ilist.h revision fed90b6d097d50881afb45e4d79f430db66dd741
1//==-- llvm/ADT/ilist.h - Intrusive Linked List Template ---------*- C++ -*-==//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines classes to implement an intrusive doubly linked list class
11// (i.e. each node of the list must contain a next and previous field for the
12// list.
13//
14// The ilist_traits trait class is used to gain access to the next and previous
15// fields of the node type that the list is instantiated with.  If it is not
16// specialized, the list defaults to using the getPrev(), getNext() method calls
17// to get the next and previous pointers.
18//
19// The ilist class itself, should be a plug in replacement for list, assuming
20// that the nodes contain next/prev pointers.  This list replacement does not
21// provide a constant time size() method, so be careful to use empty() when you
22// really want to know if it's empty.
23//
24// The ilist class is implemented by allocating a 'tail' node when the list is
25// created (using ilist_traits<>::createSentinel()).  This tail node is
26// absolutely required because the user must be able to compute end()-1. Because
27// of this, users of the direct next/prev links will see an extra link on the
28// end of the list, which should be ignored.
29//
30// Requirements for a user of this list:
31//
32//   1. The user must provide {g|s}et{Next|Prev} methods, or specialize
33//      ilist_traits to provide an alternate way of getting and setting next and
34//      prev links.
35//
36//===----------------------------------------------------------------------===//
37
38#ifndef LLVM_ADT_ILIST_H
39#define LLVM_ADT_ILIST_H
40
41#include "llvm/ADT/iterator.h"
42#include <cassert>
43#include <cstdlib>
44
45namespace llvm {
46
47template<typename NodeTy, typename Traits> class iplist;
48template<typename NodeTy> class ilist_iterator;
49
50/// ilist_nextprev_traits - A fragment for template traits for intrusive list
51/// that provides default next/prev implementations for common operations.
52///
53template<typename NodeTy>
54struct ilist_nextprev_traits {
55  static NodeTy *getPrev(NodeTy *N) { return N->getPrev(); }
56  static NodeTy *getNext(NodeTy *N) { return N->getNext(); }
57  static const NodeTy *getPrev(const NodeTy *N) { return N->getPrev(); }
58  static const NodeTy *getNext(const NodeTy *N) { return N->getNext(); }
59
60  static void setPrev(NodeTy *N, NodeTy *Prev) { N->setPrev(Prev); }
61  static void setNext(NodeTy *N, NodeTy *Next) { N->setNext(Next); }
62};
63
64/// ilist_sentinel_traits - A fragment for template traits for intrusive list
65/// that provides default sentinel implementations for common operations.
66///
67template<typename NodeTy>
68struct ilist_sentinel_traits {
69  static NodeTy *createSentinel() { return new NodeTy(); }
70  static void destroySentinel(NodeTy *N) { delete N; }
71};
72
73/// ilist_default_traits - Default template traits for intrusive list.
74/// By inheriting from this, you can easily use default implementations
75/// for all common operations.
76///
77template<typename NodeTy>
78struct ilist_default_traits : ilist_nextprev_traits<NodeTy>,
79                              ilist_sentinel_traits<NodeTy> {
80  static NodeTy *createNode(const NodeTy &V) { return new NodeTy(V); }
81  static void deleteNode(NodeTy *V) { delete V; }
82
83  void addNodeToList(NodeTy *NTy) {}
84  void removeNodeFromList(NodeTy *NTy) {}
85  void transferNodesFromList(ilist_default_traits &SrcTraits,
86                             ilist_iterator<NodeTy> first,
87                             ilist_iterator<NodeTy> last) {}
88};
89
90// Template traits for intrusive list.  By specializing this template class, you
91// can change what next/prev fields are used to store the links...
92template<typename NodeTy>
93struct ilist_traits : ilist_default_traits<NodeTy> {};
94
95// Const traits are the same as nonconst traits...
96template<typename Ty>
97struct ilist_traits<const Ty> : public ilist_traits<Ty> {};
98
99//===----------------------------------------------------------------------===//
100// ilist_iterator<Node> - Iterator for intrusive list.
101//
102template<typename NodeTy>
103class ilist_iterator
104  : public bidirectional_iterator<NodeTy, ptrdiff_t> {
105
106public:
107  typedef ilist_traits<NodeTy> Traits;
108  typedef bidirectional_iterator<NodeTy, ptrdiff_t> super;
109
110  typedef size_t size_type;
111  typedef typename super::pointer pointer;
112  typedef typename super::reference reference;
113private:
114  pointer NodePtr;
115
116  // operator[] is not defined. Compile error instead of having a runtime bug.
117  void operator[](unsigned) {}
118  void operator[](unsigned) const {}
119public:
120
121  ilist_iterator(pointer NP) : NodePtr(NP) {}
122  ilist_iterator(reference NR) : NodePtr(&NR) {}
123  ilist_iterator() : NodePtr(0) {}
124
125  // This is templated so that we can allow constructing a const iterator from
126  // a nonconst iterator...
127  template<class node_ty>
128  ilist_iterator(const ilist_iterator<node_ty> &RHS)
129    : NodePtr(RHS.getNodePtrUnchecked()) {}
130
131  // This is templated so that we can allow assigning to a const iterator from
132  // a nonconst iterator...
133  template<class node_ty>
134  const ilist_iterator &operator=(const ilist_iterator<node_ty> &RHS) {
135    NodePtr = RHS.getNodePtrUnchecked();
136    return *this;
137  }
138
139  // Accessors...
140  operator pointer() const {
141    assert(Traits::getNext(NodePtr) != 0 && "Dereferencing end()!");
142    return NodePtr;
143  }
144
145  reference operator*() const {
146    assert(Traits::getNext(NodePtr) != 0 && "Dereferencing end()!");
147    return *NodePtr;
148  }
149  pointer operator->() const { return &operator*(); }
150
151  // Comparison operators
152  bool operator==(const ilist_iterator &RHS) const {
153    return NodePtr == RHS.NodePtr;
154  }
155  bool operator!=(const ilist_iterator &RHS) const {
156    return NodePtr != RHS.NodePtr;
157  }
158
159  // Increment and decrement operators...
160  ilist_iterator &operator--() {      // predecrement - Back up
161    NodePtr = Traits::getPrev(NodePtr);
162    assert(Traits::getNext(NodePtr) && "--'d off the beginning of an ilist!");
163    return *this;
164  }
165  ilist_iterator &operator++() {      // preincrement - Advance
166    NodePtr = Traits::getNext(NodePtr);
167    assert(NodePtr && "++'d off the end of an ilist!");
168    return *this;
169  }
170  ilist_iterator operator--(int) {    // postdecrement operators...
171    ilist_iterator tmp = *this;
172    --*this;
173    return tmp;
174  }
175  ilist_iterator operator++(int) {    // postincrement operators...
176    ilist_iterator tmp = *this;
177    ++*this;
178    return tmp;
179  }
180
181  // Internal interface, do not use...
182  pointer getNodePtrUnchecked() const { return NodePtr; }
183};
184
185// do not implement. this is to catch errors when people try to use
186// them as random access iterators
187template<typename T>
188void operator-(int, ilist_iterator<T>);
189template<typename T>
190void operator-(ilist_iterator<T>,int);
191
192template<typename T>
193void operator+(int, ilist_iterator<T>);
194template<typename T>
195void operator+(ilist_iterator<T>,int);
196
197// operator!=/operator== - Allow mixed comparisons without dereferencing
198// the iterator, which could very likely be pointing to end().
199template<typename T>
200bool operator!=(const T* LHS, const ilist_iterator<const T> &RHS) {
201  return LHS != RHS.getNodePtrUnchecked();
202}
203template<typename T>
204bool operator==(const T* LHS, const ilist_iterator<const T> &RHS) {
205  return LHS == RHS.getNodePtrUnchecked();
206}
207template<typename T>
208bool operator!=(T* LHS, const ilist_iterator<T> &RHS) {
209  return LHS != RHS.getNodePtrUnchecked();
210}
211template<typename T>
212bool operator==(T* LHS, const ilist_iterator<T> &RHS) {
213  return LHS == RHS.getNodePtrUnchecked();
214}
215
216
217// Allow ilist_iterators to convert into pointers to a node automatically when
218// used by the dyn_cast, cast, isa mechanisms...
219
220template<typename From> struct simplify_type;
221
222template<typename NodeTy> struct simplify_type<ilist_iterator<NodeTy> > {
223  typedef NodeTy* SimpleType;
224
225  static SimpleType getSimplifiedValue(const ilist_iterator<NodeTy> &Node) {
226    return &*Node;
227  }
228};
229template<typename NodeTy> struct simplify_type<const ilist_iterator<NodeTy> > {
230  typedef NodeTy* SimpleType;
231
232  static SimpleType getSimplifiedValue(const ilist_iterator<NodeTy> &Node) {
233    return &*Node;
234  }
235};
236
237
238//===----------------------------------------------------------------------===//
239//
240/// iplist - The subset of list functionality that can safely be used on nodes
241/// of polymorphic types, i.e. a heterogenous list with a common base class that
242/// holds the next/prev pointers.  The only state of the list itself is a single
243/// pointer to the head of the list.
244///
245/// This list can be in one of three interesting states:
246/// 1. The list may be completely unconstructed.  In this case, the head
247///    pointer is null.  When in this form, any query for an iterator (e.g.
248///    begin() or end()) causes the list to transparently change to state #2.
249/// 2. The list may be empty, but contain a sentinal for the end iterator. This
250///    sentinal is created by the Traits::createSentinel method and is a link
251///    in the list.  When the list is empty, the pointer in the iplist points
252///    to the sentinal.  Once the sentinal is constructed, it
253///    is not destroyed until the list is.
254/// 3. The list may contain actual objects in it, which are stored as a doubly
255///    linked list of nodes.  One invariant of the list is that the predecessor
256///    of the first node in the list always points to the last node in the list,
257///    and the successor pointer for the sentinal (which always stays at the
258///    end of the list) is always null.
259///
260template<typename NodeTy, typename Traits=ilist_traits<NodeTy> >
261class iplist : public Traits {
262  mutable NodeTy *Head;
263
264  // Use the prev node pointer of 'head' as the tail pointer.  This is really a
265  // circularly linked list where we snip the 'next' link from the sentinel node
266  // back to the first node in the list (to preserve assertions about going off
267  // the end of the list).
268  NodeTy *getTail() { return getPrev(Head); }
269  const NodeTy *getTail() const { return getPrev(Head); }
270  void setTail(NodeTy *N) const { setPrev(Head, N); }
271
272  /// CreateLazySentinal - This method verifies whether the sentinal for the
273  /// list has been created and lazily makes it if not.
274  void CreateLazySentinal() const {
275    if (Head != 0) return;
276    Head = Traits::createSentinel();
277    setNext(Head, 0);
278    setTail(Head);
279  }
280
281  static bool op_less(NodeTy &L, NodeTy &R) { return L < R; }
282  static bool op_equal(NodeTy &L, NodeTy &R) { return L == R; }
283
284  // No fundamental reason why iplist can't by copyable, but the default
285  // copy/copy-assign won't do.
286  iplist(const iplist &);         // do not implement
287  void operator=(const iplist &); // do not implement
288
289public:
290  typedef NodeTy *pointer;
291  typedef const NodeTy *const_pointer;
292  typedef NodeTy &reference;
293  typedef const NodeTy &const_reference;
294  typedef NodeTy value_type;
295  typedef ilist_iterator<NodeTy> iterator;
296  typedef ilist_iterator<const NodeTy> const_iterator;
297  typedef size_t size_type;
298  typedef ptrdiff_t difference_type;
299  typedef std::reverse_iterator<const_iterator>  const_reverse_iterator;
300  typedef std::reverse_iterator<iterator>  reverse_iterator;
301
302  iplist() : Head(0) {}
303  ~iplist() {
304    if (!Head) return;
305    clear();
306    Traits::destroySentinel(getTail());
307  }
308
309  // Iterator creation methods.
310  iterator begin() {
311    CreateLazySentinal();
312    return iterator(Head);
313  }
314  const_iterator begin() const {
315    CreateLazySentinal();
316    return const_iterator(Head);
317  }
318  iterator end() {
319    CreateLazySentinal();
320    return iterator(getTail());
321  }
322  const_iterator end() const {
323    CreateLazySentinal();
324    return const_iterator(getTail());
325  }
326
327  // reverse iterator creation methods.
328  reverse_iterator rbegin()            { return reverse_iterator(end()); }
329  const_reverse_iterator rbegin() const{ return const_reverse_iterator(end()); }
330  reverse_iterator rend()              { return reverse_iterator(begin()); }
331  const_reverse_iterator rend() const { return const_reverse_iterator(begin());}
332
333
334  // Miscellaneous inspection routines.
335  size_type max_size() const { return size_type(-1); }
336  bool empty() const { return Head == 0 || Head == getTail(); }
337
338  // Front and back accessor functions...
339  reference front() {
340    assert(!empty() && "Called front() on empty list!");
341    return *Head;
342  }
343  const_reference front() const {
344    assert(!empty() && "Called front() on empty list!");
345    return *Head;
346  }
347  reference back() {
348    assert(!empty() && "Called back() on empty list!");
349    return *getPrev(getTail());
350  }
351  const_reference back() const {
352    assert(!empty() && "Called back() on empty list!");
353    return *getPrev(getTail());
354  }
355
356  void swap(iplist &RHS) {
357    abort();     // Swap does not use list traits callback correctly yet!
358    std::swap(Head, RHS.Head);
359  }
360
361  iterator insert(iterator where, NodeTy *New) {
362    NodeTy *CurNode = where.getNodePtrUnchecked(), *PrevNode = getPrev(CurNode);
363    setNext(New, CurNode);
364    setPrev(New, PrevNode);
365
366    if (CurNode != Head)  // Is PrevNode off the beginning of the list?
367      setNext(PrevNode, New);
368    else
369      Head = New;
370    setPrev(CurNode, New);
371
372    addNodeToList(New);  // Notify traits that we added a node...
373    return New;
374  }
375
376  NodeTy *remove(iterator &IT) {
377    assert(IT != end() && "Cannot remove end of list!");
378    NodeTy *Node = &*IT;
379    NodeTy *NextNode = getNext(Node);
380    NodeTy *PrevNode = getPrev(Node);
381
382    if (Node != Head)  // Is PrevNode off the beginning of the list?
383      setNext(PrevNode, NextNode);
384    else
385      Head = NextNode;
386    setPrev(NextNode, PrevNode);
387    IT = NextNode;
388    removeNodeFromList(Node);  // Notify traits that we removed a node...
389
390    // Set the next/prev pointers of the current node to null.  This isn't
391    // strictly required, but this catches errors where a node is removed from
392    // an ilist (and potentially deleted) with iterators still pointing at it.
393    // When those iterators are incremented or decremented, they will assert on
394    // the null next/prev pointer instead of "usually working".
395    setNext(Node, 0);
396    setPrev(Node, 0);
397    return Node;
398  }
399
400  NodeTy *remove(const iterator &IT) {
401    iterator MutIt = IT;
402    return remove(MutIt);
403  }
404
405  // erase - remove a node from the controlled sequence... and delete it.
406  iterator erase(iterator where) {
407    deleteNode(remove(where));
408    return where;
409  }
410
411
412private:
413  // transfer - The heart of the splice function.  Move linked list nodes from
414  // [first, last) into position.
415  //
416  void transfer(iterator position, iplist &L2, iterator first, iterator last) {
417    assert(first != last && "Should be checked by callers");
418
419    if (position != last) {
420      // Note: we have to be careful about the case when we move the first node
421      // in the list.  This node is the list sentinel node and we can't move it.
422      NodeTy *ThisSentinel = getTail();
423      setTail(0);
424      NodeTy *L2Sentinel = L2.getTail();
425      L2.setTail(0);
426
427      // Remove [first, last) from its old position.
428      NodeTy *First = &*first, *Prev = getPrev(First);
429      NodeTy *Next = last.getNodePtrUnchecked(), *Last = getPrev(Next);
430      if (Prev)
431        setNext(Prev, Next);
432      else
433        L2.Head = Next;
434      setPrev(Next, Prev);
435
436      // Splice [first, last) into its new position.
437      NodeTy *PosNext = position.getNodePtrUnchecked();
438      NodeTy *PosPrev = getPrev(PosNext);
439
440      // Fix head of list...
441      if (PosPrev)
442        setNext(PosPrev, First);
443      else
444        Head = First;
445      setPrev(First, PosPrev);
446
447      // Fix end of list...
448      setNext(Last, PosNext);
449      setPrev(PosNext, Last);
450
451      transferNodesFromList(L2, First, PosNext);
452
453      // Now that everything is set, restore the pointers to the list sentinals.
454      L2.setTail(L2Sentinel);
455      setTail(ThisSentinel);
456    }
457  }
458
459public:
460
461  //===----------------------------------------------------------------------===
462  // Functionality derived from other functions defined above...
463  //
464
465  size_type size() const {
466    if (Head == 0) return 0; // Don't require construction of sentinal if empty.
467#if __GNUC__ == 2
468    // GCC 2.95 has a broken std::distance
469    size_type Result = 0;
470    std::distance(begin(), end(), Result);
471    return Result;
472#else
473    return std::distance(begin(), end());
474#endif
475  }
476
477  iterator erase(iterator first, iterator last) {
478    while (first != last)
479      first = erase(first);
480    return last;
481  }
482
483  void clear() { if (Head) erase(begin(), end()); }
484
485  // Front and back inserters...
486  void push_front(NodeTy *val) { insert(begin(), val); }
487  void push_back(NodeTy *val) { insert(end(), val); }
488  void pop_front() {
489    assert(!empty() && "pop_front() on empty list!");
490    erase(begin());
491  }
492  void pop_back() {
493    assert(!empty() && "pop_back() on empty list!");
494    iterator t = end(); erase(--t);
495  }
496
497  // Special forms of insert...
498  template<class InIt> void insert(iterator where, InIt first, InIt last) {
499    for (; first != last; ++first) insert(where, *first);
500  }
501
502  // Splice members - defined in terms of transfer...
503  void splice(iterator where, iplist &L2) {
504    if (!L2.empty())
505      transfer(where, L2, L2.begin(), L2.end());
506  }
507  void splice(iterator where, iplist &L2, iterator first) {
508    iterator last = first; ++last;
509    if (where == first || where == last) return; // No change
510    transfer(where, L2, first, last);
511  }
512  void splice(iterator where, iplist &L2, iterator first, iterator last) {
513    if (first != last) transfer(where, L2, first, last);
514  }
515
516
517
518  //===----------------------------------------------------------------------===
519  // High-Level Functionality that shouldn't really be here, but is part of list
520  //
521
522  // These two functions are actually called remove/remove_if in list<>, but
523  // they actually do the job of erase, rename them accordingly.
524  //
525  void erase(const NodeTy &val) {
526    for (iterator I = begin(), E = end(); I != E; ) {
527      iterator next = I; ++next;
528      if (*I == val) erase(I);
529      I = next;
530    }
531  }
532  template<class Pr1> void erase_if(Pr1 pred) {
533    for (iterator I = begin(), E = end(); I != E; ) {
534      iterator next = I; ++next;
535      if (pred(*I)) erase(I);
536      I = next;
537    }
538  }
539
540  template<class Pr2> void unique(Pr2 pred) {
541    if (empty()) return;
542    for (iterator I = begin(), E = end(), Next = begin(); ++Next != E;) {
543      if (pred(*I))
544        erase(Next);
545      else
546        I = Next;
547      Next = I;
548    }
549  }
550  void unique() { unique(op_equal); }
551
552  template<class Pr3> void merge(iplist &right, Pr3 pred) {
553    iterator first1 = begin(), last1 = end();
554    iterator first2 = right.begin(), last2 = right.end();
555    while (first1 != last1 && first2 != last2)
556      if (pred(*first2, *first1)) {
557        iterator next = first2;
558        transfer(first1, right, first2, ++next);
559        first2 = next;
560      } else {
561        ++first1;
562      }
563    if (first2 != last2) transfer(last1, right, first2, last2);
564  }
565  void merge(iplist &right) { return merge(right, op_less); }
566
567  template<class Pr3> void sort(Pr3 pred);
568  void sort() { sort(op_less); }
569  void reverse();
570};
571
572
573template<typename NodeTy>
574struct ilist : public iplist<NodeTy> {
575  typedef typename iplist<NodeTy>::size_type size_type;
576  typedef typename iplist<NodeTy>::iterator iterator;
577
578  ilist() {}
579  ilist(const ilist &right) {
580    insert(this->begin(), right.begin(), right.end());
581  }
582  explicit ilist(size_type count) {
583    insert(this->begin(), count, NodeTy());
584  }
585  ilist(size_type count, const NodeTy &val) {
586    insert(this->begin(), count, val);
587  }
588  template<class InIt> ilist(InIt first, InIt last) {
589    insert(this->begin(), first, last);
590  }
591
592
593  // Forwarding functions: A workaround for GCC 2.95 which does not correctly
594  // support 'using' declarations to bring a hidden member into scope.
595  //
596  iterator insert(iterator a, NodeTy *b){ return iplist<NodeTy>::insert(a, b); }
597  void push_front(NodeTy *a) { iplist<NodeTy>::push_front(a); }
598  void push_back(NodeTy *a)  { iplist<NodeTy>::push_back(a); }
599
600
601  // Main implementation here - Insert for a node passed by value...
602  iterator insert(iterator where, const NodeTy &val) {
603    return insert(where, createNode(val));
604  }
605
606
607  // Front and back inserters...
608  void push_front(const NodeTy &val) { insert(this->begin(), val); }
609  void push_back(const NodeTy &val) { insert(this->end(), val); }
610
611  // Special forms of insert...
612  template<class InIt> void insert(iterator where, InIt first, InIt last) {
613    for (; first != last; ++first) insert(where, *first);
614  }
615  void insert(iterator where, size_type count, const NodeTy &val) {
616    for (; count != 0; --count) insert(where, val);
617  }
618
619  // Assign special forms...
620  void assign(size_type count, const NodeTy &val) {
621    iterator I = this->begin();
622    for (; I != this->end() && count != 0; ++I, --count)
623      *I = val;
624    if (count != 0)
625      insert(this->end(), val, val);
626    else
627      erase(I, this->end());
628  }
629  template<class InIt> void assign(InIt first1, InIt last1) {
630    iterator first2 = this->begin(), last2 = this->end();
631    for ( ; first1 != last1 && first2 != last2; ++first1, ++first2)
632      *first1 = *first2;
633    if (first2 == last2)
634      erase(first1, last1);
635    else
636      insert(last1, first2, last2);
637  }
638
639
640  // Resize members...
641  void resize(size_type newsize, NodeTy val) {
642    iterator i = this->begin();
643    size_type len = 0;
644    for ( ; i != this->end() && len < newsize; ++i, ++len) /* empty*/ ;
645
646    if (len == newsize)
647      erase(i, this->end());
648    else                                          // i == end()
649      insert(this->end(), newsize - len, val);
650  }
651  void resize(size_type newsize) { resize(newsize, NodeTy()); }
652};
653
654} // End llvm namespace
655
656namespace std {
657  // Ensure that swap uses the fast list swap...
658  template<class Ty>
659  void swap(llvm::iplist<Ty> &Left, llvm::iplist<Ty> &Right) {
660    Left.swap(Right);
661  }
662}  // End 'std' extensions...
663
664#endif // LLVM_ADT_ILIST_H
665