AliasAnalysis.h revision 56169787dbfb6d0b422ef114889b481e977b8996
1//===- llvm/Analysis/AliasAnalysis.h - Alias Analysis Interface -*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the generic AliasAnalysis interface, which is used as the
11// common interface used by all clients of alias analysis information, and
12// implemented by all alias analysis implementations.  Mod/Ref information is
13// also captured by this interface.
14//
15// Implementations of this interface must implement the various virtual methods,
16// which automatically provides functionality for the entire suite of client
17// APIs.
18//
19// This API identifies memory regions with the Location class. The pointer
20// component specifies the base memory address of the region. The Size specifies
21// the maximum size (in address units) of the memory region, or UnknownSize if
22// the size is not known. The TBAA tag identifies the "type" of the memory
23// reference; see the TypeBasedAliasAnalysis class for details.
24//
25// Some non-obvious details include:
26//  - Pointers that point to two completely different objects in memory never
27//    alias, regardless of the value of the Size component.
28//  - NoAlias doesn't imply inequal pointers. The most obvious example of this
29//    is two pointers to constant memory. Even if they are equal, constant
30//    memory is never stored to, so there will never be any dependencies.
31//    In this and other situations, the pointers may be both NoAlias and
32//    MustAlias at the same time. The current API can only return one result,
33//    though this is rarely a problem in practice.
34//
35//===----------------------------------------------------------------------===//
36
37#ifndef LLVM_ANALYSIS_ALIAS_ANALYSIS_H
38#define LLVM_ANALYSIS_ALIAS_ANALYSIS_H
39
40#include "llvm/Support/CallSite.h"
41#include "llvm/ADT/DenseMap.h"
42
43namespace llvm {
44
45class LoadInst;
46class StoreInst;
47class VAArgInst;
48class TargetData;
49class Pass;
50class AnalysisUsage;
51class MemTransferInst;
52class MemIntrinsic;
53
54class AliasAnalysis {
55protected:
56  const TargetData *TD;
57
58private:
59  AliasAnalysis *AA;       // Previous Alias Analysis to chain to.
60
61protected:
62  /// InitializeAliasAnalysis - Subclasses must call this method to initialize
63  /// the AliasAnalysis interface before any other methods are called.  This is
64  /// typically called by the run* methods of these subclasses.  This may be
65  /// called multiple times.
66  ///
67  void InitializeAliasAnalysis(Pass *P);
68
69  /// getAnalysisUsage - All alias analysis implementations should invoke this
70  /// directly (using AliasAnalysis::getAnalysisUsage(AU)).
71  virtual void getAnalysisUsage(AnalysisUsage &AU) const;
72
73public:
74  static char ID; // Class identification, replacement for typeinfo
75  AliasAnalysis() : TD(0), AA(0) {}
76  virtual ~AliasAnalysis();  // We want to be subclassed
77
78  /// UnknownSize - This is a special value which can be used with the
79  /// size arguments in alias queries to indicate that the caller does not
80  /// know the sizes of the potential memory references.
81  static uint64_t const UnknownSize = ~UINT64_C(0);
82
83  /// getTargetData - Return a pointer to the current TargetData object, or
84  /// null if no TargetData object is available.
85  ///
86  const TargetData *getTargetData() const { return TD; }
87
88  /// getTypeStoreSize - Return the TargetData store size for the given type,
89  /// if known, or a conservative value otherwise.
90  ///
91  uint64_t getTypeStoreSize(Type *Ty);
92
93  //===--------------------------------------------------------------------===//
94  /// Alias Queries...
95  ///
96
97  /// Location - A description of a memory location.
98  struct Location {
99    /// Ptr - The address of the start of the location.
100    const Value *Ptr;
101    /// Size - The maximum size of the location, in address-units, or
102    /// UnknownSize if the size is not known.  Note that an unknown size does
103    /// not mean the pointer aliases the entire virtual address space, because
104    /// there are restrictions on stepping out of one object and into another.
105    /// See http://llvm.org/docs/LangRef.html#pointeraliasing
106    uint64_t Size;
107    /// TBAATag - The metadata node which describes the TBAA type of
108    /// the location, or null if there is no known unique tag.
109    const MDNode *TBAATag;
110
111    explicit Location(const Value *P = 0, uint64_t S = UnknownSize,
112                      const MDNode *N = 0)
113      : Ptr(P), Size(S), TBAATag(N) {}
114
115    Location getWithNewPtr(const Value *NewPtr) const {
116      Location Copy(*this);
117      Copy.Ptr = NewPtr;
118      return Copy;
119    }
120
121    Location getWithNewSize(uint64_t NewSize) const {
122      Location Copy(*this);
123      Copy.Size = NewSize;
124      return Copy;
125    }
126
127    Location getWithoutTBAATag() const {
128      Location Copy(*this);
129      Copy.TBAATag = 0;
130      return Copy;
131    }
132  };
133
134  /// getLocation - Fill in Loc with information about the memory reference by
135  /// the given instruction.
136  Location getLocation(const LoadInst *LI);
137  Location getLocation(const StoreInst *SI);
138  Location getLocation(const VAArgInst *VI);
139  Location getLocation(const AtomicCmpXchgInst *CXI);
140  Location getLocation(const AtomicRMWInst *RMWI);
141  static Location getLocationForSource(const MemTransferInst *MTI);
142  static Location getLocationForDest(const MemIntrinsic *MI);
143
144  /// Alias analysis result - Either we know for sure that it does not alias, we
145  /// know for sure it must alias, or we don't know anything: The two pointers
146  /// _might_ alias.  This enum is designed so you can do things like:
147  ///     if (AA.alias(P1, P2)) { ... }
148  /// to check to see if two pointers might alias.
149  ///
150  /// See docs/AliasAnalysis.html for more information on the specific meanings
151  /// of these values.
152  ///
153  enum AliasResult {
154    NoAlias = 0,        ///< No dependencies.
155    MayAlias,           ///< Anything goes.
156    PartialAlias,       ///< Pointers differ, but pointees overlap.
157    MustAlias           ///< Pointers are equal.
158  };
159
160  /// alias - The main low level interface to the alias analysis implementation.
161  /// Returns an AliasResult indicating whether the two pointers are aliased to
162  /// each other.  This is the interface that must be implemented by specific
163  /// alias analysis implementations.
164  virtual AliasResult alias(const Location &LocA, const Location &LocB);
165
166  /// alias - A convenience wrapper.
167  AliasResult alias(const Value *V1, uint64_t V1Size,
168                    const Value *V2, uint64_t V2Size) {
169    return alias(Location(V1, V1Size), Location(V2, V2Size));
170  }
171
172  /// alias - A convenience wrapper.
173  AliasResult alias(const Value *V1, const Value *V2) {
174    return alias(V1, UnknownSize, V2, UnknownSize);
175  }
176
177  /// isNoAlias - A trivial helper function to check to see if the specified
178  /// pointers are no-alias.
179  bool isNoAlias(const Location &LocA, const Location &LocB) {
180    return alias(LocA, LocB) == NoAlias;
181  }
182
183  /// isNoAlias - A convenience wrapper.
184  bool isNoAlias(const Value *V1, uint64_t V1Size,
185                 const Value *V2, uint64_t V2Size) {
186    return isNoAlias(Location(V1, V1Size), Location(V2, V2Size));
187  }
188
189  /// isMustAlias - A convenience wrapper.
190  bool isMustAlias(const Location &LocA, const Location &LocB) {
191    return alias(LocA, LocB) == MustAlias;
192  }
193
194  /// isMustAlias - A convenience wrapper.
195  bool isMustAlias(const Value *V1, const Value *V2) {
196    return alias(V1, 1, V2, 1) == MustAlias;
197  }
198
199  /// pointsToConstantMemory - If the specified memory location is
200  /// known to be constant, return true. If OrLocal is true and the
201  /// specified memory location is known to be "local" (derived from
202  /// an alloca), return true. Otherwise return false.
203  virtual bool pointsToConstantMemory(const Location &Loc,
204                                      bool OrLocal = false);
205
206  /// pointsToConstantMemory - A convenient wrapper.
207  bool pointsToConstantMemory(const Value *P, bool OrLocal = false) {
208    return pointsToConstantMemory(Location(P), OrLocal);
209  }
210
211  //===--------------------------------------------------------------------===//
212  /// Simple mod/ref information...
213  ///
214
215  /// ModRefResult - Represent the result of a mod/ref query.  Mod and Ref are
216  /// bits which may be or'd together.
217  ///
218  enum ModRefResult { NoModRef = 0, Ref = 1, Mod = 2, ModRef = 3 };
219
220  /// These values define additional bits used to define the
221  /// ModRefBehavior values.
222  enum { Nowhere = 0, ArgumentPointees = 4, Anywhere = 8 | ArgumentPointees };
223
224  /// ModRefBehavior - Summary of how a function affects memory in the program.
225  /// Loads from constant globals are not considered memory accesses for this
226  /// interface.  Also, functions may freely modify stack space local to their
227  /// invocation without having to report it through these interfaces.
228  enum ModRefBehavior {
229    /// DoesNotAccessMemory - This function does not perform any non-local loads
230    /// or stores to memory.
231    ///
232    /// This property corresponds to the GCC 'const' attribute.
233    /// This property corresponds to the LLVM IR 'readnone' attribute.
234    /// This property corresponds to the IntrNoMem LLVM intrinsic flag.
235    DoesNotAccessMemory = Nowhere | NoModRef,
236
237    /// OnlyReadsArgumentPointees - The only memory references in this function
238    /// (if it has any) are non-volatile loads from objects pointed to by its
239    /// pointer-typed arguments, with arbitrary offsets.
240    ///
241    /// This property corresponds to the IntrReadArgMem LLVM intrinsic flag.
242    OnlyReadsArgumentPointees = ArgumentPointees | Ref,
243
244    /// OnlyAccessesArgumentPointees - The only memory references in this
245    /// function (if it has any) are non-volatile loads and stores from objects
246    /// pointed to by its pointer-typed arguments, with arbitrary offsets.
247    ///
248    /// This property corresponds to the IntrReadWriteArgMem LLVM intrinsic flag.
249    OnlyAccessesArgumentPointees = ArgumentPointees | ModRef,
250
251    /// OnlyReadsMemory - This function does not perform any non-local stores or
252    /// volatile loads, but may read from any memory location.
253    ///
254    /// This property corresponds to the GCC 'pure' attribute.
255    /// This property corresponds to the LLVM IR 'readonly' attribute.
256    /// This property corresponds to the IntrReadMem LLVM intrinsic flag.
257    OnlyReadsMemory = Anywhere | Ref,
258
259    /// UnknownModRefBehavior - This indicates that the function could not be
260    /// classified into one of the behaviors above.
261    UnknownModRefBehavior = Anywhere | ModRef
262  };
263
264  /// getModRefBehavior - Return the behavior when calling the given call site.
265  virtual ModRefBehavior getModRefBehavior(ImmutableCallSite CS);
266
267  /// getModRefBehavior - Return the behavior when calling the given function.
268  /// For use when the call site is not known.
269  virtual ModRefBehavior getModRefBehavior(const Function *F);
270
271  /// doesNotAccessMemory - If the specified call is known to never read or
272  /// write memory, return true.  If the call only reads from known-constant
273  /// memory, it is also legal to return true.  Calls that unwind the stack
274  /// are legal for this predicate.
275  ///
276  /// Many optimizations (such as CSE and LICM) can be performed on such calls
277  /// without worrying about aliasing properties, and many calls have this
278  /// property (e.g. calls to 'sin' and 'cos').
279  ///
280  /// This property corresponds to the GCC 'const' attribute.
281  ///
282  bool doesNotAccessMemory(ImmutableCallSite CS) {
283    return getModRefBehavior(CS) == DoesNotAccessMemory;
284  }
285
286  /// doesNotAccessMemory - If the specified function is known to never read or
287  /// write memory, return true.  For use when the call site is not known.
288  ///
289  bool doesNotAccessMemory(const Function *F) {
290    return getModRefBehavior(F) == DoesNotAccessMemory;
291  }
292
293  /// onlyReadsMemory - If the specified call is known to only read from
294  /// non-volatile memory (or not access memory at all), return true.  Calls
295  /// that unwind the stack are legal for this predicate.
296  ///
297  /// This property allows many common optimizations to be performed in the
298  /// absence of interfering store instructions, such as CSE of strlen calls.
299  ///
300  /// This property corresponds to the GCC 'pure' attribute.
301  ///
302  bool onlyReadsMemory(ImmutableCallSite CS) {
303    return onlyReadsMemory(getModRefBehavior(CS));
304  }
305
306  /// onlyReadsMemory - If the specified function is known to only read from
307  /// non-volatile memory (or not access memory at all), return true.  For use
308  /// when the call site is not known.
309  ///
310  bool onlyReadsMemory(const Function *F) {
311    return onlyReadsMemory(getModRefBehavior(F));
312  }
313
314  /// onlyReadsMemory - Return true if functions with the specified behavior are
315  /// known to only read from non-volatile memory (or not access memory at all).
316  ///
317  static bool onlyReadsMemory(ModRefBehavior MRB) {
318    return !(MRB & Mod);
319  }
320
321  /// onlyAccessesArgPointees - Return true if functions with the specified
322  /// behavior are known to read and write at most from objects pointed to by
323  /// their pointer-typed arguments (with arbitrary offsets).
324  ///
325  static bool onlyAccessesArgPointees(ModRefBehavior MRB) {
326    return !(MRB & Anywhere & ~ArgumentPointees);
327  }
328
329  /// doesAccessArgPointees - Return true if functions with the specified
330  /// behavior are known to potentially read or write from objects pointed
331  /// to be their pointer-typed arguments (with arbitrary offsets).
332  ///
333  static bool doesAccessArgPointees(ModRefBehavior MRB) {
334    return (MRB & ModRef) && (MRB & ArgumentPointees);
335  }
336
337  /// getModRefInfo - Return information about whether or not an instruction may
338  /// read or write the specified memory location.  An instruction
339  /// that doesn't read or write memory may be trivially LICM'd for example.
340  ModRefResult getModRefInfo(const Instruction *I,
341                             const Location &Loc) {
342    switch (I->getOpcode()) {
343    case Instruction::VAArg:  return getModRefInfo((const VAArgInst*)I, Loc);
344    case Instruction::Load:   return getModRefInfo((const LoadInst*)I,  Loc);
345    case Instruction::Store:  return getModRefInfo((const StoreInst*)I, Loc);
346    case Instruction::Fence:  return getModRefInfo((const FenceInst*)I, Loc);
347    case Instruction::AtomicCmpXchg:
348      return getModRefInfo((const AtomicCmpXchgInst*)I, Loc);
349    case Instruction::AtomicRMW:
350      return getModRefInfo((const AtomicRMWInst*)I, Loc);
351    case Instruction::Call:   return getModRefInfo((const CallInst*)I,  Loc);
352    case Instruction::Invoke: return getModRefInfo((const InvokeInst*)I,Loc);
353    default:                  return NoModRef;
354    }
355  }
356
357  /// getModRefInfo - A convenience wrapper.
358  ModRefResult getModRefInfo(const Instruction *I,
359                             const Value *P, uint64_t Size) {
360    return getModRefInfo(I, Location(P, Size));
361  }
362
363  /// getModRefInfo (for call sites) - Return whether information about whether
364  /// a particular call site modifies or reads the specified memory location.
365  virtual ModRefResult getModRefInfo(ImmutableCallSite CS,
366                                     const Location &Loc);
367
368  /// getModRefInfo (for call sites) - A convenience wrapper.
369  ModRefResult getModRefInfo(ImmutableCallSite CS,
370                             const Value *P, uint64_t Size) {
371    return getModRefInfo(CS, Location(P, Size));
372  }
373
374  /// getModRefInfo (for calls) - Return whether information about whether
375  /// a particular call modifies or reads the specified memory location.
376  ModRefResult getModRefInfo(const CallInst *C, const Location &Loc) {
377    return getModRefInfo(ImmutableCallSite(C), Loc);
378  }
379
380  /// getModRefInfo (for calls) - A convenience wrapper.
381  ModRefResult getModRefInfo(const CallInst *C, const Value *P, uint64_t Size) {
382    return getModRefInfo(C, Location(P, Size));
383  }
384
385  /// getModRefInfo (for invokes) - Return whether information about whether
386  /// a particular invoke modifies or reads the specified memory location.
387  ModRefResult getModRefInfo(const InvokeInst *I,
388                             const Location &Loc) {
389    return getModRefInfo(ImmutableCallSite(I), Loc);
390  }
391
392  /// getModRefInfo (for invokes) - A convenience wrapper.
393  ModRefResult getModRefInfo(const InvokeInst *I,
394                             const Value *P, uint64_t Size) {
395    return getModRefInfo(I, Location(P, Size));
396  }
397
398  /// getModRefInfo (for loads) - Return whether information about whether
399  /// a particular load modifies or reads the specified memory location.
400  ModRefResult getModRefInfo(const LoadInst *L, const Location &Loc);
401
402  /// getModRefInfo (for loads) - A convenience wrapper.
403  ModRefResult getModRefInfo(const LoadInst *L, const Value *P, uint64_t Size) {
404    return getModRefInfo(L, Location(P, Size));
405  }
406
407  /// getModRefInfo (for stores) - Return whether information about whether
408  /// a particular store modifies or reads the specified memory location.
409  ModRefResult getModRefInfo(const StoreInst *S, const Location &Loc);
410
411  /// getModRefInfo (for stores) - A convenience wrapper.
412  ModRefResult getModRefInfo(const StoreInst *S, const Value *P, uint64_t Size){
413    return getModRefInfo(S, Location(P, Size));
414  }
415
416  /// getModRefInfo (for fences) - Return whether information about whether
417  /// a particular store modifies or reads the specified memory location.
418  ModRefResult getModRefInfo(const FenceInst *S, const Location &Loc) {
419    // Conservatively correct.  (We could possibly be a bit smarter if
420    // Loc is a alloca that doesn't escape.)
421    return ModRef;
422  }
423
424  /// getModRefInfo (for fences) - A convenience wrapper.
425  ModRefResult getModRefInfo(const FenceInst *S, const Value *P, uint64_t Size){
426    return getModRefInfo(S, Location(P, Size));
427  }
428
429  /// getModRefInfo (for cmpxchges) - Return whether information about whether
430  /// a particular cmpxchg modifies or reads the specified memory location.
431  ModRefResult getModRefInfo(const AtomicCmpXchgInst *CX, const Location &Loc);
432
433  /// getModRefInfo (for cmpxchges) - A convenience wrapper.
434  ModRefResult getModRefInfo(const AtomicCmpXchgInst *CX,
435                             const Value *P, unsigned Size) {
436    return getModRefInfo(CX, Location(P, Size));
437  }
438
439  /// getModRefInfo (for atomicrmws) - Return whether information about whether
440  /// a particular atomicrmw modifies or reads the specified memory location.
441  ModRefResult getModRefInfo(const AtomicRMWInst *RMW, const Location &Loc);
442
443  /// getModRefInfo (for atomicrmws) - A convenience wrapper.
444  ModRefResult getModRefInfo(const AtomicRMWInst *RMW,
445                             const Value *P, unsigned Size) {
446    return getModRefInfo(RMW, Location(P, Size));
447  }
448
449  /// getModRefInfo (for va_args) - Return whether information about whether
450  /// a particular va_arg modifies or reads the specified memory location.
451  ModRefResult getModRefInfo(const VAArgInst* I, const Location &Loc);
452
453  /// getModRefInfo (for va_args) - A convenience wrapper.
454  ModRefResult getModRefInfo(const VAArgInst* I, const Value* P, uint64_t Size){
455    return getModRefInfo(I, Location(P, Size));
456  }
457
458  /// getModRefInfo - Return information about whether two call sites may refer
459  /// to the same set of memory locations.  See
460  ///   http://llvm.org/docs/AliasAnalysis.html#ModRefInfo
461  /// for details.
462  virtual ModRefResult getModRefInfo(ImmutableCallSite CS1,
463                                     ImmutableCallSite CS2);
464
465  //===--------------------------------------------------------------------===//
466  /// Higher level methods for querying mod/ref information.
467  ///
468
469  /// canBasicBlockModify - Return true if it is possible for execution of the
470  /// specified basic block to modify the value pointed to by Ptr.
471  bool canBasicBlockModify(const BasicBlock &BB, const Location &Loc);
472
473  /// canBasicBlockModify - A convenience wrapper.
474  bool canBasicBlockModify(const BasicBlock &BB, const Value *P, uint64_t Size){
475    return canBasicBlockModify(BB, Location(P, Size));
476  }
477
478  /// canInstructionRangeModify - Return true if it is possible for the
479  /// execution of the specified instructions to modify the value pointed to by
480  /// Ptr.  The instructions to consider are all of the instructions in the
481  /// range of [I1,I2] INCLUSIVE.  I1 and I2 must be in the same basic block.
482  bool canInstructionRangeModify(const Instruction &I1, const Instruction &I2,
483                                 const Location &Loc);
484
485  /// canInstructionRangeModify - A convenience wrapper.
486  bool canInstructionRangeModify(const Instruction &I1, const Instruction &I2,
487                                 const Value *Ptr, uint64_t Size) {
488    return canInstructionRangeModify(I1, I2, Location(Ptr, Size));
489  }
490
491  //===--------------------------------------------------------------------===//
492  /// Methods that clients should call when they transform the program to allow
493  /// alias analyses to update their internal data structures.  Note that these
494  /// methods may be called on any instruction, regardless of whether or not
495  /// they have pointer-analysis implications.
496  ///
497
498  /// deleteValue - This method should be called whenever an LLVM Value is
499  /// deleted from the program, for example when an instruction is found to be
500  /// redundant and is eliminated.
501  ///
502  virtual void deleteValue(Value *V);
503
504  /// copyValue - This method should be used whenever a preexisting value in the
505  /// program is copied or cloned, introducing a new value.  Note that analysis
506  /// implementations should tolerate clients that use this method to introduce
507  /// the same value multiple times: if the analysis already knows about a
508  /// value, it should ignore the request.
509  ///
510  virtual void copyValue(Value *From, Value *To);
511
512  /// addEscapingUse - This method should be used whenever an escaping use is
513  /// added to a pointer value.  Analysis implementations may either return
514  /// conservative responses for that value in the future, or may recompute
515  /// some or all internal state to continue providing precise responses.
516  ///
517  /// Escaping uses are considered by anything _except_ the following:
518  ///  - GEPs or bitcasts of the pointer
519  ///  - Loads through the pointer
520  ///  - Stores through (but not of) the pointer
521  virtual void addEscapingUse(Use &U);
522
523  /// replaceWithNewValue - This method is the obvious combination of the two
524  /// above, and it provided as a helper to simplify client code.
525  ///
526  void replaceWithNewValue(Value *Old, Value *New) {
527    copyValue(Old, New);
528    deleteValue(Old);
529  }
530};
531
532// Specialize DenseMapInfo for Location.
533template<>
534struct DenseMapInfo<AliasAnalysis::Location> {
535  static inline AliasAnalysis::Location getEmptyKey() {
536    return
537      AliasAnalysis::Location(DenseMapInfo<const Value *>::getEmptyKey(),
538                              0, 0);
539  }
540  static inline AliasAnalysis::Location getTombstoneKey() {
541    return
542      AliasAnalysis::Location(DenseMapInfo<const Value *>::getTombstoneKey(),
543                              0, 0);
544  }
545  static unsigned getHashValue(const AliasAnalysis::Location &Val) {
546    return DenseMapInfo<const Value *>::getHashValue(Val.Ptr) ^
547           DenseMapInfo<uint64_t>::getHashValue(Val.Size) ^
548           DenseMapInfo<const MDNode *>::getHashValue(Val.TBAATag);
549  }
550  static bool isEqual(const AliasAnalysis::Location &LHS,
551                      const AliasAnalysis::Location &RHS) {
552    return LHS.Ptr == RHS.Ptr &&
553           LHS.Size == RHS.Size &&
554           LHS.TBAATag == RHS.TBAATag;
555  }
556};
557
558/// isNoAliasCall - Return true if this pointer is returned by a noalias
559/// function.
560bool isNoAliasCall(const Value *V);
561
562/// isIdentifiedObject - Return true if this pointer refers to a distinct and
563/// identifiable object.  This returns true for:
564///    Global Variables and Functions (but not Global Aliases)
565///    Allocas and Mallocs
566///    ByVal and NoAlias Arguments
567///    NoAlias returns
568///
569bool isIdentifiedObject(const Value *V);
570
571} // End llvm namespace
572
573#endif
574