist(const iplist &);         // do not implement
334  void operator=(const iplist &); // do not implement
335
336public:
337  typedef NodeTy *pointer;
338  typedef const NodeTy *const_pointer;
339  typedef NodeTy &reference;
340  typedef const NodeTy &const_reference;
341  typedef NodeTy value_type;
342  typedef ilist_iterator<NodeTy> iterator;
343  typedef ilist_iterator<const NodeTy> const_iterator;
344  typedef size_t size_type;
345  typedef ptrdiff_t difference_type;
346  typedef std::reverse_iterator<const_iterator>  const_reverse_iterator;
347  typedef std::reverse_iterator<iterator>  reverse_iterator;
348
349  iplist() : Head(this->provideInitialHead()) {}
350  ~iplist() {
351    if (!Head) return;
352    clear();
353    Traits::destroySentinel(getTail());
354  }
355
356  // Iterator creation methods.
357  iterator begin() {
358    CreateLazySentinel();
359    return iterator(Head);
360  }
361  const_iterator begin() const {
362    CreateLazySentinel();
363    return const_iterator(Head);
364  }
365  iterator end() {
366    CreateLazySentinel();
367    return iterator(getTail());
368  }
369  const_iterator end() const {
370    CreateLazySentinel();
371    return const_iterator(getTail());
372  }
373
374  // reverse iterator creation methods.
375  reverse_iterator rbegin()            { return reverse_iterator(end()); }
376  const_reverse_iterator rbegin() const{ return const_reverse_iterator(end()); }
377  reverse_iterator rend()              { return reverse_iterator(begin()); }
378  const_reverse_iterator rend() const { return const_reverse_iterator(begin());}
379
380
381  // Miscellaneous inspection routines.
382  size_type max_size() const { return size_type(-1); }
383  bool empty() const { return Head == 0 || Head == getTail(); }
384
385  // Front and back accessor functions...
386  reference front() {
387    assert(!empty() && "Called front() on empty list!");
388    return *Head;
389  }
390  const_reference front() const {
391    assert(!empty() && "Called front() on empty list!");
392    return *Head;
393  }
394  reference back() {
395    assert(!empty() && "Called back() on empty list!");
396    return *this->getPrev(getTail());
397  }
398  const_reference back() const {
399    assert(!empty() && "Called back() on empty list!");
400    return *this->getPrev(getTail());
401  }
402
403  void swap(iplist &RHS) {
404    assert(0 && "Swap does not use list traits callback correctly yet!");
405    std::swap(Head, RHS.Head);
406  }
407
408  iterator insert(iterator where, NodeTy *New) {
409    NodeTy *CurNode = where.getNodePtrUnchecked();
410    NodeTy *PrevNode = this->getPrev(CurNode);
411    this->setNext(New, CurNode);
412    this->setPrev(New, PrevNode);
413
414    if (CurNode != Head)  // Is PrevNode off the beginning of the list?
415      this->setNext(PrevNode, New);
416    else
417      Head = New;
418    this->setPrev(CurNode, New);
419
420    this->addNodeToList(New);  // Notify traits that we added a node...
421    return New;
422  }
423
424  iterator insertAfter(iterator where, NodeTy *New) {
425    if (empty())
426      return insert(begin(), New);
427    else
428      return insert(++where, New);
429  }
430
431  NodeTy *remove(iterator &IT) {
432    assert(IT != end() && "Cannot remove end of list!");
433    NodeTy *Node = &*IT;
434    NodeTy *NextNode = this->getNext(Node);
435    NodeTy *PrevNode = this->getPrev(Node);
436
437    if (Node != Head)  // Is PrevNode off the beginning of the list?
438      this->setNext(PrevNode, NextNode);
439    else
440      Head = NextNode;
441    this->setPrev(NextNode, PrevNode);
442    IT = NextNode;
443    this->removeNodeFromList(Node);  // Notify traits that we removed a node...
444
445    // Set the next/prev pointers of the current node to null.  This isn't
446    // strictly required, but this catches errors where a node is removed from
447    // an ilist (and potentially deleted) with iterators still pointing at it.
448    // When those iterators are incremented or decremented, they will assert on
449    // the null next/prev pointer instead of "usually working".
450    this->setNext(Node, 0);
451    this->setPrev(Node, 0);
452    return Node;
453  }
454
455  NodeTy *remove(const iterator &IT) {
456    iterator MutIt = IT;
457    return remove(MutIt);
458  }
459
460  // erase - remove a node from the controlled sequence... and delete it.
461  iterator erase(iterator where) {
462    this->deleteNode(remove(where));
463    return where;
464  }
465
466
467private:
468  // transfer - The heart of the splice function.  Move linked list nodes from
469  // [first, last) into position.
470  //
471  void transfer(iterator position, iplist &L2, iterator first, iterator last) {
472    assert(first != last && "Should be checked by callers");
473
474    if (position != last) {
475      // Note: we have to be careful about the case when we move the first node
476      // in the list.  This node is the list sentinel node and we can't move it.
477      NodeTy *ThisSentinel = getTail();
478      setTail(0);
479      NodeTy *L2Sentinel = L2.getTail();
480      L2.setTail(0);
481
482      // Remove [first, last) from its old position.
483      NodeTy *First = &*first, *Prev = this->getPrev(First);
484      NodeTy *Next = last.getNodePtrUnchecked(), *Last = this->getPrev(Next);
485      if (Prev)
486        this->setNext(Prev, Next);
487      else
488        L2.Head = Next;
489      this->setPrev(Next, Prev);
490
491      // Splice [first, last) into its new position.
492      NodeTy *PosNext = position.getNodePtrUnchecked();
493      NodeTy *PosPrev = this->getPrev(PosNext);
494
495      // Fix head of list...
496      if (PosPrev)
497        this->setNext(PosPrev, First);
498      else
499        Head = First;
500      this->setPrev(First, PosPrev);
501
502      // Fix end of list...
503      this->setNext(Last, PosNext);
504      this->setPrev(PosNext, Last);
505
506      this->transferNodesFromList(L2, First, PosNext);
507
508      // Now that everything is set, restore the pointers to the list sentinels.
509      L2.setTail(L2Sentinel);
510      setTail(ThisSentinel);
511    }
512  }
513
514public:
515
516  //===----------------------------------------------------------------------===
517  // Functionality derived from other functions defined above...
518  //
519
520  size_type size() const {
521    if (Head == 0) return 0; // Don't require construction of sentinel if empty.
522    return std::distance(begin(), end());
523  }
524
525  iterator erase(iterator first, iterator last) {
526    while (first != last)
527      first = erase(first);
528    return last;
529  }
530
531  void clear() { if (Head) erase(begin(), end()); }
532
533  // Front and back inserters...
534  void push_front(NodeTy *val) { insert(begin(), val); }
535  void push_back(NodeTy *val) { insert(end(), val); }
536  void pop_front() {
537    assert(!empty() && "pop_front() on empty list!");
538    erase(begin());
539  }
540  void pop_back() {
541    assert(!empty() && "pop_back() on empty list!");
542    iterator t = end(); erase(--t);
543  }
544
545  // Special forms of insert...
546  template<class InIt> void insert(iterator where, InIt first, InIt last) {
547    for (; first != last; ++first) insert(where, *first);
548  }
549
550  // Splice members - defined in terms of transfer...
551  void splice(iterator where, iplist &L2) {
552    if (!L2.empty())
553      transfer(where, L2, L2.begin(), L2.end());
554  }
555  void splice(iterator where, iplist &L2, iterator first) {
556    iterator last = first; ++last;
557    if (where == first || where == last) return; // No change
558    transfer(where, L2, first, last);
559  }
560  void splice(iterator where, iplist &L2, iterator first, iterator last) {
561    if (first != last) transfer(where, L2, first, last);
562  }
563
564
565
566  //===----------------------------------------------------------------------===
567  // High-Level Functionality that shouldn't really be here, but is part of list
568  //
569
570  // These two functions are actually called remove/remove_if in list<>, but
571  // they actually do the job of erase, rename them accordingly.
572  //
573  void erase(const NodeTy &val) {
574    for (iterator I = begin(), E = end(); I != E; ) {
575      iterator next = I; ++next;
576      if (*I == val) erase(I);
577      I = next;
578    }
579  }
580  template<class Pr1> void erase_if(Pr1 pred) {
581    for (iterator I = begin(), E = end(); I != E; ) {
582      iterator next = I; ++next;
583      if (pred(*I)) erase(I);
584      I = next;
585    }
586  }
587
588  template<class Pr2> void unique(Pr2 pred) {
589    if (empty()) return;
590    for (iterator I = begin(), E = end(), Next = begin(); ++Next != E;) {
591      if (pred(*I))
592        erase(Next);
593      else
594        I = Next;
595      Next = I;
596    }
597  }
598  void unique() { unique(op_equal); }
599
600  template<class Pr3> void merge(iplist &right, Pr3 pred) {
601    iterator first1 = begin(), last1 = end();
602    iterator first2 = right.begin(), last2 = right.end();
603    while (first1 != last1 && first2 != last2)
604      if (pred(*first2, *first1)) {
605        iterator next = first2;
606        transfer(first1, right, first2, ++next);
607        first2 = next;
608      } else {
609        ++first1;
610      }
611    if (first2 != last2) transfer(last1, right, first2, last2);
612  }
613  void merge(iplist &right) { return merge(right, op_less); }
614
615  template<class Pr3> void sort(Pr3 pred);
616  void sort() { sort(op_less); }
617  void reverse();
618};
619
620
621template<typename NodeTy>
622struct ilist : public iplist<NodeTy> {
623  typedef typename iplist<NodeTy>::size_type size_type;
624  typedef typename iplist<NodeTy>::iterator iterator;
625
626  ilist() {}
627  ilist(const ilist &right) {
628    insert(this->begin(), right.begin(), right.end());
629  }
630  explicit ilist(size_type count) {
631    insert(this->begin(), count, NodeTy());
632  }
633  ilist(size_type count, const NodeTy &val) {
634    insert(this->begin(), count, val);
635  }
636  template<class InIt> ilist(InIt first, InIt last) {
637    insert(this->begin(), first, last);
638  }
639
640  // bring hidden functions into scope
641  using iplist<NodeTy>::insert;
642  using iplist<NodeTy>::push_front;
643  using iplist<NodeTy>::push_back;
644
645  // Main implementation here - Insert for a node passed by value...
646  iterator insert(iterator where, const NodeTy &val) {
647    return insert(where, this->createNode(val));
648  }
649
650
651  // Front and back inserters...
652  void push_front(const NodeTy &val) { insert(this->begin(), val); }
653  void push_back(const NodeTy &val) { insert(this->end(), val); }
654
655  // Special forms of insert...
656  template<class InIt> void insert(iterator where, InIt first, InIt last) {
657    for (; first != last; ++first) insert(where, *first);
658  }
659  void insert(iterator where, size_type count, const NodeTy &val) {
660    for (; count != 0; --count) insert(where, val);
661  }
662
663  // Assign special forms...
664  void assign(size_type count, const NodeTy &val) {
665    iterator I = this->begin();
666    for (; I != this->end() && count != 0; ++I, --count)
667      *I = val;
668    if (count != 0)
669      insert(this->end(), val, val);
670    else
671      erase(I, this->end());
672  }
673  template<class InIt> void assign(InIt first1, InIt last1) {
674    iterator first2 = this->begin(), last2 = this->end();
675    for ( ; first1 != last1 && first2 != last2; ++first1, ++first2)
676      *first1 = *first2;
677    if (first2 == last2)
678      erase(first1, last1);
679    else
680      insert(last1, first2, last2);
681  }
682
683
684  // Resize members...
685  void resize(size_type newsize, NodeTy val) {
686    iterator i = this->begin();
687    size_type len = 0;
688    for ( ; i != this->end() && len < newsize; ++i, ++len) /* empty*/ ;
689
690    if (len == newsize)
691      erase(i, this->end());
692    else                                          // i == end()
693      insert(this->end(), newsize - len, val);
694  }
695  void resize(size_type newsize) { resize(newsize, NodeTy()); }
696};
697
698} // End llvm namespace
699
700namespace std {
701  // Ensure that swap uses the fast list swap...
702  template<class Ty>
703  void swap(llvm::iplist<Ty> &Left, llvm::iplist<Ty> &Right) {
704    Left.swap(Right);
705  }
706}  // End 'std' extensions...
707
708#endif // LLVM_ADT_ILIST_H
709