ilist.h revision a2769a33c94f021a609a462b28ebea069eba6f74
1//==-- llvm/ADT/ilist.h - Intrusive Linked List Template ---------*- C++ -*-==//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines classes to implement an intrusive doubly linked list class
11// (i.e. each node of the list must contain a next and previous field for the
12// list.
13//
14// The ilist_traits trait class is used to gain access to the next and previous
15// fields of the node type that the list is instantiated with.  If it is not
16// specialized, the list defaults to using the getPrev(), getNext() method calls
17// to get the next and previous pointers.
18//
19// The ilist class itself, should be a plug in replacement for list, assuming
20// that the nodes contain next/prev pointers.  This list replacement does not
21// provide a constant time size() method, so be careful to use empty() when you
22// really want to know if it's empty.
23//
24// The ilist class is implemented by allocating a 'tail' node when the list is
25// created (using ilist_traits<>::createSentinel()).  This tail node is
26// absolutely required because the user must be able to compute end()-1. Because
27// of this, users of the direct next/prev links will see an extra link on the
28// end of the list, which should be ignored.
29//
30// Requirements for a user of this list:
31//
32//   1. The user must provide {g|s}et{Next|Prev} methods, or specialize
33//      ilist_traits to provide an alternate way of getting and setting next and
34//      prev links.
35//
36//===----------------------------------------------------------------------===//
37
38#ifndef LLVM_ADT_ILIST_H
39#define LLVM_ADT_ILIST_H
40
41#include "llvm/ADT/iterator.h"
42#include <cassert>
43
44namespace llvm {
45
46template<typename NodeTy, typename Traits> class iplist;
47template<typename NodeTy> class ilist_iterator;
48
49/// ilist_nextprev_traits - A fragment for template traits for intrusive list
50/// that provides default next/prev implementations for common operations.
51///
52template<typename NodeTy>
53struct ilist_nextprev_traits {
54  static NodeTy *getPrev(NodeTy *N) { return N->getPrev(); }
55  static NodeTy *getNext(NodeTy *N) { return N->getNext(); }
56  static const NodeTy *getPrev(const NodeTy *N) { return N->getPrev(); }
57  static const NodeTy *getNext(const NodeTy *N) { return N->getNext(); }
58
59  static void setPrev(NodeTy *N, NodeTy *Prev) { N->setPrev(Prev); }
60  static void setNext(NodeTy *N, NodeTy *Next) { N->setNext(Next); }
61};
62
63/// ilist_sentinel_traits - A fragment for template traits for intrusive list
64/// that provides default sentinel implementations for common operations.
65///
66template<typename NodeTy>
67struct ilist_sentinel_traits {
68  static NodeTy *createSentinel() { return new NodeTy(); }
69  static void destroySentinel(NodeTy *N) { delete N; }
70};
71
72/// ilist_default_traits - Default template traits for intrusive list.
73/// By inheriting from this, you can easily use default implementations
74/// for all common operations.
75///
76template<typename NodeTy>
77struct ilist_default_traits : ilist_nextprev_traits<NodeTy>,
78                              ilist_sentinel_traits<NodeTy> {
79  static NodeTy *createNode(const NodeTy &V) { return new NodeTy(V); }
80  static void deleteNode(NodeTy *V) { delete V; }
81
82  void addNodeToList(NodeTy *) {}
83  void removeNodeFromList(NodeTy *) {}
84  void transferNodesFromList(ilist_default_traits & /*SrcTraits*/,
85                             ilist_iterator<NodeTy> /*first*/,
86                             ilist_iterator<NodeTy> /*last*/) {}
87};
88
89// Template traits for intrusive list.  By specializing this template class, you
90// can change what next/prev fields are used to store the links...
91template<typename NodeTy>
92struct ilist_traits : ilist_default_traits<NodeTy> {};
93
94// Const traits are the same as nonconst traits...
95template<typename Ty>
96struct ilist_traits<const Ty> : public ilist_traits<Ty> {};
97
98//===----------------------------------------------------------------------===//
99// ilist_iterator<Node> - Iterator for intrusive list.
100//
101template<typename NodeTy>
102class ilist_iterator
103  : public bidirectional_iterator<NodeTy, ptrdiff_t> {
104
105public:
106  typedef ilist_traits<NodeTy> Traits;
107  typedef bidirectional_iterator<NodeTy, ptrdiff_t> super;
108
109  typedef typename super::value_type value_type;
110  typedef typename super::difference_type difference_type;
111  typedef typename super::pointer pointer;
112  typedef typename super::reference reference;
113private:
114  pointer NodePtr;
115
116  // ilist_iterator is not a random-access iterator, but it has an
117  // implicit conversion to pointer-type, which is. Declare (but
118  // don't define) these functions as private to help catch
119  // accidental misuse.
120  void operator[](difference_type) const;
121  void operator+(difference_type) const;
122  void operator-(difference_type) const;
123  void operator+=(difference_type) const;
124  void operator-=(difference_type) const;
125  template<class T> void operator<(T) const;
126  template<class T> void operator<=(T) const;
127  template<class T> void operator>(T) const;
128  template<class T> void operator>=(T) const;
129  template<class T> void operator-(T) const;
130public:
131
132  ilist_iterator(pointer NP) : NodePtr(NP) {}
133  ilist_iterator(reference NR) : NodePtr(&NR) {}
134  ilist_iterator() : NodePtr(0) {}
135
136  // This is templated so that we can allow constructing a const iterator from
137  // a nonconst iterator...
138  template<class node_ty>
139  ilist_iterator(const ilist_iterator<node_ty> &RHS)
140    : NodePtr(RHS.getNodePtrUnchecked()) {}
141
142  // This is templated so that we can allow assigning to a const iterator from
143  // a nonconst iterator...
144  template<class node_ty>
145  const ilist_iterator &operator=(const ilist_iterator<node_ty> &RHS) {
146    NodePtr = RHS.getNodePtrUnchecked();
147    return *this;
148  }
149
150  // Accessors...
151  operator pointer() const {
152    assert(Traits::getNext(NodePtr) != 0 && "Dereferencing end()!");
153    return NodePtr;
154  }
155
156  reference operator*() const {
157    assert(Traits::getNext(NodePtr) != 0 && "Dereferencing end()!");
158    return *NodePtr;
159  }
160  pointer operator->() const { return &operator*(); }
161
162  // Comparison operators
163  bool operator==(const ilist_iterator &RHS) const {
164    return NodePtr == RHS.NodePtr;
165  }
166  bool operator!=(const ilist_iterator &RHS) const {
167    return NodePtr != RHS.NodePtr;
168  }
169
170  // Increment and decrement operators...
171  ilist_iterator &operator--() {      // predecrement - Back up
172    NodePtr = Traits::getPrev(NodePtr);
173    assert(Traits::getNext(NodePtr) && "--'d off the beginning of an ilist!");
174    return *this;
175  }
176  ilist_iterator &operator++() {      // preincrement - Advance
177    NodePtr = Traits::getNext(NodePtr);
178    assert(NodePtr && "++'d off the end of an ilist!");
179    return *this;
180  }
181  ilist_iterator operator--(int) {    // postdecrement operators...
182    ilist_iterator tmp = *this;
183    --*this;
184    return tmp;
185  }
186  ilist_iterator operator++(int) {    // postincrement operators...
187    ilist_iterator tmp = *this;
188    ++*this;
189    return tmp;
190  }
191
192  // Internal interface, do not use...
193  pointer getNodePtrUnchecked() const { return NodePtr; }
194};
195
196// do not implement. this is to catch errors when people try to use
197// them as random access iterators
198template<typename T>
199void operator-(int, ilist_iterator<T>);
200template<typename T>
201void operator-(ilist_iterator<T>,int);
202
203template<typename T>
204void operator+(int, ilist_iterator<T>);
205template<typename T>
206void operator+(ilist_iterator<T>,int);
207
208// operator!=/operator== - Allow mixed comparisons without dereferencing
209// the iterator, which could very likely be pointing to end().
210template<typename T>
211bool operator!=(const T* LHS, const ilist_iterator<const T> &RHS) {
212  return LHS != RHS.getNodePtrUnchecked();
213}
214template<typename T>
215bool operator==(const T* LHS, const ilist_iterator<const T> &RHS) {
216  return LHS == RHS.getNodePtrUnchecked();
217}
218template<typename T>
219bool operator!=(T* LHS, const ilist_iterator<T> &RHS) {
220  return LHS != RHS.getNodePtrUnchecked();
221}
222template<typename T>
223bool operator==(T* LHS, const ilist_iterator<T> &RHS) {
224  return LHS == RHS.getNodePtrUnchecked();
225}
226
227
228// Allow ilist_iterators to convert into pointers to a node automatically when
229// used by the dyn_cast, cast, isa mechanisms...
230
231template<typename From> struct simplify_type;
232
233template<typename NodeTy> struct simplify_type<ilist_iterator<NodeTy> > {
234  typedef NodeTy* SimpleType;
235
236  static SimpleType getSimplifiedValue(const ilist_iterator<NodeTy> &Node) {
237    return &*Node;
238  }
239};
240template<typename NodeTy> struct simplify_type<const ilist_iterator<NodeTy> > {
241  typedef NodeTy* SimpleType;
242
243  static SimpleType getSimplifiedValue(const ilist_iterator<NodeTy> &Node) {
244    return &*Node;
245  }
246};
247
248
249//===----------------------------------------------------------------------===//
250//
251/// iplist - The subset of list functionality that can safely be used on nodes
252/// of polymorphic types, i.e. a heterogenous list with a common base class that
253/// holds the next/prev pointers.  The only state of the list itself is a single
254/// pointer to the head of the list.
255///
256/// This list can be in one of three interesting states:
257/// 1. The list may be completely unconstructed.  In this case, the head
258///    pointer is null.  When in this form, any query for an iterator (e.g.
259///    begin() or end()) causes the list to transparently change to state #2.
260/// 2. The list may be empty, but contain a sentinel for the end iterator. This
261///    sentinel is created by the Traits::createSentinel method and is a link
262///    in the list.  When the list is empty, the pointer in the iplist points
263///    to the sentinel.  Once the sentinel is constructed, it
264///    is not destroyed until the list is.
265/// 3. The list may contain actual objects in it, which are stored as a doubly
266///    linked list of nodes.  One invariant of the list is that the predecessor
267///    of the first node in the list always points to the last node in the list,
268///    and the successor pointer for the sentinel (which always stays at the
269///    end of the list) is always null.
270///
271template<typename NodeTy, typename Traits=ilist_traits<NodeTy> >
272class iplist : public Traits {
273  mutable NodeTy *Head;
274
275  // Use the prev node pointer of 'head' as the tail pointer.  This is really a
276  // circularly linked list where we snip the 'next' link from the sentinel node
277  // back to the first node in the list (to preserve assertions about going off
278  // the end of the list).
279  NodeTy *getTail() { return this->getPrev(Head); }
280  const NodeTy *getTail() const { return this->getPrev(Head); }
281  void setTail(NodeTy *N) const { this->setPrev(Head, N); }
282
283  /// CreateLazySentinel - This method verifies whether the sentinel for the
284  /// list has been created and lazily makes it if not.
285  void CreateLazySentinel() const {
286    if (Head != 0) return;
287    Head = Traits::createSentinel();
288    this->setNext(Head, 0);
289    setTail(Head);
290  }
291
292  static bool op_less(NodeTy &L, NodeTy &R) { return L < R; }
293  static bool op_equal(NodeTy &L, NodeTy &R) { return L == R; }
294
295  // No fundamental reason why iplist can't by copyable, but the default
296  // copy/copy-assign won't do.
297  iplist(const iplist &);         // do not implement
298  void operator=(const iplist &); // do not implement
299
300public:
301  typedef NodeTy *pointer;
302  typedef const NodeTy *const_pointer;
303  typedef NodeTy &reference;
304  typedef const NodeTy &const_reference;
305  typedef NodeTy value_type;
306  typedef ilist_iterator<NodeTy> iterator;
307  typedef ilist_iterator<const NodeTy> const_iterator;
308  typedef size_t size_type;
309  typedef ptrdiff_t difference_type;
310  typedef std::reverse_iterator<const_iterator>  const_reverse_iterator;
311  typedef std::reverse_iterator<iterator>  reverse_iterator;
312
313  iplist() : Head(0) {}
314  ~iplist() {
315    if (!Head) return;
316    clear();
317    Traits::destroySentinel(getTail());
318  }
319
320  // Iterator creation methods.
321  iterator begin() {
322    CreateLazySentinel();
323    return iterator(Head);
324  }
325  const_iterator begin() const {
326    CreateLazySentinel();
327    return const_iterator(Head);
328  }
329  iterator end() {
330    CreateLazySentinel();
331    return iterator(getTail());
332  }
333  const_iterator end() const {
334    CreateLazySentinel();
335    return const_iterator(getTail());
336  }
337
338  // reverse iterator creation methods.
339  reverse_iterator rbegin()            { return reverse_iterator(end()); }
340  const_reverse_iterator rbegin() const{ return const_reverse_iterator(end()); }
341  reverse_iterator rend()              { return reverse_iterator(begin()); }
342  const_reverse_iterator rend() const { return const_reverse_iterator(begin());}
343
344
345  // Miscellaneous inspection routines.
346  size_type max_size() const { return size_type(-1); }
347  bool empty() const { return Head == 0 || Head == getTail(); }
348
349  // Front and back accessor functions...
350  reference front() {
351    assert(!empty() && "Called front() on empty list!");
352    return *Head;
353  }
354  const_reference front() const {
355    assert(!empty() && "Called front() on empty list!");
356    return *Head;
357  }
358  reference back() {
359    assert(!empty() && "Called back() on empty list!");
360    return *this->getPrev(getTail());
361  }
362  const_reference back() const {
363    assert(!empty() && "Called back() on empty list!");
364    return *this->getPrev(getTail());
365  }
366
367  void swap(iplist &RHS) {
368    assert(0 && "Swap does not use list traits callback correctly yet!");
369    std::swap(Head, RHS.Head);
370  }
371
372  iterator insert(iterator where, NodeTy *New) {
373    NodeTy *CurNode = where.getNodePtrUnchecked();
374    NodeTy *PrevNode = this->getPrev(CurNode);
375    this->setNext(New, CurNode);
376    this->setPrev(New, PrevNode);
377
378    if (CurNode != Head)  // Is PrevNode off the beginning of the list?
379      this->setNext(PrevNode, New);
380    else
381      Head = New;
382    this->setPrev(CurNode, New);
383
384    this->addNodeToList(New);  // Notify traits that we added a node...
385    return New;
386  }
387
388  iterator insertAfter(iterator where, NodeTy *New) {
389    if (empty())
390      return insert(begin(), New);
391    else
392      return insert(++where, New);
393  }
394
395  NodeTy *remove(iterator &IT) {
396    assert(IT != end() && "Cannot remove end of list!");
397    NodeTy *Node = &*IT;
398    NodeTy *NextNode = this->getNext(Node);
399    NodeTy *PrevNode = this->getPrev(Node);
400
401    if (Node != Head)  // Is PrevNode off the beginning of the list?
402      this->setNext(PrevNode, NextNode);
403    else
404      Head = NextNode;
405    this->setPrev(NextNode, PrevNode);
406    IT = NextNode;
407    this->removeNodeFromList(Node);  // Notify traits that we removed a node...
408
409    // Set the next/prev pointers of the current node to null.  This isn't
410    // strictly required, but this catches errors where a node is removed from
411    // an ilist (and potentially deleted) with iterators still pointing at it.
412    // When those iterators are incremented or decremented, they will assert on
413    // the null next/prev pointer instead of "usually working".
414    this->setNext(Node, 0);
415    this->setPrev(Node, 0);
416    return Node;
417  }
418
419  NodeTy *remove(const iterator &IT) {
420    iterator MutIt = IT;
421    return remove(MutIt);
422  }
423
424  // erase - remove a node from the controlled sequence... and delete it.
425  iterator erase(iterator where) {
426    this->deleteNode(remove(where));
427    return where;
428  }
429
430
431private:
432  // transfer - The heart of the splice function.  Move linked list nodes from
433  // [first, last) into position.
434  //
435  void transfer(iterator position, iplist &L2, iterator first, iterator last) {
436    assert(first != last && "Should be checked by callers");
437
438    if (position != last) {
439      // Note: we have to be careful about the case when we move the first node
440      // in the list.  This node is the list sentinel node and we can't move it.
441      NodeTy *ThisSentinel = getTail();
442      setTail(0);
443      NodeTy *L2Sentinel = L2.getTail();
444      L2.setTail(0);
445
446      // Remove [first, last) from its old position.
447      NodeTy *First = &*first, *Prev = getPrev(First);
448      NodeTy *Next = last.getNodePtrUnchecked(), *Last = getPrev(Next);
449      if (Prev)
450        this->setNext(Prev, Next);
451      else
452        L2.Head = Next;
453      this->setPrev(Next, Prev);
454
455      // Splice [first, last) into its new position.
456      NodeTy *PosNext = position.getNodePtrUnchecked();
457      NodeTy *PosPrev = getPrev(PosNext);
458
459      // Fix head of list...
460      if (PosPrev)
461        this->setNext(PosPrev, First);
462      else
463        Head = First;
464      this->setPrev(First, PosPrev);
465
466      // Fix end of list...
467      this->setNext(Last, PosNext);
468      this->setPrev(PosNext, Last);
469
470      transferNodesFromList(L2, First, PosNext);
471
472      // Now that everything is set, restore the pointers to the list sentinels.
473      L2.setTail(L2Sentinel);
474      setTail(ThisSentinel);
475    }
476  }
477
478public:
479
480  //===----------------------------------------------------------------------===
481  // Functionality derived from other functions defined above...
482  //
483
484  size_type size() const {
485    if (Head == 0) return 0; // Don't require construction of sentinel if empty.
486#if __GNUC__ == 2
487    // GCC 2.95 has a broken std::distance
488    size_type Result = 0;
489    std::distance(begin(), end(), Result);
490    return Result;
491#else
492    return std::distance(begin(), end());
493#endif
494  }
495
496  iterator erase(iterator first, iterator last) {
497    while (first != last)
498      first = erase(first);
499    return last;
500  }
501
502  void clear() { if (Head) erase(begin(), end()); }
503
504  // Front and back inserters...
505  void push_front(NodeTy *val) { insert(begin(), val); }
506  void push_back(NodeTy *val) { insert(end(), val); }
507  void pop_front() {
508    assert(!empty() && "pop_front() on empty list!");
509    erase(begin());
510  }
511  void pop_back() {
512    assert(!empty() && "pop_back() on empty list!");
513    iterator t = end(); erase(--t);
514  }
515
516  // Special forms of insert...
517  template<class InIt> void insert(iterator where, InIt first, InIt last) {
518    for (; first != last; ++first) insert(where, *first);
519  }
520
521  // Splice members - defined in terms of transfer...
522  void splice(iterator where, iplist &L2) {
523    if (!L2.empty())
524      transfer(where, L2, L2.begin(), L2.end());
525  }
526  void splice(iterator where, iplist &L2, iterator first) {
527    iterator last = first; ++last;
528    if (where == first || where == last) return; // No change
529    transfer(where, L2, first, last);
530  }
531  void splice(iterator where, iplist &L2, iterator first, iterator last) {
532    if (first != last) transfer(where, L2, first, last);
533  }
534
535
536
537  //===----------------------------------------------------------------------===
538  // High-Level Functionality that shouldn't really be here, but is part of list
539  //
540
541  // These two functions are actually called remove/remove_if in list<>, but
542  // they actually do the job of erase, rename them accordingly.
543  //
544  void erase(const NodeTy &val) {
545    for (iterator I = begin(), E = end(); I != E; ) {
546      iterator next = I; ++next;
547      if (*I == val) erase(I);
548      I = next;
549    }
550  }
551  template<class Pr1> void erase_if(Pr1 pred) {
552    for (iterator I = begin(), E = end(); I != E; ) {
553      iterator next = I; ++next;
554      if (pred(*I)) erase(I);
555      I = next;
556    }
557  }
558
559  template<class Pr2> void unique(Pr2 pred) {
560    if (empty()) return;
561    for (iterator I = begin(), E = end(), Next = begin(); ++Next != E;) {
562      if (pred(*I))
563        erase(Next);
564      else
565        I = Next;
566      Next = I;
567    }
568  }
569  void unique() { unique(op_equal); }
570
571  template<class Pr3> void merge(iplist &right, Pr3 pred) {
572    iterator first1 = begin(), last1 = end();
573    iterator first2 = right.begin(), last2 = right.end();
574    while (first1 != last1 && first2 != last2)
575      if (pred(*first2, *first1)) {
576        iterator next = first2;
577        transfer(first1, right, first2, ++next);
578        first2 = next;
579      } else {
580        ++first1;
581      }
582    if (first2 != last2) transfer(last1, right, first2, last2);
583  }
584  void merge(iplist &right) { return merge(right, op_less); }
585
586  template<class Pr3> void sort(Pr3 pred);
587  void sort() { sort(op_less); }
588  void reverse();
589};
590
591
592template<typename NodeTy>
593struct ilist : public iplist<NodeTy> {
594  typedef typename iplist<NodeTy>::size_type size_type;
595  typedef typename iplist<NodeTy>::iterator iterator;
596
597  ilist() {}
598  ilist(const ilist &right) {
599    insert(this->begin(), right.begin(), right.end());
600  }
601  explicit ilist(size_type count) {
602    insert(this->begin(), count, NodeTy());
603  }
604  ilist(size_type count, const NodeTy &val) {
605    insert(this->begin(), count, val);
606  }
607  template<class InIt> ilist(InIt first, InIt last) {
608    insert(this->begin(), first, last);
609  }
610
611
612  // Forwarding functions: A workaround for GCC 2.95 which does not correctly
613  // support 'using' declarations to bring a hidden member into scope.
614  //
615  iterator insert(iterator a, NodeTy *b){ return iplist<NodeTy>::insert(a, b); }
616  void push_front(NodeTy *a) { iplist<NodeTy>::push_front(a); }
617  void push_back(NodeTy *a)  { iplist<NodeTy>::push_back(a); }
618
619
620  // Main implementation here - Insert for a node passed by value...
621  iterator insert(iterator where, const NodeTy &val) {
622    return insert(where, createNode(val));
623  }
624
625
626  // Front and back inserters...
627  void push_front(const NodeTy &val) { insert(this->begin(), val); }
628  void push_back(const NodeTy &val) { insert(this->end(), val); }
629
630  // Special forms of insert...
631  template<class InIt> void insert(iterator where, InIt first, InIt last) {
632    for (; first != last; ++first) insert(where, *first);
633  }
634  void insert(iterator where, size_type count, const NodeTy &val) {
635    for (; count != 0; --count) insert(where, val);
636  }
637
638  // Assign special forms...
639  void assign(size_type count, const NodeTy &val) {
640    iterator I = this->begin();
641    for (; I != this->end() && count != 0; ++I, --count)
642      *I = val;
643    if (count != 0)
644      insert(this->end(), val, val);
645    else
646      erase(I, this->end());
647  }
648  template<class InIt> void assign(InIt first1, InIt last1) {
649    iterator first2 = this->begin(), last2 = this->end();
650    for ( ; first1 != last1 && first2 != last2; ++first1, ++first2)
651      *first1 = *first2;
652    if (first2 == last2)
653      erase(first1, last1);
654    else
655      insert(last1, first2, last2);
656  }
657
658
659  // Resize members...
660  void resize(size_type newsize, NodeTy val) {
661    iterator i = this->begin();
662    size_type len = 0;
663    for ( ; i != this->end() && len < newsize; ++i, ++len) /* empty*/ ;
664
665    if (len == newsize)
666      erase(i, this->end());
667    else                                          // i == end()
668      insert(this->end(), newsize - len, val);
669  }
670  void resize(size_type newsize) { resize(newsize, NodeTy()); }
671};
672
673} // End llvm namespace
674
675namespace std {
676  // Ensure that swap uses the fast list swap...
677  template<class Ty>
678  void swap(llvm::iplist<Ty> &Left, llvm::iplist<Ty> &Right) {
679    Left.swap(Right);
680  }
681}  // End 'std' extensions...
682
683#endif // LLVM_ADT_ILIST_H
684