ilist.h revision 7362ce08cb2c1f0b544b18dbc21630fb4baebcfc
1//==-- llvm/ADT/ilist.h - Intrusive Linked List Template ---------*- C++ -*-==//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines classes to implement an intrusive doubly linked list class
11// (i.e. each node of the list must contain a next and previous field for the
12// list.
13//
14// The ilist_traits trait class is used to gain access to the next and previous
15// fields of the node type that the list is instantiated with.  If it is not
16// specialized, the list defaults to using the getPrev(), getNext() method calls
17// to get the next and previous pointers.
18//
19// The ilist class itself, should be a plug in replacement for list, assuming
20// that the nodes contain next/prev pointers.  This list replacement does not
21// provide a constant time size() method, so be careful to use empty() when you
22// really want to know if it's empty.
23//
24// The ilist class is implemented by allocating a 'tail' node when the list is
25// created (using ilist_traits<>::createSentinel()).  This tail node is
26// absolutely required because the user must be able to compute end()-1. Because
27// of this, users of the direct next/prev links will see an extra link on the
28// end of the list, which should be ignored.
29//
30// Requirements for a user of this list:
31//
32//   1. The user must provide {g|s}et{Next|Prev} methods, or specialize
33//      ilist_traits to provide an alternate way of getting and setting next and
34//      prev links.
35//
36//===----------------------------------------------------------------------===//
37
38#ifndef LLVM_ADT_ILIST_H
39#define LLVM_ADT_ILIST_H
40
41#include <cassert>
42#include <iterator>
43
44namespace llvm {
45
46template<typename NodeTy, typename Traits> class iplist;
47template<typename NodeTy> class ilist_iterator;
48
49/// ilist_nextprev_traits - A fragment for template traits for intrusive list
50/// that provides default next/prev implementations for common operations.
51///
52template<typename NodeTy>
53struct ilist_nextprev_traits {
54  static NodeTy *getPrev(NodeTy *N) { return N->getPrev(); }
55  static NodeTy *getNext(NodeTy *N) { return N->getNext(); }
56  static const NodeTy *getPrev(const NodeTy *N) { return N->getPrev(); }
57  static const NodeTy *getNext(const NodeTy *N) { return N->getNext(); }
58
59  static void setPrev(NodeTy *N, NodeTy *Prev) { N->setPrev(Prev); }
60  static void setNext(NodeTy *N, NodeTy *Next) { N->setNext(Next); }
61};
62
63template<typename NodeTy>
64struct ilist_traits;
65
66/// ilist_sentinel_traits - A fragment for template traits for intrusive list
67/// that provides default sentinel implementations for common operations.
68///
69/// ilist_sentinel_traits implements a lazy dynamic sentinel allocation
70/// strategy. The sentinel is stored in the prev field of ilist's Head.
71///
72template<typename NodeTy>
73struct ilist_sentinel_traits {
74  /// createSentinel - create the dynamic sentinel
75  static NodeTy *createSentinel() { return new NodeTy(); }
76
77  /// destroySentinel - deallocate the dynamic sentinel
78  static void destroySentinel(NodeTy *N) { delete N; }
79
80  /// provideInitialHead - when constructing an ilist, provide a starting
81  /// value for its Head
82  /// @return null node to indicate that it needs to be allocated later
83  static NodeTy *provideInitialHead() { return 0; }
84
85  /// ensureHead - make sure that Head is either already
86  /// initialized or assigned a fresh sentinel
87  /// @return the sentinel
88  static NodeTy *ensureHead(NodeTy *&Head) {
89    if (!Head) {
90      Head = ilist_traits<NodeTy>::createSentinel();
91      ilist_traits<NodeTy>::noteHead(Head, Head);
92      ilist_traits<NodeTy>::setNext(Head, 0);
93      return Head;
94    }
95    return ilist_traits<NodeTy>::getPrev(Head);
96  }
97
98  /// noteHead - stash the sentinel into its default location
99  static void noteHead(NodeTy *NewHead, NodeTy *Sentinel) {
100    ilist_traits<NodeTy>::setPrev(NewHead, Sentinel);
101  }
102};
103
104/// ilist_node_traits - A fragment for template traits for intrusive list
105/// that provides default node related operations.
106///
107template<typename NodeTy>
108struct ilist_node_traits {
109  static NodeTy *createNode(const NodeTy &V) { return new NodeTy(V); }
110  static void deleteNode(NodeTy *V) { delete V; }
111
112  void addNodeToList(NodeTy *) {}
113  void removeNodeFromList(NodeTy *) {}
114  void transferNodesFromList(ilist_node_traits &    /*SrcTraits*/,
115                             ilist_iterator<NodeTy> /*first*/,
116                             ilist_iterator<NodeTy> /*last*/) {}
117};
118
119/// ilist_default_traits - Default template traits for intrusive list.
120/// By inheriting from this, you can easily use default implementations
121/// for all common operations.
122///
123template<typename NodeTy>
124struct ilist_default_traits : ilist_nextprev_traits<NodeTy>,
125                              ilist_sentinel_traits<NodeTy>,
126                              ilist_node_traits<NodeTy> {
127};
128
129// Template traits for intrusive list.  By specializing this template class, you
130// can change what next/prev fields are used to store the links...
131template<typename NodeTy>
132struct ilist_traits : ilist_default_traits<NodeTy> {};
133
134// Const traits are the same as nonconst traits...
135template<typename Ty>
136struct ilist_traits<const Ty> : public ilist_traits<Ty> {};
137
138//===----------------------------------------------------------------------===//
139// ilist_iterator<Node> - Iterator for intrusive list.
140//
141template<typename NodeTy>
142class ilist_iterator
143  : public std::iterator<std::bidirectional_iterator_tag, NodeTy, ptrdiff_t> {
144
145public:
146  typedef ilist_traits<NodeTy> Traits;
147  typedef std::iterator<std::bidirectional_iterator_tag,
148                        NodeTy, ptrdiff_t> super;
149
150  typedef typename super::value_type value_type;
151  typedef typename super::difference_type difference_type;
152  typedef typename super::pointer pointer;
153  typedef typename super::reference reference;
154private:
155  pointer NodePtr;
156
157  // ilist_iterator is not a random-access iterator, but it has an
158  // implicit conversion to pointer-type, which is. Declare (but
159  // don't define) these functions as private to help catch
160  // accidental misuse.
161  void operator[](difference_type) const;
162  void operator+(difference_type) const;
163  void operator-(difference_type) const;
164  void operator+=(difference_type) const;
165  void operator-=(difference_type) const;
166  template<class T> void operator<(T) const;
167  template<class T> void operator<=(T) const;
168  template<class T> void operator>(T) const;
169  template<class T> void operator>=(T) const;
170  template<class T> void operator-(T) const;
171public:
172
173  ilist_iterator(pointer NP) : NodePtr(NP) {}
174  ilist_iterator(reference NR) : NodePtr(&NR) {}
175  ilist_iterator() : NodePtr(0) {}
176
177  // This is templated so that we can allow constructing a const iterator from
178  // a nonconst iterator...
179  template<class node_ty>
180  ilist_iterator(const ilist_iterator<node_ty> &RHS)
181    : NodePtr(RHS.getNodePtrUnchecked()) {}
182
183  // This is templated so that we can allow assigning to a const iterator from
184  // a nonconst iterator...
185  template<class node_ty>
186  const ilist_iterator &operator=(const ilist_iterator<node_ty> &RHS) {
187    NodePtr = RHS.getNodePtrUnchecked();
188    return *this;
189  }
190
191  // Accessors...
192  operator pointer() const {
193    return NodePtr;
194  }
195
196  reference operator*() const {
197    return *NodePtr;
198  }
199  pointer operator->() const { return &operator*(); }
200
201  // Comparison operators
202  bool operator==(const ilist_iterator &RHS) const {
203    return NodePtr == RHS.NodePtr;
204  }
205  bool operator!=(const ilist_iterator &RHS) const {
206    return NodePtr != RHS.NodePtr;
207  }
208
209  // Increment and decrement operators...
210  ilist_iterator &operator--() {      // predecrement - Back up
211    NodePtr = Traits::getPrev(NodePtr);
212    assert(NodePtr && "--'d off the beginning of an ilist!");
213    return *this;
214  }
215  ilist_iterator &operator++() {      // preincrement - Advance
216    NodePtr = Traits::getNext(NodePtr);
217    return *this;
218  }
219  ilist_iterator operator--(int) {    // postdecrement operators...
220    ilist_iterator tmp = *this;
221    --*this;
222    return tmp;
223  }
224  ilist_iterator operator++(int) {    // postincrement operators...
225    ilist_iterator tmp = *this;
226    ++*this;
227    return tmp;
228  }
229
230  // Internal interface, do not use...
231  pointer getNodePtrUnchecked() const { return NodePtr; }
232};
233
234// do not implement. this is to catch errors when people try to use
235// them as random access iterators
236template<typename T>
237void operator-(int, ilist_iterator<T>);
238template<typename T>
239void operator-(ilist_iterator<T>,int);
240
241template<typename T>
242void operator+(int, ilist_iterator<T>);
243template<typename T>
244void operator+(ilist_iterator<T>,int);
245
246// operator!=/operator== - Allow mixed comparisons without dereferencing
247// the iterator, which could very likely be pointing to end().
248template<typename T>
249bool operator!=(const T* LHS, const ilist_iterator<const T> &RHS) {
250  return LHS != RHS.getNodePtrUnchecked();
251}
252template<typename T>
253bool operator==(const T* LHS, const ilist_iterator<const T> &RHS) {
254  return LHS == RHS.getNodePtrUnchecked();
255}
256template<typename T>
257bool operator!=(T* LHS, const ilist_iterator<T> &RHS) {
258  return LHS != RHS.getNodePtrUnchecked();
259}
260template<typename T>
261bool operator==(T* LHS, const ilist_iterator<T> &RHS) {
262  return LHS == RHS.getNodePtrUnchecked();
263}
264
265
266// Allow ilist_iterators to convert into pointers to a node automatically when
267// used by the dyn_cast, cast, isa mechanisms...
268
269template<typename From> struct simplify_type;
270
271template<typename NodeTy> struct simplify_type<ilist_iterator<NodeTy> > {
272  typedef NodeTy* SimpleType;
273
274  static SimpleType getSimplifiedValue(const ilist_iterator<NodeTy> &Node) {
275    return &*Node;
276  }
277};
278template<typename NodeTy> struct simplify_type<const ilist_iterator<NodeTy> > {
279  typedef NodeTy* SimpleType;
280
281  static SimpleType getSimplifiedValue(const ilist_iterator<NodeTy> &Node) {
282    return &*Node;
283  }
284};
285
286
287//===----------------------------------------------------------------------===//
288//
289/// iplist - The subset of list functionality that can safely be used on nodes
290/// of polymorphic types, i.e. a heterogenous list with a common base class that
291/// holds the next/prev pointers.  The only state of the list itself is a single
292/// pointer to the head of the list.
293///
294/// This list can be in one of three interesting states:
295/// 1. The list may be completely unconstructed.  In this case, the head
296///    pointer is null.  When in this form, any query for an iterator (e.g.
297///    begin() or end()) causes the list to transparently change to state #2.
298/// 2. The list may be empty, but contain a sentinel for the end iterator. This
299///    sentinel is created by the Traits::createSentinel method and is a link
300///    in the list.  When the list is empty, the pointer in the iplist points
301///    to the sentinel.  Once the sentinel is constructed, it
302///    is not destroyed until the list is.
303/// 3. The list may contain actual objects in it, which are stored as a doubly
304///    linked list of nodes.  One invariant of the list is that the predecessor
305///    of the first node in the list always points to the last node in the list,
306///    and the successor pointer for the sentinel (which always stays at the
307///    end of the list) is always null.
308///
309template<typename NodeTy, typename Traits=ilist_traits<NodeTy> >
310class iplist : public Traits {
311  mutable NodeTy *Head;
312
313  // Use the prev node pointer of 'head' as the tail pointer.  This is really a
314  // circularly linked list where we snip the 'next' link from the sentinel node
315  // back to the first node in the list (to preserve assertions about going off
316  // the end of the list).
317  NodeTy *getTail() { return this->ensureHead(Head); }
318  const NodeTy *getTail() const { return this->ensureHead(Head); }
319  void setTail(NodeTy *N) const { this->noteHead(Head, N); }
320
321  /// CreateLazySentinel - This method verifies whether the sentinel for the
322  /// list has been created and lazily makes it if not.
323  void CreateLazySentinel() const {
324    this->ensureHead(Head);
325  }
326
327  static bool op_less(NodeTy &L, NodeTy &R) { return L < R; }
328  static bool op_equal(NodeTy &L, NodeTy &R) { return L == R; }
329
330  // No fundamental reason why iplist can't be copyable, but the default
331  // copy/copy-assign won't do.
332  iplist(const iplist &);         // do not implement
333  void operator=(const iplist &); // do not implement
334
335public:
336  typedef NodeTy *pointer;
337  typedef const NodeTy *const_pointer;
338  typedef NodeTy &reference;
339  typedef const NodeTy &const_reference;
340  typedef NodeTy value_type;
341  typedef ilist_iterator<NodeTy> iterator;
342  typedef ilist_iterator<const NodeTy> const_iterator;
343  typedef size_t size_type;
344  typedef ptrdiff_t difference_type;
345  typedef std::reverse_iterator<const_iterator>  const_reverse_iterator;
346  typedef std::reverse_iterator<iterator>  reverse_iterator;
347
348  iplist() : Head(this->provideInitialHead()) {}
349  ~iplist() {
350    if (!Head) return;
351    clear();
352    Traits::destroySentinel(getTail());
353  }
354
355  // Iterator creation methods.
356  iterator begin() {
357    CreateLazySentinel();
358    return iterator(Head);
359  }
360  const_iterator begin() const {
361    CreateLazySentinel();
362    return const_iterator(Head);
363  }
364  iterator end() {
365    CreateLazySentinel();
366    return iterator(getTail());
367  }
368  const_iterator end() const {
369    CreateLazySentinel();
370    return const_iterator(getTail());
371  }
372
373  // reverse iterator creation methods.
374  reverse_iterator rbegin()            { return reverse_iterator(end()); }
375  const_reverse_iterator rbegin() const{ return const_reverse_iterator(end()); }
376  reverse_iterator rend()              { return reverse_iterator(begin()); }
377  const_reverse_iterator rend() const { return const_reverse_iterator(begin());}
378
379
380  // Miscellaneous inspection routines.
381  size_type max_size() const { return size_type(-1); }
382  bool empty() const { return Head == 0 || Head == getTail(); }
383
384  // Front and back accessor functions...
385  reference front() {
386    assert(!empty() && "Called front() on empty list!");
387    return *Head;
388  }
389  const_reference front() const {
390    assert(!empty() && "Called front() on empty list!");
391    return *Head;
392  }
393  reference back() {
394    assert(!empty() && "Called back() on empty list!");
395    return *this->getPrev(getTail());
396  }
397  const_reference back() const {
398    assert(!empty() && "Called back() on empty list!");
399    return *this->getPrev(getTail());
400  }
401
402  void swap(iplist &RHS) {
403    assert(0 && "Swap does not use list traits callback correctly yet!");
404    std::swap(Head, RHS.Head);
405  }
406
407  iterator insert(iterator where, NodeTy *New) {
408    NodeTy *CurNode = where.getNodePtrUnchecked();
409    NodeTy *PrevNode = this->getPrev(CurNode);
410    this->setNext(New, CurNode);
411    this->setPrev(New, PrevNode);
412
413    if (CurNode != Head)  // Is PrevNode off the beginning of the list?
414      this->setNext(PrevNode, New);
415    else
416      Head = New;
417    this->setPrev(CurNode, New);
418
419    this->addNodeToList(New);  // Notify traits that we added a node...
420    return New;
421  }
422
423  iterator insertAfter(iterator where, NodeTy *New) {
424    if (empty())
425      return insert(begin(), New);
426    else
427      return insert(++where, New);
428  }
429
430  NodeTy *remove(iterator &IT) {
431    assert(IT != end() && "Cannot remove end of list!");
432    NodeTy *Node = &*IT;
433    NodeTy *NextNode = this->getNext(Node);
434    NodeTy *PrevNode = this->getPrev(Node);
435
436    if (Node != Head)  // Is PrevNode off the beginning of the list?
437      this->setNext(PrevNode, NextNode);
438    else
439      Head = NextNode;
440    this->setPrev(NextNode, PrevNode);
441    IT = NextNode;
442    this->removeNodeFromList(Node);  // Notify traits that we removed a node...
443
444    // Set the next/prev pointers of the current node to null.  This isn't
445    // strictly required, but this catches errors where a node is removed from
446    // an ilist (and potentially deleted) with iterators still pointing at it.
447    // When those iterators are incremented or decremented, they will assert on
448    // the null next/prev pointer instead of "usually working".
449    this->setNext(Node, 0);
450    this->setPrev(Node, 0);
451    return Node;
452  }
453
454  NodeTy *remove(const iterator &IT) {
455    iterator MutIt = IT;
456    return remove(MutIt);
457  }
458
459  // erase - remove a node from the controlled sequence... and delete it.
460  iterator erase(iterator where) {
461    this->deleteNode(remove(where));
462    return where;
463  }
464
465
466private:
467  // transfer - The heart of the splice function.  Move linked list nodes from
468  // [first, last) into position.
469  //
470  void transfer(iterator position, iplist &L2, iterator first, iterator last) {
471    assert(first != last && "Should be checked by callers");
472
473    if (position != last) {
474      // Note: we have to be careful about the case when we move the first node
475      // in the list.  This node is the list sentinel node and we can't move it.
476      NodeTy *ThisSentinel = getTail();
477      setTail(0);
478      NodeTy *L2Sentinel = L2.getTail();
479      L2.setTail(0);
480
481      // Remove [first, last) from its old position.
482      NodeTy *First = &*first, *Prev = this->getPrev(First);
483      NodeTy *Next = last.getNodePtrUnchecked(), *Last = this->getPrev(Next);
484      if (Prev)
485        this->setNext(Prev, Next);
486      else
487        L2.Head = Next;
488      this->setPrev(Next, Prev);
489
490      // Splice [first, last) into its new position.
491      NodeTy *PosNext = position.getNodePtrUnchecked();
492      NodeTy *PosPrev = this->getPrev(PosNext);
493
494      // Fix head of list...
495      if (PosPrev)
496        this->setNext(PosPrev, First);
497      else
498        Head = First;
499      this->setPrev(First, PosPrev);
500
501      // Fix end of list...
502      this->setNext(Last, PosNext);
503      this->setPrev(PosNext, Last);
504
505      this->transferNodesFromList(L2, First, PosNext);
506
507      // Now that everything is set, restore the pointers to the list sentinels.
508      L2.setTail(L2Sentinel);
509      setTail(ThisSentinel);
510    }
511  }
512
513public:
514
515  //===----------------------------------------------------------------------===
516  // Functionality derived from other functions defined above...
517  //
518
519  size_type size() const {
520    if (Head == 0) return 0; // Don't require construction of sentinel if empty.
521    return std::distance(begin(), end());
522  }
523
524  iterator erase(iterator first, iterator last) {
525    while (first != last)
526      first = erase(first);
527    return last;
528  }
529
530  void clear() { if (Head) erase(begin(), end()); }
531
532  // Front and back inserters...
533  void push_front(NodeTy *val) { insert(begin(), val); }
534  void push_back(NodeTy *val) { insert(end(), val); }
535  void pop_front() {
536    assert(!empty() && "pop_front() on empty list!");
537    erase(begin());
538  }
539  void pop_back() {
540    assert(!empty() && "pop_back() on empty list!");
541    iterator t = end(); erase(--t);
542  }
543
544  // Special forms of insert...
545  template<class InIt> void insert(iterator where, InIt first, InIt last) {
546    for (; first != last; ++first) insert(where, *first);
547  }
548
549  // Splice members - defined in terms of transfer...
550  void splice(iterator where, iplist &L2) {
551    if (!L2.empty())
552      transfer(where, L2, L2.begin(), L2.end());
553  }
554  void splice(iterator where, iplist &L2, iterator first) {
555    iterator last = first; ++last;
556    if (where == first || where == last) return; // No change
557    transfer(where, L2, first, last);
558  }
559  void splice(iterator where, iplist &L2, iterator first, iterator last) {
560    if (first != last) transfer(where, L2, first, last);
561  }
562
563
564
565  //===----------------------------------------------------------------------===
566  // High-Level Functionality that shouldn't really be here, but is part of list
567  //
568
569  // These two functions are actually called remove/remove_if in list<>, but
570  // they actually do the job of erase, rename them accordingly.
571  //
572  void erase(const NodeTy &val) {
573    for (iterator I = begin(), E = end(); I != E; ) {
574      iterator next = I; ++next;
575      if (*I == val) erase(I);
576      I = next;
577    }
578  }
579  template<class Pr1> void erase_if(Pr1 pred) {
580    for (iterator I = begin(), E = end(); I != E; ) {
581      iterator next = I; ++next;
582      if (pred(*I)) erase(I);
583      I = next;
584    }
585  }
586
587  template<class Pr2> void unique(Pr2 pred) {
588    if (empty()) return;
589    for (iterator I = begin(), E = end(), Next = begin(); ++Next != E;) {
590      if (pred(*I))
591        erase(Next);
592      else
593        I = Next;
594      Next = I;
595    }
596  }
597  void unique() { unique(op_equal); }
598
599  template<class Pr3> void merge(iplist &right, Pr3 pred) {
600    iterator first1 = begin(), last1 = end();
601    iterator first2 = right.begin(), last2 = right.end();
602    while (first1 != last1 && first2 != last2)
603      if (pred(*first2, *first1)) {
604        iterator next = first2;
605        transfer(first1, right, first2, ++next);
606        first2 = next;
607      } else {
608        ++first1;
609      }
610    if (first2 != last2) transfer(last1, right, first2, last2);
611  }
612  void merge(iplist &right) { return merge(right, op_less); }
613
614  template<class Pr3> void sort(Pr3 pred);
615  void sort() { sort(op_less); }
616  void reverse();
617};
618
619
620template<typename NodeTy>
621struct ilist : public iplist<NodeTy> {
622  typedef typename iplist<NodeTy>::size_type size_type;
623  typedef typename iplist<NodeTy>::iterator iterator;
624
625  ilist() {}
626  ilist(const ilist &right) {
627    insert(this->begin(), right.begin(), right.end());
628  }
629  explicit ilist(size_type count) {
630    insert(this->begin(), count, NodeTy());
631  }
632  ilist(size_type count, const NodeTy &val) {
633    insert(this->begin(), count, val);
634  }
635  template<class InIt> ilist(InIt first, InIt last) {
636    insert(this->begin(), first, last);
637  }
638
639  // bring hidden functions into scope
640  using iplist<NodeTy>::insert;
641  using iplist<NodeTy>::push_front;
642  using iplist<NodeTy>::push_back;
643
644  // Main implementation here - Insert for a node passed by value...
645  iterator insert(iterator where, const NodeTy &val) {
646    return insert(where, createNode(val));
647  }
648
649
650  // Front and back inserters...
651  void push_front(const NodeTy &val) { insert(this->begin(), val); }
652  void push_back(const NodeTy &val) { insert(this->end(), val); }
653
654  // Special forms of insert...
655  template<class InIt> void insert(iterator where, InIt first, InIt last) {
656    for (; first != last; ++first) insert(where, *first);
657  }
658  void insert(iterator where, size_type count, const NodeTy &val) {
659    for (; count != 0; --count) insert(where, val);
660  }
661
662  // Assign special forms...
663  void assign(size_type count, const NodeTy &val) {
664    iterator I = this->begin();
665    for (; I != this->end() && count != 0; ++I, --count)
666      *I = val;
667    if (count != 0)
668      insert(this->end(), val, val);
669    else
670      erase(I, this->end());
671  }
672  template<class InIt> void assign(InIt first1, InIt last1) {
673    iterator first2 = this->begin(), last2 = this->end();
674    for ( ; first1 != last1 && first2 != last2; ++first1, ++first2)
675      *first1 = *first2;
676    if (first2 == last2)
677      erase(first1, last1);
678    else
679      insert(last1, first2, last2);
680  }
681
682
683  // Resize members...
684  void resize(size_type newsize, NodeTy val) {
685    iterator i = this->begin();
686    size_type len = 0;
687    for ( ; i != this->end() && len < newsize; ++i, ++len) /* empty*/ ;
688
689    if (len == newsize)
690      erase(i, this->end());
691    else                                          // i == end()
692      insert(this->end(), newsize - len, val);
693  }
694  void resize(size_type newsize) { resize(newsize, NodeTy()); }
695};
696
697} // End llvm namespace
698
699namespace std {
700  // Ensure that swap uses the fast list swap...
701  template<class Ty>
702  void swap(llvm::iplist<Ty> &Left, llvm::iplist<Ty> &Right) {
703    Left.swap(Right);
704  }
705}  // End 'std' extensions...
706
707#endif // LLVM_ADT_ILIST_H
708