AliasAnalysis.h revision 3da848bbda62b25c12335998aaa44ab361f0bf15
1//===- llvm/Analysis/AliasAnalysis.h - Alias Analysis Interface -*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the generic AliasAnalysis interface, which is used as the
11// common interface used by all clients of alias analysis information, and
12// implemented by all alias analysis implementations.  Mod/Ref information is
13// also captured by this interface.
14//
15// Implementations of this interface must implement the various virtual methods,
16// which automatically provides functionality for the entire suite of client
17// APIs.
18//
19// This API represents memory as a (Pointer, Size) pair.  The Pointer component
20// specifies the base memory address of the region, the Size specifies how large
21// of an area is being queried, or UnknownSize if the size is not known.
22// Pointers that point to two completely different objects in memory never
23// alias, regardless of the value of the Size component.
24//
25//===----------------------------------------------------------------------===//
26
27#ifndef LLVM_ANALYSIS_ALIAS_ANALYSIS_H
28#define LLVM_ANALYSIS_ALIAS_ANALYSIS_H
29
30#include "llvm/Support/CallSite.h"
31#include "llvm/System/IncludeFile.h"
32#include <vector>
33
34namespace llvm {
35
36class LoadInst;
37class StoreInst;
38class VAArgInst;
39class TargetData;
40class Pass;
41class AnalysisUsage;
42
43class AliasAnalysis {
44protected:
45  const TargetData *TD;
46
47private:
48  AliasAnalysis *AA;       // Previous Alias Analysis to chain to.
49
50protected:
51  /// InitializeAliasAnalysis - Subclasses must call this method to initialize
52  /// the AliasAnalysis interface before any other methods are called.  This is
53  /// typically called by the run* methods of these subclasses.  This may be
54  /// called multiple times.
55  ///
56  void InitializeAliasAnalysis(Pass *P);
57
58  /// getAnalysisUsage - All alias analysis implementations should invoke this
59  /// directly (using AliasAnalysis::getAnalysisUsage(AU)).
60  virtual void getAnalysisUsage(AnalysisUsage &AU) const;
61
62public:
63  static char ID; // Class identification, replacement for typeinfo
64  AliasAnalysis() : TD(0), AA(0) {}
65  virtual ~AliasAnalysis();  // We want to be subclassed
66
67  /// UnknownSize - This is a special value which can be used with the
68  /// size arguments in alias queries to indicate that the caller does not
69  /// know the sizes of the potential memory references.
70  static uint64_t const UnknownSize = ~UINT64_C(0);
71
72  /// getTargetData - Return a pointer to the current TargetData object, or
73  /// null if no TargetData object is available.
74  ///
75  const TargetData *getTargetData() const { return TD; }
76
77  /// getTypeStoreSize - Return the TargetData store size for the given type,
78  /// if known, or a conservative value otherwise.
79  ///
80  uint64_t getTypeStoreSize(const Type *Ty);
81
82  //===--------------------------------------------------------------------===//
83  /// Alias Queries...
84  ///
85
86  /// Location - A description of a memory location.
87  struct Location {
88    /// Ptr - The address of the start of the location.
89    const Value *Ptr;
90    /// Size - The size of the location.
91    uint64_t Size;
92    /// TBAATag - The metadata node which describes the TBAA type of
93    /// the location, or null if there is no (unique) tag.
94    const MDNode *TBAATag;
95
96    explicit Location(const Value *P = 0,
97                      uint64_t S = UnknownSize,
98                      const MDNode *N = 0)
99      : Ptr(P), Size(S), TBAATag(N) {}
100
101    Location getWithNewPtr(const Value *NewPtr) const {
102      Location Copy(*this);
103      Copy.Ptr = NewPtr;
104      return Copy;
105    }
106
107    Location getWithoutTBAATag() const {
108      Location Copy(*this);
109      Copy.TBAATag = 0;
110      return Copy;
111    }
112  };
113
114  /// Alias analysis result - Either we know for sure that it does not alias, we
115  /// know for sure it must alias, or we don't know anything: The two pointers
116  /// _might_ alias.  This enum is designed so you can do things like:
117  ///     if (AA.alias(P1, P2)) { ... }
118  /// to check to see if two pointers might alias.
119  ///
120  /// See docs/AliasAnalysis.html for more information on the specific meanings
121  /// of these values.
122  ///
123  enum AliasResult { NoAlias = 0, MayAlias = 1, MustAlias = 2 };
124
125  /// alias - The main low level interface to the alias analysis implementation.
126  /// Returns a Result indicating whether the two pointers are aliased to each
127  /// other.  This is the interface that must be implemented by specific alias
128  /// analysis implementations.
129  virtual AliasResult alias(const Location &LocA, const Location &LocB);
130
131  /// alias - A convenience wrapper.
132  AliasResult alias(const Value *V1, uint64_t V1Size,
133                    const Value *V2, uint64_t V2Size) {
134    return alias(Location(V1, V1Size), Location(V2, V2Size));
135  }
136
137  /// alias - A convenience wrapper.
138  AliasResult alias(const Value *V1, const Value *V2) {
139    return alias(V1, UnknownSize, V2, UnknownSize);
140  }
141
142  /// isNoAlias - A trivial helper function to check to see if the specified
143  /// pointers are no-alias.
144  bool isNoAlias(const Location &LocA, const Location &LocB) {
145    return alias(LocA, LocB) == NoAlias;
146  }
147
148  /// isNoAlias - A convenience wrapper.
149  bool isNoAlias(const Value *V1, uint64_t V1Size,
150                 const Value *V2, uint64_t V2Size) {
151    return isNoAlias(Location(V1, V1Size), Location(V2, V2Size));
152  }
153
154  /// pointsToConstantMemory - If the specified memory location is known to be
155  /// constant, return true.  This allows disambiguation of store
156  /// instructions from constant pointers.
157  ///
158  virtual bool pointsToConstantMemory(const Location &Loc);
159
160  /// pointsToConstantMemory - A convenient wrapper.
161  bool pointsToConstantMemory(const Value *P) {
162    return pointsToConstantMemory(Location(P));
163  }
164
165  //===--------------------------------------------------------------------===//
166  /// Simple mod/ref information...
167  ///
168
169  /// ModRefResult - Represent the result of a mod/ref query.  Mod and Ref are
170  /// bits which may be or'd together.
171  ///
172  enum ModRefResult { NoModRef = 0, Ref = 1, Mod = 2, ModRef = 3 };
173
174
175  /// ModRefBehavior - Summary of how a function affects memory in the program.
176  /// Loads from constant globals are not considered memory accesses for this
177  /// interface.  Also, functions may freely modify stack space local to their
178  /// invocation without having to report it through these interfaces.
179  enum ModRefBehavior {
180    // DoesNotAccessMemory - This function does not perform any non-local loads
181    // or stores to memory.
182    //
183    // This property corresponds to the GCC 'const' attribute.
184    DoesNotAccessMemory,
185
186    // AccessesArguments - This function accesses function arguments in well
187    // known (possibly volatile) ways, but does not access any other memory.
188    AccessesArguments,
189
190    // AccessesArgumentsAndGlobals - This function has accesses function
191    // arguments and global variables well known (possibly volatile) ways, but
192    // does not access any other memory.
193    AccessesArgumentsAndGlobals,
194
195    // OnlyReadsMemory - This function does not perform any non-local stores or
196    // volatile loads, but may read from any memory location.
197    //
198    // This property corresponds to the GCC 'pure' attribute.
199    OnlyReadsMemory,
200
201    // UnknownModRefBehavior - This indicates that the function could not be
202    // classified into one of the behaviors above.
203    UnknownModRefBehavior
204  };
205
206  /// getModRefBehavior - Return the behavior when calling the given call site.
207  virtual ModRefBehavior getModRefBehavior(ImmutableCallSite CS);
208
209  /// getModRefBehavior - Return the behavior when calling the given function.
210  /// For use when the call site is not known.
211  virtual ModRefBehavior getModRefBehavior(const Function *F);
212
213  /// getIntrinsicModRefBehavior - Return the modref behavior of the intrinsic
214  /// with the given id.  Most clients won't need this, because the regular
215  /// getModRefBehavior incorporates this information.
216  static ModRefBehavior getIntrinsicModRefBehavior(unsigned iid);
217
218  /// doesNotAccessMemory - If the specified call is known to never read or
219  /// write memory, return true.  If the call only reads from known-constant
220  /// memory, it is also legal to return true.  Calls that unwind the stack
221  /// are legal for this predicate.
222  ///
223  /// Many optimizations (such as CSE and LICM) can be performed on such calls
224  /// without worrying about aliasing properties, and many calls have this
225  /// property (e.g. calls to 'sin' and 'cos').
226  ///
227  /// This property corresponds to the GCC 'const' attribute.
228  ///
229  bool doesNotAccessMemory(ImmutableCallSite CS) {
230    return getModRefBehavior(CS) == DoesNotAccessMemory;
231  }
232
233  /// doesNotAccessMemory - If the specified function is known to never read or
234  /// write memory, return true.  For use when the call site is not known.
235  ///
236  bool doesNotAccessMemory(const Function *F) {
237    return getModRefBehavior(F) == DoesNotAccessMemory;
238  }
239
240  /// onlyReadsMemory - If the specified call is known to only read from
241  /// non-volatile memory (or not access memory at all), return true.  Calls
242  /// that unwind the stack are legal for this predicate.
243  ///
244  /// This property allows many common optimizations to be performed in the
245  /// absence of interfering store instructions, such as CSE of strlen calls.
246  ///
247  /// This property corresponds to the GCC 'pure' attribute.
248  ///
249  bool onlyReadsMemory(ImmutableCallSite CS) {
250    ModRefBehavior MRB = getModRefBehavior(CS);
251    return MRB == DoesNotAccessMemory || MRB == OnlyReadsMemory;
252  }
253
254  /// onlyReadsMemory - If the specified function is known to only read from
255  /// non-volatile memory (or not access memory at all), return true.  For use
256  /// when the call site is not known.
257  ///
258  bool onlyReadsMemory(const Function *F) {
259    ModRefBehavior MRB = getModRefBehavior(F);
260    return MRB == DoesNotAccessMemory || MRB == OnlyReadsMemory;
261  }
262
263
264  /// getModRefInfo - Return information about whether or not an instruction may
265  /// read or write the specified memory location.  An instruction
266  /// that doesn't read or write memory may be trivially LICM'd for example.
267  ModRefResult getModRefInfo(const Instruction *I,
268                             const Location &Loc) {
269    switch (I->getOpcode()) {
270    case Instruction::VAArg:  return getModRefInfo((const VAArgInst*)I, Loc);
271    case Instruction::Load:   return getModRefInfo((const LoadInst*)I,  Loc);
272    case Instruction::Store:  return getModRefInfo((const StoreInst*)I, Loc);
273    case Instruction::Call:   return getModRefInfo((const CallInst*)I,  Loc);
274    case Instruction::Invoke: return getModRefInfo((const InvokeInst*)I,Loc);
275    default:                  return NoModRef;
276    }
277  }
278
279  /// getModRefInfo - A convenience wrapper.
280  ModRefResult getModRefInfo(const Instruction *I,
281                             const Value *P, uint64_t Size) {
282    return getModRefInfo(I, Location(P, Size));
283  }
284
285  /// getModRefInfo (for call sites) - Return whether information about whether
286  /// a particular call site modifies or reads the specified memory location.
287  virtual ModRefResult getModRefInfo(ImmutableCallSite CS,
288                                     const Location &Loc);
289
290  /// getModRefInfo (for call sites) - A convenience wrapper.
291  ModRefResult getModRefInfo(ImmutableCallSite CS,
292                             const Value *P, uint64_t Size) {
293    return getModRefInfo(CS, Location(P, Size));
294  }
295
296  /// getModRefInfo (for calls) - Return whether information about whether
297  /// a particular call modifies or reads the specified memory location.
298  ModRefResult getModRefInfo(const CallInst *C, const Location &Loc) {
299    return getModRefInfo(ImmutableCallSite(C), Loc);
300  }
301
302  /// getModRefInfo (for calls) - A convenience wrapper.
303  ModRefResult getModRefInfo(const CallInst *C, const Value *P, uint64_t Size) {
304    return getModRefInfo(C, Location(P, Size));
305  }
306
307  /// getModRefInfo (for invokes) - Return whether information about whether
308  /// a particular invoke modifies or reads the specified memory location.
309  ModRefResult getModRefInfo(const InvokeInst *I,
310                             const Location &Loc) {
311    return getModRefInfo(ImmutableCallSite(I), Loc);
312  }
313
314  /// getModRefInfo (for invokes) - A convenience wrapper.
315  ModRefResult getModRefInfo(const InvokeInst *I,
316                             const Value *P, uint64_t Size) {
317    return getModRefInfo(I, Location(P, Size));
318  }
319
320  /// getModRefInfo (for loads) - Return whether information about whether
321  /// a particular load modifies or reads the specified memory location.
322  ModRefResult getModRefInfo(const LoadInst *L, const Location &Loc);
323
324  /// getModRefInfo (for loads) - A convenience wrapper.
325  ModRefResult getModRefInfo(const LoadInst *L, const Value *P, uint64_t Size) {
326    return getModRefInfo(L, Location(P, Size));
327  }
328
329  /// getModRefInfo (for stores) - Return whether information about whether
330  /// a particular store modifies or reads the specified memory location.
331  ModRefResult getModRefInfo(const StoreInst *S, const Location &Loc);
332
333  /// getModRefInfo (for stores) - A convenience wrapper.
334  ModRefResult getModRefInfo(const StoreInst *S, const Value *P, uint64_t Size) {
335    return getModRefInfo(S, Location(P, Size));
336  }
337
338  /// getModRefInfo (for va_args) - Return whether information about whether
339  /// a particular va_arg modifies or reads the specified memory location.
340  ModRefResult getModRefInfo(const VAArgInst* I, const Location &Loc);
341
342  /// getModRefInfo (for va_args) - A convenience wrapper.
343  ModRefResult getModRefInfo(const VAArgInst* I, const Value* P, uint64_t Size) {
344    return getModRefInfo(I, Location(P, Size));
345  }
346
347  /// getModRefInfo - Return information about whether two call sites may refer
348  /// to the same set of memory locations.  See
349  ///   http://llvm.org/docs/AliasAnalysis.html#ModRefInfo
350  /// for details.
351  virtual ModRefResult getModRefInfo(ImmutableCallSite CS1,
352                                     ImmutableCallSite CS2);
353
354  //===--------------------------------------------------------------------===//
355  /// Higher level methods for querying mod/ref information.
356  ///
357
358  /// canBasicBlockModify - Return true if it is possible for execution of the
359  /// specified basic block to modify the value pointed to by Ptr.
360  bool canBasicBlockModify(const BasicBlock &BB, const Location &Loc);
361
362  /// canBasicBlockModify - A convenience wrapper.
363  bool canBasicBlockModify(const BasicBlock &BB, const Value *P, uint64_t Size){
364    return canBasicBlockModify(BB, Location(P, Size));
365  }
366
367  /// canInstructionRangeModify - Return true if it is possible for the
368  /// execution of the specified instructions to modify the value pointed to by
369  /// Ptr.  The instructions to consider are all of the instructions in the
370  /// range of [I1,I2] INCLUSIVE.  I1 and I2 must be in the same basic block.
371  bool canInstructionRangeModify(const Instruction &I1, const Instruction &I2,
372                                 const Location &Loc);
373
374  /// canInstructionRangeModify - A convenience wrapper.
375  bool canInstructionRangeModify(const Instruction &I1, const Instruction &I2,
376                                 const Value *Ptr, uint64_t Size) {
377    return canInstructionRangeModify(I1, I2, Location(Ptr, Size));
378  }
379
380  //===--------------------------------------------------------------------===//
381  /// Methods that clients should call when they transform the program to allow
382  /// alias analyses to update their internal data structures.  Note that these
383  /// methods may be called on any instruction, regardless of whether or not
384  /// they have pointer-analysis implications.
385  ///
386
387  /// deleteValue - This method should be called whenever an LLVM Value is
388  /// deleted from the program, for example when an instruction is found to be
389  /// redundant and is eliminated.
390  ///
391  virtual void deleteValue(Value *V);
392
393  /// copyValue - This method should be used whenever a preexisting value in the
394  /// program is copied or cloned, introducing a new value.  Note that analysis
395  /// implementations should tolerate clients that use this method to introduce
396  /// the same value multiple times: if the analysis already knows about a
397  /// value, it should ignore the request.
398  ///
399  virtual void copyValue(Value *From, Value *To);
400
401  /// replaceWithNewValue - This method is the obvious combination of the two
402  /// above, and it provided as a helper to simplify client code.
403  ///
404  void replaceWithNewValue(Value *Old, Value *New) {
405    copyValue(Old, New);
406    deleteValue(Old);
407  }
408};
409
410/// isNoAliasCall - Return true if this pointer is returned by a noalias
411/// function.
412bool isNoAliasCall(const Value *V);
413
414/// isIdentifiedObject - Return true if this pointer refers to a distinct and
415/// identifiable object.  This returns true for:
416///    Global Variables and Functions (but not Global Aliases)
417///    Allocas and Mallocs
418///    ByVal and NoAlias Arguments
419///    NoAlias returns
420///
421bool isIdentifiedObject(const Value *V);
422
423} // End llvm namespace
424
425// Because of the way .a files work, we must force the BasicAA implementation to
426// be pulled in if the AliasAnalysis header is included.  Otherwise we run
427// the risk of AliasAnalysis being used, but the default implementation not
428// being linked into the tool that uses it.
429FORCE_DEFINING_FILE_TO_BE_LINKED(AliasAnalysis)
430FORCE_DEFINING_FILE_TO_BE_LINKED(BasicAliasAnalysis)
431
432#endif
433