ilist.h revision 5c5f5a2ec2dd49bd3049fa0a55aca4956fc56ff2
1//==-- llvm/ADT/ilist.h - Intrusive Linked List Template ---------*- C++ -*-==//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines classes to implement an intrusive doubly linked list class
11// (i.e. each node of the list must contain a next and previous field for the
12// list.
13//
14// The ilist_traits trait class is used to gain access to the next and previous
15// fields of the node type that the list is instantiated with.  If it is not
16// specialized, the list defaults to using the getPrev(), getNext() method calls
17// to get the next and previous pointers.
18//
19// The ilist class itself, should be a plug in replacement for list, assuming
20// that the nodes contain next/prev pointers.  This list replacement does not
21// provide a constant time size() method, so be careful to use empty() when you
22// really want to know if it's empty.
23//
24// The ilist class is implemented by allocating a 'tail' node when the list is
25// created (using ilist_traits<>::createSentinel()).  This tail node is
26// absolutely required because the user must be able to compute end()-1. Because
27// of this, users of the direct next/prev links will see an extra link on the
28// end of the list, which should be ignored.
29//
30// Requirements for a user of this list:
31//
32//   1. The user must provide {g|s}et{Next|Prev} methods, or specialize
33//      ilist_traits to provide an alternate way of getting and setting next and
34//      prev links.
35//
36//===----------------------------------------------------------------------===//
37
38#ifndef LLVM_ADT_ILIST_H
39#define LLVM_ADT_ILIST_H
40
41#include "llvm/ADT/iterator.h"
42#include <cassert>
43
44namespace llvm {
45
46template<typename NodeTy, typename Traits> class iplist;
47template<typename NodeTy> class ilist_iterator;
48
49/// ilist_nextprev_traits - A fragment for template traits for intrusive list
50/// that provides default next/prev implementations for common operations.
51///
52template<typename NodeTy>
53struct ilist_nextprev_traits {
54  static NodeTy *getPrev(NodeTy *N) { return N->getPrev(); }
55  static NodeTy *getNext(NodeTy *N) { return N->getNext(); }
56  static const NodeTy *getPrev(const NodeTy *N) { return N->getPrev(); }
57  static const NodeTy *getNext(const NodeTy *N) { return N->getNext(); }
58
59  static void setPrev(NodeTy *N, NodeTy *Prev) { N->setPrev(Prev); }
60  static void setNext(NodeTy *N, NodeTy *Next) { N->setNext(Next); }
61};
62
63template<typename NodeTy>
64struct ilist_traits;
65
66/// ilist_sentinel_traits - A fragment for template traits for intrusive list
67/// that provides default sentinel implementations for common operations.
68///
69/// ilist_sentinel_traits implements a lazy dynamic sentinel allocation
70/// strategy. The sentinel is stored in the prev field of ilist's Head.
71///
72template<typename NodeTy>
73struct ilist_sentinel_traits {
74  /// createSentinel - create the dynamic sentinel
75  static NodeTy *createSentinel() { return new NodeTy(); }
76
77  /// destroySentinel - deallocate the dynamic sentinel
78  static void destroySentinel(NodeTy *N) { delete N; }
79
80  /// provideInitialHead - when constructing an ilist, provide a starting
81  /// value for its Head
82  /// @return null node to indicate that it needs to be allocated later
83  static NodeTy *provideInitialHead() { return 0; }
84
85  /// ensureHead - make sure that Head is either already
86  /// initialized or assigned a fresh sentinel
87  /// @return the sentinel
88  static NodeTy *ensureHead(NodeTy *&Head) {
89    if (!Head) {
90      Head = ilist_traits<NodeTy>::createSentinel();
91      ilist_traits<NodeTy>::noteHead(Head, Head);
92      ilist_traits<NodeTy>::setNext(Head, 0);
93      return Head;
94    }
95    return ilist_traits<NodeTy>::getPrev(Head);
96  }
97
98  /// noteHead - stash the sentinel into its default location
99  static void noteHead(NodeTy *NewHead, NodeTy *Sentinel) {
100    ilist_traits<NodeTy>::setPrev(NewHead, Sentinel);
101  }
102};
103
104/// ilist_node_traits - A fragment for template traits for intrusive list
105/// that provides default node related operations.
106///
107template<typename NodeTy>
108struct ilist_node_traits {
109  static NodeTy *createNode(const NodeTy &V) { return new NodeTy(V); }
110  static void deleteNode(NodeTy *V) { delete V; }
111
112  void addNodeToList(NodeTy *) {}
113  void removeNodeFromList(NodeTy *) {}
114  void transferNodesFromList(ilist_node_traits &    /*SrcTraits*/,
115                             ilist_iterator<NodeTy> /*first*/,
116                             ilist_iterator<NodeTy> /*last*/) {}
117};
118
119/// ilist_default_traits - Default template traits for intrusive list.
120/// By inheriting from this, you can easily use default implementations
121/// for all common operations.
122///
123template<typename NodeTy>
124struct ilist_default_traits : ilist_nextprev_traits<NodeTy>,
125                              ilist_sentinel_traits<NodeTy>,
126                              ilist_node_traits<NodeTy> {
127};
128
129// Template traits for intrusive list.  By specializing this template class, you
130// can change what next/prev fields are used to store the links...
131template<typename NodeTy>
132struct ilist_traits : ilist_default_traits<NodeTy> {};
133
134// Const traits are the same as nonconst traits...
135template<typename Ty>
136struct ilist_traits<const Ty> : public ilist_traits<Ty> {};
137
138//===----------------------------------------------------------------------===//
139// ilist_iterator<Node> - Iterator for intrusive list.
140//
141template<typename NodeTy>
142class ilist_iterator
143  : public bidirectional_iterator<NodeTy, ptrdiff_t> {
144
145public:
146  typedef ilist_traits<NodeTy> Traits;
147  typedef bidirectional_iterator<NodeTy, ptrdiff_t> super;
148
149  typedef typename super::value_type value_type;
150  typedef typename super::difference_type difference_type;
151  typedef typename super::pointer pointer;
152  typedef typename super::reference reference;
153private:
154  pointer NodePtr;
155
156  // ilist_iterator is not a random-access iterator, but it has an
157  // implicit conversion to pointer-type, which is. Declare (but
158  // don't define) these functions as private to help catch
159  // accidental misuse.
160  void operator[](difference_type) const;
161  void operator+(difference_type) const;
162  void operator-(difference_type) const;
163  void operator+=(difference_type) const;
164  void operator-=(difference_type) const;
165  template<class T> void operator<(T) const;
166  template<class T> void operator<=(T) const;
167  template<class T> void operator>(T) const;
168  template<class T> void operator>=(T) const;
169  template<class T> void operator-(T) const;
170public:
171
172  ilist_iterator(pointer NP) : NodePtr(NP) {}
173  ilist_iterator(reference NR) : NodePtr(&NR) {}
174  ilist_iterator() : NodePtr(0) {}
175
176  // This is templated so that we can allow constructing a const iterator from
177  // a nonconst iterator...
178  template<class node_ty>
179  ilist_iterator(const ilist_iterator<node_ty> &RHS)
180    : NodePtr(RHS.getNodePtrUnchecked()) {}
181
182  // This is templated so that we can allow assigning to a const iterator from
183  // a nonconst iterator...
184  template<class node_ty>
185  const ilist_iterator &operator=(const ilist_iterator<node_ty> &RHS) {
186    NodePtr = RHS.getNodePtrUnchecked();
187    return *this;
188  }
189
190  // Accessors...
191  operator pointer() const {
192    assert(Traits::getNext(NodePtr) != 0 && "Dereferencing end()!");
193    return NodePtr;
194  }
195
196  reference operator*() const {
197    assert(Traits::getNext(NodePtr) != 0 && "Dereferencing end()!");
198    return *NodePtr;
199  }
200  pointer operator->() const { return &operator*(); }
201
202  // Comparison operators
203  bool operator==(const ilist_iterator &RHS) const {
204    return NodePtr == RHS.NodePtr;
205  }
206  bool operator!=(const ilist_iterator &RHS) const {
207    return NodePtr != RHS.NodePtr;
208  }
209
210  // Increment and decrement operators...
211  ilist_iterator &operator--() {      // predecrement - Back up
212    NodePtr = Traits::getPrev(NodePtr);
213    assert(NodePtr && "--'d off the beginning of an ilist!");
214    return *this;
215  }
216  ilist_iterator &operator++() {      // preincrement - Advance
217    NodePtr = Traits::getNext(NodePtr);
218    assert(NodePtr && "++'d off the end of an ilist!");
219    return *this;
220  }
221  ilist_iterator operator--(int) {    // postdecrement operators...
222    ilist_iterator tmp = *this;
223    --*this;
224    return tmp;
225  }
226  ilist_iterator operator++(int) {    // postincrement operators...
227    ilist_iterator tmp = *this;
228    ++*this;
229    return tmp;
230  }
231
232  // Internal interface, do not use...
233  pointer getNodePtrUnchecked() const { return NodePtr; }
234};
235
236// do not implement. this is to catch errors when people try to use
237// them as random access iterators
238template<typename T>
239void operator-(int, ilist_iterator<T>);
240template<typename T>
241void operator-(ilist_iterator<T>,int);
242
243template<typename T>
244void operator+(int, ilist_iterator<T>);
245template<typename T>
246void operator+(ilist_iterator<T>,int);
247
248// operator!=/operator== - Allow mixed comparisons without dereferencing
249// the iterator, which could very likely be pointing to end().
250template<typename T>
251bool operator!=(const T* LHS, const ilist_iterator<const T> &RHS) {
252  return LHS != RHS.getNodePtrUnchecked();
253}
254template<typename T>
255bool operator==(const T* LHS, const ilist_iterator<const T> &RHS) {
256  return LHS == RHS.getNodePtrUnchecked();
257}
258template<typename T>
259bool operator!=(T* LHS, const ilist_iterator<T> &RHS) {
260  return LHS != RHS.getNodePtrUnchecked();
261}
262template<typename T>
263bool operator==(T* LHS, const ilist_iterator<T> &RHS) {
264  return LHS == RHS.getNodePtrUnchecked();
265}
266
267
268// Allow ilist_iterators to convert into pointers to a node automatically when
269// used by the dyn_cast, cast, isa mechanisms...
270
271template<typename From> struct simplify_type;
272
273template<typename NodeTy> struct simplify_type<ilist_iterator<NodeTy> > {
274  typedef NodeTy* SimpleType;
275
276  static SimpleType getSimplifiedValue(const ilist_iterator<NodeTy> &Node) {
277    return &*Node;
278  }
279};
280template<typename NodeTy> struct simplify_type<const ilist_iterator<NodeTy> > {
281  typedef NodeTy* SimpleType;
282
283  static SimpleType getSimplifiedValue(const ilist_iterator<NodeTy> &Node) {
284    return &*Node;
285  }
286};
287
288
289//===----------------------------------------------------------------------===//
290//
291/// iplist - The subset of list functionality that can safely be used on nodes
292/// of polymorphic types, i.e. a heterogenous list with a common base class that
293/// holds the next/prev pointers.  The only state of the list itself is a single
294/// pointer to the head of the list.
295///
296/// This list can be in one of three interesting states:
297/// 1. The list may be completely unconstructed.  In this case, the head
298///    pointer is null.  When in this form, any query for an iterator (e.g.
299///    begin() or end()) causes the list to transparently change to state #2.
300/// 2. The list may be empty, but contain a sentinel for the end iterator. This
301///    sentinel is created by the Traits::createSentinel method and is a link
302///    in the list.  When the list is empty, the pointer in the iplist points
303///    to the sentinel.  Once the sentinel is constructed, it
304///    is not destroyed until the list is.
305/// 3. The list may contain actual objects in it, which are stored as a doubly
306///    linked list of nodes.  One invariant of the list is that the predecessor
307///    of the first node in the list always points to the last node in the list,
308///    and the successor pointer for the sentinel (which always stays at the
309///    end of the list) is always null.
310///
311template<typename NodeTy, typename Traits=ilist_traits<NodeTy> >
312class iplist : public Traits {
313  mutable NodeTy *Head;
314
315  // Use the prev node pointer of 'head' as the tail pointer.  This is really a
316  // circularly linked list where we snip the 'next' link from the sentinel node
317  // back to the first node in the list (to preserve assertions about going off
318  // the end of the list).
319  NodeTy *getTail() { return this->ensureHead(Head); }
320  const NodeTy *getTail() const { return this->ensureHead(Head); }
321  void setTail(NodeTy *N) const { this->noteHead(Head, N); }
322
323  /// CreateLazySentinel - This method verifies whether the sentinel for the
324  /// list has been created and lazily makes it if not.
325  void CreateLazySentinel() const {
326    this->Traits::ensureHead(Head);
327  }
328
329  static bool op_less(NodeTy &L, NodeTy &R) { return L < R; }
330  static bool op_equal(NodeTy &L, NodeTy &R) { return L == R; }
331
332  // No fundamental reason why iplist can't by copyable, but the default
333  // copy/copy-assign won't do.
334  iplist(const iplist &);         // do not implement
335  void operator=(const iplist &); // do not implement
336
337public:
338  typedef NodeTy *pointer;
339  typedef const NodeTy *const_pointer;
340  typedef NodeTy &reference;
341  typedef const NodeTy &const_reference;
342  typedef NodeTy value_type;
343  typedef ilist_iterator<NodeTy> iterator;
344  typedef ilist_iterator<const NodeTy> const_iterator;
345  typedef size_t size_type;
346  typedef ptrdiff_t difference_type;
347  typedef std::reverse_iterator<const_iterator>  const_reverse_iterator;
348  typedef std::reverse_iterator<iterator>  reverse_iterator;
349
350  iplist() : Head(this->Traits::provideInitialHead()) {}
351  ~iplist() {
352    if (!Head) return;
353    clear();
354    Traits::destroySentinel(getTail());
355  }
356
357  // Iterator creation methods.
358  iterator begin() {
359    CreateLazySentinel();
360    return iterator(Head);
361  }
362  const_iterator begin() const {
363    CreateLazySentinel();
364    return const_iterator(Head);
365  }
366  iterator end() {
367    CreateLazySentinel();
368    return iterator(getTail());
369  }
370  const_iterator end() const {
371    CreateLazySentinel();
372    return const_iterator(getTail());
373  }
374
375  // reverse iterator creation methods.
376  reverse_iterator rbegin()            { return reverse_iterator(end()); }
377  const_reverse_iterator rbegin() const{ return const_reverse_iterator(end()); }
378  reverse_iterator rend()              { return reverse_iterator(begin()); }
379  const_reverse_iterator rend() const { return const_reverse_iterator(begin());}
380
381
382  // Miscellaneous inspection routines.
383  size_type max_size() const { return size_type(-1); }
384  bool empty() const { return Head == 0 || Head == getTail(); }
385
386  // Front and back accessor functions...
387  reference front() {
388    assert(!empty() && "Called front() on empty list!");
389    return *Head;
390  }
391  const_reference front() const {
392    assert(!empty() && "Called front() on empty list!");
393    return *Head;
394  }
395  reference back() {
396    assert(!empty() && "Called back() on empty list!");
397    return *this->getPrev(getTail());
398  }
399  const_reference back() const {
400    assert(!empty() && "Called back() on empty list!");
401    return *this->getPrev(getTail());
402  }
403
404  void swap(iplist &RHS) {
405    assert(0 && "Swap does not use list traits callback correctly yet!");
406    std::swap(Head, RHS.Head);
407  }
408
409  iterator insert(iterator where, NodeTy *New) {
410    NodeTy *CurNode = where.getNodePtrUnchecked();
411    NodeTy *PrevNode = this->getPrev(CurNode);
412    this->setNext(New, CurNode);
413    this->setPrev(New, PrevNode);
414
415    if (CurNode != Head)  // Is PrevNode off the beginning of the list?
416      this->setNext(PrevNode, New);
417    else
418      Head = New;
419    this->setPrev(CurNode, New);
420
421    this->addNodeToList(New);  // Notify traits that we added a node...
422    return New;
423  }
424
425  iterator insertAfter(iterator where, NodeTy *New) {
426    if (empty())
427      return insert(begin(), New);
428    else
429      return insert(++where, New);
430  }
431
432  NodeTy *remove(iterator &IT) {
433    assert(IT != end() && "Cannot remove end of list!");
434    NodeTy *Node = &*IT;
435    NodeTy *NextNode = this->getNext(Node);
436    NodeTy *PrevNode = this->getPrev(Node);
437
438    if (Node != Head)  // Is PrevNode off the beginning of the list?
439      this->setNext(PrevNode, NextNode);
440    else
441      Head = NextNode;
442    this->setPrev(NextNode, PrevNode);
443    IT = NextNode;
444    this->removeNodeFromList(Node);  // Notify traits that we removed a node...
445
446    // Set the next/prev pointers of the current node to null.  This isn't
447    // strictly required, but this catches errors where a node is removed from
448    // an ilist (and potentially deleted) with iterators still pointing at it.
449    // When those iterators are incremented or decremented, they will assert on
450    // the null next/prev pointer instead of "usually working".
451    this->setNext(Node, 0);
452    this->setPrev(Node, 0);
453    return Node;
454  }
455
456  NodeTy *remove(const iterator &IT) {
457    iterator MutIt = IT;
458    return remove(MutIt);
459  }
460
461  // erase - remove a node from the controlled sequence... and delete it.
462  iterator erase(iterator where) {
463    this->deleteNode(remove(where));
464    return where;
465  }
466
467
468private:
469  // transfer - The heart of the splice function.  Move linked list nodes from
470  // [first, last) into position.
471  //
472  void transfer(iterator position, iplist &L2, iterator first, iterator last) {
473    assert(first != last && "Should be checked by callers");
474
475    if (position != last) {
476      // Note: we have to be careful about the case when we move the first node
477      // in the list.  This node is the list sentinel node and we can't move it.
478      NodeTy *ThisSentinel = getTail();
479      setTail(0);
480      NodeTy *L2Sentinel = L2.getTail();
481      L2.setTail(0);
482
483      // Remove [first, last) from its old position.
484      NodeTy *First = &*first, *Prev = getPrev(First);
485      NodeTy *Next = last.getNodePtrUnchecked(), *Last = getPrev(Next);
486      if (Prev)
487        this->setNext(Prev, Next);
488      else
489        L2.Head = Next;
490      this->setPrev(Next, Prev);
491
492      // Splice [first, last) into its new position.
493      NodeTy *PosNext = position.getNodePtrUnchecked();
494      NodeTy *PosPrev = getPrev(PosNext);
495
496      // Fix head of list...
497      if (PosPrev)
498        this->setNext(PosPrev, First);
499      else
500        Head = First;
501      this->setPrev(First, PosPrev);
502
503      // Fix end of list...
504      this->setNext(Last, PosNext);
505      this->setPrev(PosNext, Last);
506
507      transferNodesFromList(L2, First, PosNext);
508
509      // Now that everything is set, restore the pointers to the list sentinels.
510      L2.setTail(L2Sentinel);
511      setTail(ThisSentinel);
512    }
513  }
514
515public:
516
517  //===----------------------------------------------------------------------===
518  // Functionality derived from other functions defined above...
519  //
520
521  size_type size() const {
522    if (Head == 0) return 0; // Don't require construction of sentinel if empty.
523    return std::distance(begin(), end());
524  }
525
526  iterator erase(iterator first, iterator last) {
527    while (first != last)
528      first = erase(first);
529    return last;
530  }
531
532  void clear() { if (Head) erase(begin(), end()); }
533
534  // Front and back inserters...
535  void push_front(NodeTy *val) { insert(begin(), val); }
536  void push_back(NodeTy *val) { insert(end(), val); }
537  void pop_front() {
538    assert(!empty() && "pop_front() on empty list!");
539    erase(begin());
540  }
541  void pop_back() {
542    assert(!empty() && "pop_back() on empty list!");
543    iterator t = end(); erase(--t);
544  }
545
546  // Special forms of insert...
547  template<class InIt> void insert(iterator where, InIt first, InIt last) {
548    for (; first != last; ++first) insert(where, *first);
549  }
550
551  // Splice members - defined in terms of transfer...
552  void splice(iterator where, iplist &L2) {
553    if (!L2.empty())
554      transfer(where, L2, L2.begin(), L2.end());
555  }
556  void splice(iterator where, iplist &L2, iterator first) {
557    iterator last = first; ++last;
558    if (where == first || where == last) return; // No change
559    transfer(where, L2, first, last);
560  }
561  void splice(iterator where, iplist &L2, iterator first, iterator last) {
562    if (first != last) transfer(where, L2, first, last);
563  }
564
565
566
567  //===----------------------------------------------------------------------===
568  // High-Level Functionality that shouldn't really be here, but is part of list
569  //
570
571  // These two functions are actually called remove/remove_if in list<>, but
572  // they actually do the job of erase, rename them accordingly.
573  //
574  void erase(const NodeTy &val) {
575    for (iterator I = begin(), E = end(); I != E; ) {
576      iterator next = I; ++next;
577      if (*I == val) erase(I);
578      I = next;
579    }
580  }
581  template<class Pr1> void erase_if(Pr1 pred) {
582    for (iterator I = begin(), E = end(); I != E; ) {
583      iterator next = I; ++next;
584      if (pred(*I)) erase(I);
585      I = next;
586    }
587  }
588
589  template<class Pr2> void unique(Pr2 pred) {
590    if (empty()) return;
591    for (iterator I = begin(), E = end(), Next = begin(); ++Next != E;) {
592      if (pred(*I))
593        erase(Next);
594      else
595        I = Next;
596      Next = I;
597    }
598  }
599  void unique() { unique(op_equal); }
600
601  template<class Pr3> void merge(iplist &right, Pr3 pred) {
602    iterator first1 = begin(), last1 = end();
603    iterator first2 = right.begin(), last2 = right.end();
604    while (first1 != last1 && first2 != last2)
605      if (pred(*first2, *first1)) {
606        iterator next = first2;
607        transfer(first1, right, first2, ++next);
608        first2 = next;
609      } else {
610        ++first1;
611      }
612    if (first2 != last2) transfer(last1, right, first2, last2);
613  }
614  void merge(iplist &right) { return merge(right, op_less); }
615
616  template<class Pr3> void sort(Pr3 pred);
617  void sort() { sort(op_less); }
618  void reverse();
619};
620
621
622template<typename NodeTy>
623struct ilist : public iplist<NodeTy> {
624  typedef typename iplist<NodeTy>::size_type size_type;
625  typedef typename iplist<NodeTy>::iterator iterator;
626
627  ilist() {}
628  ilist(const ilist &right) {
629    insert(this->begin(), right.begin(), right.end());
630  }
631  explicit ilist(size_type count) {
632    insert(this->begin(), count, NodeTy());
633  }
634  ilist(size_type count, const NodeTy &val) {
635    insert(this->begin(), count, val);
636  }
637  template<class InIt> ilist(InIt first, InIt last) {
638    insert(this->begin(), first, last);
639  }
640
641  // bring hidden functions into scope
642  using iplist<NodeTy>::insert;
643  using iplist<NodeTy>::push_front;
644  using iplist<NodeTy>::push_back;
645
646  // Main implementation here - Insert for a node passed by value...
647  iterator insert(iterator where, const NodeTy &val) {
648    return insert(where, createNode(val));
649  }
650
651
652  // Front and back inserters...
653  void push_front(const NodeTy &val) { insert(this->begin(), val); }
654  void push_back(const NodeTy &val) { insert(this->end(), val); }
655
656  // Special forms of insert...
657  template<class InIt> void insert(iterator where, InIt first, InIt last) {
658    for (; first != last; ++first) insert(where, *first);
659  }
660  void insert(iterator where, size_type count, const NodeTy &val) {
661    for (; count != 0; --count) insert(where, val);
662  }
663
664  // Assign special forms...
665  void assign(size_type count, const NodeTy &val) {
666    iterator I = this->begin();
667    for (; I != this->end() && count != 0; ++I, --count)
668      *I = val;
669    if (count != 0)
670      insert(this->end(), val, val);
671    else
672      erase(I, this->end());
673  }
674  template<class InIt> void assign(InIt first1, InIt last1) {
675    iterator first2 = this->begin(), last2 = this->end();
676    for ( ; first1 != last1 && first2 != last2; ++first1, ++first2)
677      *first1 = *first2;
678    if (first2 == last2)
679      erase(first1, last1);
680    else
681      insert(last1, first2, last2);
682  }
683
684
685  // Resize members...
686  void resize(size_type newsize, NodeTy val) {
687    iterator i = this->begin();
688    size_type len = 0;
689    for ( ; i != this->end() && len < newsize; ++i, ++len) /* empty*/ ;
690
691    if (len == newsize)
692      erase(i, this->end());
693    else                                          // i == end()
694      insert(this->end(), newsize - len, val);
695  }
696  void resize(size_type newsize) { resize(newsize, NodeTy()); }
697};
698
699} // End llvm namespace
700
701namespace std {
702  // Ensure that swap uses the fast list swap...
703  template<class Ty>
704  void swap(llvm::iplist<Ty> &Left, llvm::iplist<Ty> &Right) {
705    Left.swap(Right);
706  }
707}  // End 'std' extensions...
708
709#endif // LLVM_ADT_ILIST_H
710