ilist.h revision 9ff0f0ea39ea71d33887584d10c88dda2038285b
1//==-- llvm/ADT/ilist.h - Intrusive Linked List Template ---------*- C++ -*-==//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines classes to implement an intrusive doubly linked list class
11// (i.e. each node of the list must contain a next and previous field for the
12// list.
13//
14// The ilist_traits trait class is used to gain access to the next and previous
15// fields of the node type that the list is instantiated with.  If it is not
16// specialized, the list defaults to using the getPrev(), getNext() method calls
17// to get the next and previous pointers.
18//
19// The ilist class itself, should be a plug in replacement for list, assuming
20// that the nodes contain next/prev pointers.  This list replacement does not
21// provide a constant time size() method, so be careful to use empty() when you
22// really want to know if it's empty.
23//
24// The ilist class is implemented by allocating a 'tail' node when the list is
25// created (using ilist_traits<>::createSentinel()).  This tail node is
26// absolutely required because the user must be able to compute end()-1. Because
27// of this, users of the direct next/prev links will see an extra link on the
28// end of the list, which should be ignored.
29//
30// Requirements for a user of this list:
31//
32//   1. The user must provide {g|s}et{Next|Prev} methods, or specialize
33//      ilist_traits to provide an alternate way of getting and setting next and
34//      prev links.
35//
36//===----------------------------------------------------------------------===//
37
38#ifndef LLVM_ADT_ILIST_H
39#define LLVM_ADT_ILIST_H
40
41#include "llvm/ADT/iterator.h"
42#include <cassert>
43#include <cstdlib>
44
45namespace llvm {
46
47template<typename NodeTy, typename Traits> class iplist;
48template<typename NodeTy> class ilist_iterator;
49
50// Template traits for intrusive list.  By specializing this template class, you
51// can change what next/prev fields are used to store the links...
52template<typename NodeTy>
53struct ilist_traits {
54  static NodeTy *getPrev(NodeTy *N) { return N->getPrev(); }
55  static NodeTy *getNext(NodeTy *N) { return N->getNext(); }
56  static const NodeTy *getPrev(const NodeTy *N) { return N->getPrev(); }
57  static const NodeTy *getNext(const NodeTy *N) { return N->getNext(); }
58
59  static void setPrev(NodeTy *N, NodeTy *Prev) { N->setPrev(Prev); }
60  static void setNext(NodeTy *N, NodeTy *Next) { N->setNext(Next); }
61
62  static NodeTy *createNode(const NodeTy &V) { return new NodeTy(V); }
63
64  static NodeTy *createSentinel() { return new NodeTy(); }
65  static void destroySentinel(NodeTy *N) { delete N; }
66
67  void addNodeToList(NodeTy *NTy) {}
68  void removeNodeFromList(NodeTy *NTy) {}
69  void transferNodesFromList(iplist<NodeTy, ilist_traits> &L2,
70                             ilist_iterator<NodeTy> first,
71                             ilist_iterator<NodeTy> last) {}
72};
73
74// Const traits are the same as nonconst traits...
75template<typename Ty>
76struct ilist_traits<const Ty> : public ilist_traits<Ty> {};
77
78
79//===----------------------------------------------------------------------===//
80// ilist_iterator<Node> - Iterator for intrusive list.
81//
82template<typename NodeTy>
83class ilist_iterator
84  : public bidirectional_iterator<NodeTy, ptrdiff_t> {
85  typedef ilist_traits<NodeTy> Traits;
86  typedef bidirectional_iterator<NodeTy, ptrdiff_t> super;
87
88public:
89  typedef size_t size_type;
90  typedef typename super::pointer pointer;
91  typedef typename super::reference reference;
92private:
93  pointer NodePtr;
94public:
95
96  ilist_iterator(pointer NP) : NodePtr(NP) {}
97  ilist_iterator(reference NR) : NodePtr(&NR) {}
98  ilist_iterator() : NodePtr(0) {}
99
100  // This is templated so that we can allow constructing a const iterator from
101  // a nonconst iterator...
102  template<class node_ty>
103  ilist_iterator(const ilist_iterator<node_ty> &RHS)
104    : NodePtr(RHS.getNodePtrUnchecked()) {}
105
106  // This is templated so that we can allow assigning to a const iterator from
107  // a nonconst iterator...
108  template<class node_ty>
109  const ilist_iterator &operator=(const ilist_iterator<node_ty> &RHS) {
110    NodePtr = RHS.getNodePtrUnchecked();
111    return *this;
112  }
113
114  // Accessors...
115  operator pointer() const {
116    assert(Traits::getNext(NodePtr) != 0 && "Dereferencing end()!");
117    return NodePtr;
118  }
119
120  reference operator*() const {
121    assert(Traits::getNext(NodePtr) != 0 && "Dereferencing end()!");
122    return *NodePtr;
123  }
124  pointer operator->() { return &operator*(); }
125  const pointer operator->() const { return &operator*(); }
126
127  // Comparison operators
128  bool operator==(const ilist_iterator &RHS) const {
129    return NodePtr == RHS.NodePtr;
130  }
131  bool operator!=(const ilist_iterator &RHS) const {
132    return NodePtr != RHS.NodePtr;
133  }
134
135  // Increment and decrement operators...
136  ilist_iterator &operator--() {      // predecrement - Back up
137    NodePtr = Traits::getPrev(NodePtr);
138    assert(Traits::getNext(NodePtr) && "--'d off the beginning of an ilist!");
139    return *this;
140  }
141  ilist_iterator &operator++() {      // preincrement - Advance
142    NodePtr = Traits::getNext(NodePtr);
143    assert(NodePtr && "++'d off the end of an ilist!");
144    return *this;
145  }
146  ilist_iterator operator--(int) {    // postdecrement operators...
147    ilist_iterator tmp = *this;
148    --*this;
149    return tmp;
150  }
151  ilist_iterator operator++(int) {    // postincrement operators...
152    ilist_iterator tmp = *this;
153    ++*this;
154    return tmp;
155  }
156
157  // Internal interface, do not use...
158  pointer getNodePtrUnchecked() const { return NodePtr; }
159};
160
161// do not implement. this is to catch errors when people try to use
162// them as random access iterators
163template<typename T>
164void operator-(int, ilist_iterator<T>);
165template<typename T>
166void operator-(ilist_iterator<T>,int);
167
168template<typename T>
169void operator+(int, ilist_iterator<T>);
170template<typename T>
171void operator+(ilist_iterator<T>,int);
172
173// operator!=/operator== - Allow mixed comparisons without dereferencing
174// the iterator, which could very likely be pointing to end().
175template<typename T>
176bool operator!=(const T* LHS, const ilist_iterator<const T> &RHS) {
177  return LHS != RHS.getNodePtrUnchecked();
178}
179template<typename T>
180bool operator==(const T* LHS, const ilist_iterator<const T> &RHS) {
181  return LHS == RHS.getNodePtrUnchecked();
182}
183template<typename T>
184bool operator!=(T* LHS, const ilist_iterator<T> &RHS) {
185  return LHS != RHS.getNodePtrUnchecked();
186}
187template<typename T>
188bool operator==(T* LHS, const ilist_iterator<T> &RHS) {
189  return LHS == RHS.getNodePtrUnchecked();
190}
191
192
193// Allow ilist_iterators to convert into pointers to a node automatically when
194// used by the dyn_cast, cast, isa mechanisms...
195
196template<typename From> struct simplify_type;
197
198template<typename NodeTy> struct simplify_type<ilist_iterator<NodeTy> > {
199  typedef NodeTy* SimpleType;
200
201  static SimpleType getSimplifiedValue(const ilist_iterator<NodeTy> &Node) {
202    return &*Node;
203  }
204};
205template<typename NodeTy> struct simplify_type<const ilist_iterator<NodeTy> > {
206  typedef NodeTy* SimpleType;
207
208  static SimpleType getSimplifiedValue(const ilist_iterator<NodeTy> &Node) {
209    return &*Node;
210  }
211};
212
213
214//===----------------------------------------------------------------------===//
215//
216/// iplist - The subset of list functionality that can safely be used on nodes
217/// of polymorphic types, i.e. a heterogenous list with a common base class that
218/// holds the next/prev pointers.  The only state of the list itself is a single
219/// pointer to the head of the list.
220///
221/// This list can be in one of three interesting states:
222/// 1. The list may be completely unconstructed.  In this case, the head
223///    pointer is null.  When in this form, any query for an iterator (e.g.
224///    begin() or end()) causes the list to transparently change to state #2.
225/// 2. The list may be empty, but contain a sentinal for the end iterator. This
226///    sentinal is created by the Traits::createSentinel method and is a link
227///    in the list.  When the list is empty, the pointer in the iplist points
228///    to the sentinal.  Once the sentinal is constructed, it
229///    is not destroyed until the list is.
230/// 3. The list may contain actual objects in it, which are stored as a doubly
231///    linked list of nodes.  One invariant of the list is that the predecessor
232///    of the first node in the list always points to the last node in the list,
233///    and the successor pointer for the sentinal (which always stays at the
234///    end of the list) is always null.
235///
236template<typename NodeTy, typename Traits=ilist_traits<NodeTy> >
237class iplist : public Traits {
238  mutable NodeTy *Head;
239
240  // Use the prev node pointer of 'head' as the tail pointer.  This is really a
241  // circularly linked list where we snip the 'next' link from the sentinel node
242  // back to the first node in the list (to preserve assertions about going off
243  // the end of the list).
244  NodeTy *getTail() { return getPrev(Head); }
245  const NodeTy *getTail() const { return getPrev(Head); }
246  void setTail(NodeTy *N) const { setPrev(Head, N); }
247
248  /// CreateLazySentinal - This method verifies whether the sentinal for the
249  /// list has been created and lazily makes it if not.
250  void CreateLazySentinal() const {
251    if (Head != 0) return;
252    Head = Traits::createSentinel();
253    setNext(Head, 0);
254    setTail(Head);
255  }
256
257  static bool op_less(NodeTy &L, NodeTy &R) { return L < R; }
258  static bool op_equal(NodeTy &L, NodeTy &R) { return L == R; }
259
260  // No fundamental reason why iplist can't by copyable, but the default
261  // copy/copy-assign won't do.
262  iplist(const iplist &);         // do not implement
263  void operator=(const iplist &); // do not implement
264
265public:
266  typedef NodeTy *pointer;
267  typedef const NodeTy *const_pointer;
268  typedef NodeTy &reference;
269  typedef const NodeTy &const_reference;
270  typedef NodeTy value_type;
271  typedef ilist_iterator<NodeTy> iterator;
272  typedef ilist_iterator<const NodeTy> const_iterator;
273  typedef size_t size_type;
274  typedef ptrdiff_t difference_type;
275  typedef std::reverse_iterator<const_iterator>  const_reverse_iterator;
276  typedef std::reverse_iterator<iterator>  reverse_iterator;
277
278  iplist() : Head(0) {}
279  ~iplist() {
280    if (!Head) return;
281    clear();
282    Traits::destroySentinel(getTail());
283  }
284
285  // Iterator creation methods.
286  iterator begin() {
287    CreateLazySentinal();
288    return iterator(Head);
289  }
290  const_iterator begin() const {
291    CreateLazySentinal();
292    return const_iterator(Head);
293  }
294  iterator end() {
295    CreateLazySentinal();
296    return iterator(getTail());
297  }
298  const_iterator end() const {
299    CreateLazySentinal();
300    return const_iterator(getTail());
301  }
302
303  // reverse iterator creation methods.
304  reverse_iterator rbegin()            { return reverse_iterator(end()); }
305  const_reverse_iterator rbegin() const{ return const_reverse_iterator(end()); }
306  reverse_iterator rend()              { return reverse_iterator(begin()); }
307  const_reverse_iterator rend() const { return const_reverse_iterator(begin());}
308
309
310  // Miscellaneous inspection routines.
311  size_type max_size() const { return size_type(-1); }
312  bool empty() const { return Head == 0 || Head == getTail(); }
313
314  // Front and back accessor functions...
315  reference front() {
316    assert(!empty() && "Called front() on empty list!");
317    return *Head;
318  }
319  const_reference front() const {
320    assert(!empty() && "Called front() on empty list!");
321    return *Head;
322  }
323  reference back() {
324    assert(!empty() && "Called back() on empty list!");
325    return *getPrev(getTail());
326  }
327  const_reference back() const {
328    assert(!empty() && "Called back() on empty list!");
329    return *getPrev(getTail());
330  }
331
332  void swap(iplist &RHS) {
333    abort();     // Swap does not use list traits callback correctly yet!
334    std::swap(Head, RHS.Head);
335  }
336
337  iterator insert(iterator where, NodeTy *New) {
338    NodeTy *CurNode = where.getNodePtrUnchecked(), *PrevNode = getPrev(CurNode);
339    setNext(New, CurNode);
340    setPrev(New, PrevNode);
341
342    if (CurNode != Head)  // Is PrevNode off the beginning of the list?
343      setNext(PrevNode, New);
344    else
345      Head = New;
346    setPrev(CurNode, New);
347
348    addNodeToList(New);  // Notify traits that we added a node...
349    return New;
350  }
351
352  NodeTy *remove(iterator &IT) {
353    assert(IT != end() && "Cannot remove end of list!");
354    NodeTy *Node = &*IT;
355    NodeTy *NextNode = getNext(Node);
356    NodeTy *PrevNode = getPrev(Node);
357
358    if (Node != Head)  // Is PrevNode off the beginning of the list?
359      setNext(PrevNode, NextNode);
360    else
361      Head = NextNode;
362    setPrev(NextNode, PrevNode);
363    IT = NextNode;
364    removeNodeFromList(Node);  // Notify traits that we removed a node...
365
366    // Set the next/prev pointers of the current node to null.  This isn't
367    // strictly required, but this catches errors where a node is removed from
368    // an ilist (and potentially deleted) with iterators still pointing at it.
369    // When those iterators are incremented or decremented, they will assert on
370    // the null next/prev pointer instead of "usually working".
371    setNext(Node, 0);
372    setPrev(Node, 0);
373    return Node;
374  }
375
376  NodeTy *remove(const iterator &IT) {
377    iterator MutIt = IT;
378    return remove(MutIt);
379  }
380
381  // erase - remove a node from the controlled sequence... and delete it.
382  iterator erase(iterator where) {
383    delete remove(where);
384    return where;
385  }
386
387
388private:
389  // transfer - The heart of the splice function.  Move linked list nodes from
390  // [first, last) into position.
391  //
392  void transfer(iterator position, iplist &L2, iterator first, iterator last) {
393    assert(first != last && "Should be checked by callers");
394
395    if (position != last) {
396      // Note: we have to be careful about the case when we move the first node
397      // in the list.  This node is the list sentinel node and we can't move it.
398      NodeTy *ThisSentinel = getTail();
399      setTail(0);
400      NodeTy *L2Sentinel = L2.getTail();
401      L2.setTail(0);
402
403      // Remove [first, last) from its old position.
404      NodeTy *First = &*first, *Prev = getPrev(First);
405      NodeTy *Next = last.getNodePtrUnchecked(), *Last = getPrev(Next);
406      if (Prev)
407        setNext(Prev, Next);
408      else
409        L2.Head = Next;
410      setPrev(Next, Prev);
411
412      // Splice [first, last) into its new position.
413      NodeTy *PosNext = position.getNodePtrUnchecked();
414      NodeTy *PosPrev = getPrev(PosNext);
415
416      // Fix head of list...
417      if (PosPrev)
418        setNext(PosPrev, First);
419      else
420        Head = First;
421      setPrev(First, PosPrev);
422
423      // Fix end of list...
424      setNext(Last, PosNext);
425      setPrev(PosNext, Last);
426
427      transferNodesFromList(L2, First, PosNext);
428
429      // Now that everything is set, restore the pointers to the list sentinals.
430      L2.setTail(L2Sentinel);
431      setTail(ThisSentinel);
432    }
433  }
434
435public:
436
437  //===----------------------------------------------------------------------===
438  // Functionality derived from other functions defined above...
439  //
440
441  size_type size() const {
442    if (Head == 0) return 0; // Don't require construction of sentinal if empty.
443#if __GNUC__ == 2
444    // GCC 2.95 has a broken std::distance
445    size_type Result = 0;
446    std::distance(begin(), end(), Result);
447    return Result;
448#else
449    return std::distance(begin(), end());
450#endif
451  }
452
453  iterator erase(iterator first, iterator last) {
454    while (first != last)
455      first = erase(first);
456    return last;
457  }
458
459  void clear() { if (Head) erase(begin(), end()); }
460
461  // Front and back inserters...
462  void push_front(NodeTy *val) { insert(begin(), val); }
463  void push_back(NodeTy *val) { insert(end(), val); }
464  void pop_front() {
465    assert(!empty() && "pop_front() on empty list!");
466    erase(begin());
467  }
468  void pop_back() {
469    assert(!empty() && "pop_back() on empty list!");
470    iterator t = end(); erase(--t);
471  }
472
473  // Special forms of insert...
474  template<class InIt> void insert(iterator where, InIt first, InIt last) {
475    for (; first != last; ++first) insert(where, *first);
476  }
477
478  // Splice members - defined in terms of transfer...
479  void splice(iterator where, iplist &L2) {
480    if (!L2.empty())
481      transfer(where, L2, L2.begin(), L2.end());
482  }
483  void splice(iterator where, iplist &L2, iterator first) {
484    iterator last = first; ++last;
485    if (where == first || where == last) return; // No change
486    transfer(where, L2, first, last);
487  }
488  void splice(iterator where, iplist &L2, iterator first, iterator last) {
489    if (first != last) transfer(where, L2, first, last);
490  }
491
492
493
494  //===----------------------------------------------------------------------===
495  // High-Level Functionality that shouldn't really be here, but is part of list
496  //
497
498  // These two functions are actually called remove/remove_if in list<>, but
499  // they actually do the job of erase, rename them accordingly.
500  //
501  void erase(const NodeTy &val) {
502    for (iterator I = begin(), E = end(); I != E; ) {
503      iterator next = I; ++next;
504      if (*I == val) erase(I);
505      I = next;
506    }
507  }
508  template<class Pr1> void erase_if(Pr1 pred) {
509    for (iterator I = begin(), E = end(); I != E; ) {
510      iterator next = I; ++next;
511      if (pred(*I)) erase(I);
512      I = next;
513    }
514  }
515
516  template<class Pr2> void unique(Pr2 pred) {
517    if (empty()) return;
518    for (iterator I = begin(), E = end(), Next = begin(); ++Next != E;) {
519      if (pred(*I))
520        erase(Next);
521      else
522        I = Next;
523      Next = I;
524    }
525  }
526  void unique() { unique(op_equal); }
527
528  template<class Pr3> void merge(iplist &right, Pr3 pred) {
529    iterator first1 = begin(), last1 = end();
530    iterator first2 = right.begin(), last2 = right.end();
531    while (first1 != last1 && first2 != last2)
532      if (pred(*first2, *first1)) {
533        iterator next = first2;
534        transfer(first1, right, first2, ++next);
535        first2 = next;
536      } else {
537        ++first1;
538      }
539    if (first2 != last2) transfer(last1, right, first2, last2);
540  }
541  void merge(iplist &right) { return merge(right, op_less); }
542
543  template<class Pr3> void sort(Pr3 pred);
544  void sort() { sort(op_less); }
545  void reverse();
546};
547
548
549template<typename NodeTy>
550struct ilist : public iplist<NodeTy> {
551  typedef typename iplist<NodeTy>::size_type size_type;
552  typedef typename iplist<NodeTy>::iterator iterator;
553
554  ilist() {}
555  ilist(const ilist &right) {
556    insert(this->begin(), right.begin(), right.end());
557  }
558  explicit ilist(size_type count) {
559    insert(this->begin(), count, NodeTy());
560  }
561  ilist(size_type count, const NodeTy &val) {
562    insert(this->begin(), count, val);
563  }
564  template<class InIt> ilist(InIt first, InIt last) {
565    insert(this->begin(), first, last);
566  }
567
568
569  // Forwarding functions: A workaround for GCC 2.95 which does not correctly
570  // support 'using' declarations to bring a hidden member into scope.
571  //
572  iterator insert(iterator a, NodeTy *b){ return iplist<NodeTy>::insert(a, b); }
573  void push_front(NodeTy *a) { iplist<NodeTy>::push_front(a); }
574  void push_back(NodeTy *a)  { iplist<NodeTy>::push_back(a); }
575
576
577  // Main implementation here - Insert for a node passed by value...
578  iterator insert(iterator where, const NodeTy &val) {
579    return insert(where, createNode(val));
580  }
581
582
583  // Front and back inserters...
584  void push_front(const NodeTy &val) { insert(this->begin(), val); }
585  void push_back(const NodeTy &val) { insert(this->end(), val); }
586
587  // Special forms of insert...
588  template<class InIt> void insert(iterator where, InIt first, InIt last) {
589    for (; first != last; ++first) insert(where, *first);
590  }
591  void insert(iterator where, size_type count, const NodeTy &val) {
592    for (; count != 0; --count) insert(where, val);
593  }
594
595  // Assign special forms...
596  void assign(size_type count, const NodeTy &val) {
597    iterator I = this->begin();
598    for (; I != this->end() && count != 0; ++I, --count)
599      *I = val;
600    if (count != 0)
601      insert(this->end(), val, val);
602    else
603      erase(I, this->end());
604  }
605  template<class InIt> void assign(InIt first1, InIt last1) {
606    iterator first2 = this->begin(), last2 = this->end();
607    for ( ; first1 != last1 && first2 != last2; ++first1, ++first2)
608      *first1 = *first2;
609    if (first2 == last2)
610      erase(first1, last1);
611    else
612      insert(last1, first2, last2);
613  }
614
615
616  // Resize members...
617  void resize(size_type newsize, NodeTy val) {
618    iterator i = this->begin();
619    size_type len = 0;
620    for ( ; i != this->end() && len < newsize; ++i, ++len) /* empty*/ ;
621
622    if (len == newsize)
623      erase(i, this->end());
624    else                                          // i == end()
625      insert(this->end(), newsize - len, val);
626  }
627  void resize(size_type newsize) { resize(newsize, NodeTy()); }
628};
629
630} // End llvm namespace
631
632namespace std {
633  // Ensure that swap uses the fast list swap...
634  template<class Ty>
635  void swap(llvm::iplist<Ty> &Left, llvm::iplist<Ty> &Right) {
636    Left.swap(Right);
637  }
638}  // End 'std' extensions...
639
640#endif // LLVM_ADT_ILIST_H
641