AliasAnalysis.h revision 72c194a8be83d217360ebc6b1f3ad21c5ffa16a9
1//===- llvm/Analysis/AliasAnalysis.h - Alias Analysis Interface -*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the generic AliasAnalysis interface, which is used as the
11// common interface used by all clients of alias analysis information, and
12// implemented by all alias analysis implementations.  Mod/Ref information is
13// also captured by this interface.
14//
15// Implementations of this interface must implement the various virtual methods,
16// which automatically provides functionality for the entire suite of client
17// APIs.
18//
19// This API identifies memory regions with the Location class. The pointer
20// component specifies the base memory address of the region. The Size specifies
21// the maximum size (in address units) of the memory region, or UnknownSize if
22// the size is not known. The TBAA tag identifies the "type" of the memory
23// reference; see the TypeBasedAliasAnalysis class for details.
24//
25// Some non-obvious details include:
26//  - Pointers that point to two completely different objects in memory never
27//    alias, regardless of the value of the Size component.
28//  - NoAlias doesn't imply inequal pointers. The most obvious example of this
29//    is two pointers to constant memory. Even if they are equal, constant
30//    memory is never stored to, so there will never be any dependencies.
31//    In this and other situations, the pointers may be both NoAlias and
32//    MustAlias at the same time. The current API can only return one result,
33//    though this is rarely a problem in practice.
34//
35//===----------------------------------------------------------------------===//
36
37#ifndef LLVM_ANALYSIS_ALIAS_ANALYSIS_H
38#define LLVM_ANALYSIS_ALIAS_ANALYSIS_H
39
40#include "llvm/Support/CallSite.h"
41#include <vector>
42
43namespace llvm {
44
45class LoadInst;
46class StoreInst;
47class VAArgInst;
48class TargetData;
49class Pass;
50class AnalysisUsage;
51class MemTransferInst;
52class MemIntrinsic;
53
54class AliasAnalysis {
55protected:
56  const TargetData *TD;
57
58private:
59  AliasAnalysis *AA;       // Previous Alias Analysis to chain to.
60
61protected:
62  /// InitializeAliasAnalysis - Subclasses must call this method to initialize
63  /// the AliasAnalysis interface before any other methods are called.  This is
64  /// typically called by the run* methods of these subclasses.  This may be
65  /// called multiple times.
66  ///
67  void InitializeAliasAnalysis(Pass *P);
68
69  /// getAnalysisUsage - All alias analysis implementations should invoke this
70  /// directly (using AliasAnalysis::getAnalysisUsage(AU)).
71  virtual void getAnalysisUsage(AnalysisUsage &AU) const;
72
73public:
74  static char ID; // Class identification, replacement for typeinfo
75  AliasAnalysis() : TD(0), AA(0) {}
76  virtual ~AliasAnalysis();  // We want to be subclassed
77
78  /// UnknownSize - This is a special value which can be used with the
79  /// size arguments in alias queries to indicate that the caller does not
80  /// know the sizes of the potential memory references.
81  static uint64_t const UnknownSize = ~UINT64_C(0);
82
83  /// getTargetData - Return a pointer to the current TargetData object, or
84  /// null if no TargetData object is available.
85  ///
86  const TargetData *getTargetData() const { return TD; }
87
88  /// getTypeStoreSize - Return the TargetData store size for the given type,
89  /// if known, or a conservative value otherwise.
90  ///
91  uint64_t getTypeStoreSize(const Type *Ty);
92
93  //===--------------------------------------------------------------------===//
94  /// Alias Queries...
95  ///
96
97  /// Location - A description of a memory location.
98  struct Location {
99    /// Ptr - The address of the start of the location.
100    const Value *Ptr;
101    /// Size - The maximum size of the location, in address-units, or
102    /// UnknownSize if the size is not known.  Note that an unknown size does
103    /// not mean the pointer aliases the entire virtual address space, because
104    /// there are restrictions on stepping out of one object and into another.
105    /// See http://llvm.org/docs/LangRef.html#pointeraliasing
106    uint64_t Size;
107    /// TBAATag - The metadata node which describes the TBAA type of
108    /// the location, or null if there is no known unique tag.
109    const MDNode *TBAATag;
110
111    explicit Location(const Value *P = 0, uint64_t S = UnknownSize,
112                      const MDNode *N = 0)
113      : Ptr(P), Size(S), TBAATag(N) {}
114
115    Location getWithNewPtr(const Value *NewPtr) const {
116      Location Copy(*this);
117      Copy.Ptr = NewPtr;
118      return Copy;
119    }
120
121    Location getWithNewSize(uint64_t NewSize) const {
122      Location Copy(*this);
123      Copy.Size = NewSize;
124      return Copy;
125    }
126
127    Location getWithoutTBAATag() const {
128      Location Copy(*this);
129      Copy.TBAATag = 0;
130      return Copy;
131    }
132  };
133
134  /// getLocation - Fill in Loc with information about the memory reference by
135  /// the given instruction.
136  Location getLocation(const LoadInst *LI);
137  Location getLocation(const StoreInst *SI);
138  Location getLocation(const VAArgInst *VI);
139  static Location getLocationForSource(const MemTransferInst *MTI);
140  static Location getLocationForDest(const MemIntrinsic *MI);
141
142  /// Alias analysis result - Either we know for sure that it does not alias, we
143  /// know for sure it must alias, or we don't know anything: The two pointers
144  /// _might_ alias.  This enum is designed so you can do things like:
145  ///     if (AA.alias(P1, P2)) { ... }
146  /// to check to see if two pointers might alias.
147  ///
148  /// See docs/AliasAnalysis.html for more information on the specific meanings
149  /// of these values.
150  ///
151  enum AliasResult {
152    NoAlias = 0,        ///< No dependencies.
153    MayAlias = 1,       ///< Anything goes.
154    MustAlias = 2       ///< Pointers are equal.
155  };
156
157  /// alias - The main low level interface to the alias analysis implementation.
158  /// Returns an AliasResult indicating whether the two pointers are aliased to
159  /// each other.  This is the interface that must be implemented by specific
160  /// alias analysis implementations.
161  virtual AliasResult alias(const Location &LocA, const Location &LocB);
162
163  /// alias - A convenience wrapper.
164  AliasResult alias(const Value *V1, uint64_t V1Size,
165                    const Value *V2, uint64_t V2Size) {
166    return alias(Location(V1, V1Size), Location(V2, V2Size));
167  }
168
169  /// alias - A convenience wrapper.
170  AliasResult alias(const Value *V1, const Value *V2) {
171    return alias(V1, UnknownSize, V2, UnknownSize);
172  }
173
174  /// isNoAlias - A trivial helper function to check to see if the specified
175  /// pointers are no-alias.
176  bool isNoAlias(const Location &LocA, const Location &LocB) {
177    return alias(LocA, LocB) == NoAlias;
178  }
179
180  /// isNoAlias - A convenience wrapper.
181  bool isNoAlias(const Value *V1, uint64_t V1Size,
182                 const Value *V2, uint64_t V2Size) {
183    return isNoAlias(Location(V1, V1Size), Location(V2, V2Size));
184  }
185
186  /// isMustAlias - A convenience wrapper.
187  bool isMustAlias(const Location &LocA, const Location &LocB) {
188    return alias(LocA, LocB) == MustAlias;
189  }
190
191  /// pointsToConstantMemory - If the specified memory location is
192  /// known to be constant, return true. If OrLocal is true and the
193  /// specified memory location is known to be "local" (derived from
194  /// an alloca), return true. Otherwise return false.
195  virtual bool pointsToConstantMemory(const Location &Loc,
196                                      bool OrLocal = false);
197
198  /// pointsToConstantMemory - A convenient wrapper.
199  bool pointsToConstantMemory(const Value *P, bool OrLocal = false) {
200    return pointsToConstantMemory(Location(P), OrLocal);
201  }
202
203  //===--------------------------------------------------------------------===//
204  /// Simple mod/ref information...
205  ///
206
207  /// ModRefResult - Represent the result of a mod/ref query.  Mod and Ref are
208  /// bits which may be or'd together.
209  ///
210  enum ModRefResult { NoModRef = 0, Ref = 1, Mod = 2, ModRef = 3 };
211
212  /// These values define additional bits used to define the
213  /// ModRefBehavior values.
214  enum { Nowhere = 0, ArgumentPointees = 4, Anywhere = 8 | ArgumentPointees };
215
216  /// ModRefBehavior - Summary of how a function affects memory in the program.
217  /// Loads from constant globals are not considered memory accesses for this
218  /// interface.  Also, functions may freely modify stack space local to their
219  /// invocation without having to report it through these interfaces.
220  enum ModRefBehavior {
221    /// DoesNotAccessMemory - This function does not perform any non-local loads
222    /// or stores to memory.
223    ///
224    /// This property corresponds to the GCC 'const' attribute.
225    /// This property corresponds to the LLVM IR 'readnone' attribute.
226    /// This property corresponds to the IntrNoMem LLVM intrinsic flag.
227    DoesNotAccessMemory = Nowhere | NoModRef,
228
229    /// OnlyReadsArgumentPointees - The only memory references in this function
230    /// (if it has any) are non-volatile loads from objects pointed to by its
231    /// pointer-typed arguments, with arbitrary offsets.
232    ///
233    /// This property corresponds to the IntrReadArgMem LLVM intrinsic flag.
234    OnlyReadsArgumentPointees = ArgumentPointees | Ref,
235
236    /// OnlyAccessesArgumentPointees - The only memory references in this
237    /// function (if it has any) are non-volatile loads and stores from objects
238    /// pointed to by its pointer-typed arguments, with arbitrary offsets.
239    ///
240    /// This property corresponds to the IntrReadWriteArgMem LLVM intrinsic flag.
241    OnlyAccessesArgumentPointees = ArgumentPointees | ModRef,
242
243    /// OnlyReadsMemory - This function does not perform any non-local stores or
244    /// volatile loads, but may read from any memory location.
245    ///
246    /// This property corresponds to the GCC 'pure' attribute.
247    /// This property corresponds to the LLVM IR 'readonly' attribute.
248    /// This property corresponds to the IntrReadMem LLVM intrinsic flag.
249    OnlyReadsMemory = Anywhere | Ref,
250
251    /// UnknownModRefBehavior - This indicates that the function could not be
252    /// classified into one of the behaviors above.
253    UnknownModRefBehavior = Anywhere | ModRef
254  };
255
256  /// getModRefBehavior - Return the behavior when calling the given call site.
257  virtual ModRefBehavior getModRefBehavior(ImmutableCallSite CS);
258
259  /// getModRefBehavior - Return the behavior when calling the given function.
260  /// For use when the call site is not known.
261  virtual ModRefBehavior getModRefBehavior(const Function *F);
262
263  /// doesNotAccessMemory - If the specified call is known to never read or
264  /// write memory, return true.  If the call only reads from known-constant
265  /// memory, it is also legal to return true.  Calls that unwind the stack
266  /// are legal for this predicate.
267  ///
268  /// Many optimizations (such as CSE and LICM) can be performed on such calls
269  /// without worrying about aliasing properties, and many calls have this
270  /// property (e.g. calls to 'sin' and 'cos').
271  ///
272  /// This property corresponds to the GCC 'const' attribute.
273  ///
274  bool doesNotAccessMemory(ImmutableCallSite CS) {
275    return getModRefBehavior(CS) == DoesNotAccessMemory;
276  }
277
278  /// doesNotAccessMemory - If the specified function is known to never read or
279  /// write memory, return true.  For use when the call site is not known.
280  ///
281  bool doesNotAccessMemory(const Function *F) {
282    return getModRefBehavior(F) == DoesNotAccessMemory;
283  }
284
285  /// onlyReadsMemory - If the specified call is known to only read from
286  /// non-volatile memory (or not access memory at all), return true.  Calls
287  /// that unwind the stack are legal for this predicate.
288  ///
289  /// This property allows many common optimizations to be performed in the
290  /// absence of interfering store instructions, such as CSE of strlen calls.
291  ///
292  /// This property corresponds to the GCC 'pure' attribute.
293  ///
294  bool onlyReadsMemory(ImmutableCallSite CS) {
295    return onlyReadsMemory(getModRefBehavior(CS));
296  }
297
298  /// onlyReadsMemory - If the specified function is known to only read from
299  /// non-volatile memory (or not access memory at all), return true.  For use
300  /// when the call site is not known.
301  ///
302  bool onlyReadsMemory(const Function *F) {
303    return onlyReadsMemory(getModRefBehavior(F));
304  }
305
306  /// onlyReadsMemory - Return true if functions with the specified behavior are
307  /// known to only read from non-volatile memory (or not access memory at all).
308  ///
309  static bool onlyReadsMemory(ModRefBehavior MRB) {
310    return !(MRB & Mod);
311  }
312
313  /// onlyAccessesArgPointees - Return true if functions with the specified
314  /// behavior are known to read and write at most from objects pointed to by
315  /// their pointer-typed arguments (with arbitrary offsets).
316  ///
317  static bool onlyAccessesArgPointees(ModRefBehavior MRB) {
318    return !(MRB & Anywhere & ~ArgumentPointees);
319  }
320
321  /// doesAccessArgPointees - Return true if functions with the specified
322  /// behavior are known to potentially read or write  from objects pointed
323  /// to be their pointer-typed arguments (with arbitrary offsets).
324  ///
325  static bool doesAccessArgPointees(ModRefBehavior MRB) {
326    return (MRB & ModRef) && (MRB & ArgumentPointees);
327  }
328
329  /// getModRefInfo - Return information about whether or not an instruction may
330  /// read or write the specified memory location.  An instruction
331  /// that doesn't read or write memory may be trivially LICM'd for example.
332  ModRefResult getModRefInfo(const Instruction *I,
333                             const Location &Loc) {
334    switch (I->getOpcode()) {
335    case Instruction::VAArg:  return getModRefInfo((const VAArgInst*)I, Loc);
336    case Instruction::Load:   return getModRefInfo((const LoadInst*)I,  Loc);
337    case Instruction::Store:  return getModRefInfo((const StoreInst*)I, Loc);
338    case Instruction::Call:   return getModRefInfo((const CallInst*)I,  Loc);
339    case Instruction::Invoke: return getModRefInfo((const InvokeInst*)I,Loc);
340    default:                  return NoModRef;
341    }
342  }
343
344  /// getModRefInfo - A convenience wrapper.
345  ModRefResult getModRefInfo(const Instruction *I,
346                             const Value *P, uint64_t Size) {
347    return getModRefInfo(I, Location(P, Size));
348  }
349
350  /// getModRefInfo (for call sites) - Return whether information about whether
351  /// a particular call site modifies or reads the specified memory location.
352  virtual ModRefResult getModRefInfo(ImmutableCallSite CS,
353                                     const Location &Loc);
354
355  /// getModRefInfo (for call sites) - A convenience wrapper.
356  ModRefResult getModRefInfo(ImmutableCallSite CS,
357                             const Value *P, uint64_t Size) {
358    return getModRefInfo(CS, Location(P, Size));
359  }
360
361  /// getModRefInfo (for calls) - Return whether information about whether
362  /// a particular call modifies or reads the specified memory location.
363  ModRefResult getModRefInfo(const CallInst *C, const Location &Loc) {
364    return getModRefInfo(ImmutableCallSite(C), Loc);
365  }
366
367  /// getModRefInfo (for calls) - A convenience wrapper.
368  ModRefResult getModRefInfo(const CallInst *C, const Value *P, uint64_t Size) {
369    return getModRefInfo(C, Location(P, Size));
370  }
371
372  /// getModRefInfo (for invokes) - Return whether information about whether
373  /// a particular invoke modifies or reads the specified memory location.
374  ModRefResult getModRefInfo(const InvokeInst *I,
375                             const Location &Loc) {
376    return getModRefInfo(ImmutableCallSite(I), Loc);
377  }
378
379  /// getModRefInfo (for invokes) - A convenience wrapper.
380  ModRefResult getModRefInfo(const InvokeInst *I,
381                             const Value *P, uint64_t Size) {
382    return getModRefInfo(I, Location(P, Size));
383  }
384
385  /// getModRefInfo (for loads) - Return whether information about whether
386  /// a particular load modifies or reads the specified memory location.
387  ModRefResult getModRefInfo(const LoadInst *L, const Location &Loc);
388
389  /// getModRefInfo (for loads) - A convenience wrapper.
390  ModRefResult getModRefInfo(const LoadInst *L, const Value *P, uint64_t Size) {
391    return getModRefInfo(L, Location(P, Size));
392  }
393
394  /// getModRefInfo (for stores) - Return whether information about whether
395  /// a particular store modifies or reads the specified memory location.
396  ModRefResult getModRefInfo(const StoreInst *S, const Location &Loc);
397
398  /// getModRefInfo (for stores) - A convenience wrapper.
399  ModRefResult getModRefInfo(const StoreInst *S, const Value *P, uint64_t Size) {
400    return getModRefInfo(S, Location(P, Size));
401  }
402
403  /// getModRefInfo (for va_args) - Return whether information about whether
404  /// a particular va_arg modifies or reads the specified memory location.
405  ModRefResult getModRefInfo(const VAArgInst* I, const Location &Loc);
406
407  /// getModRefInfo (for va_args) - A convenience wrapper.
408  ModRefResult getModRefInfo(const VAArgInst* I, const Value* P, uint64_t Size) {
409    return getModRefInfo(I, Location(P, Size));
410  }
411
412  /// getModRefInfo - Return information about whether two call sites may refer
413  /// to the same set of memory locations.  See
414  ///   http://llvm.org/docs/AliasAnalysis.html#ModRefInfo
415  /// for details.
416  virtual ModRefResult getModRefInfo(ImmutableCallSite CS1,
417                                     ImmutableCallSite CS2);
418
419  //===--------------------------------------------------------------------===//
420  /// Higher level methods for querying mod/ref information.
421  ///
422
423  /// canBasicBlockModify - Return true if it is possible for execution of the
424  /// specified basic block to modify the value pointed to by Ptr.
425  bool canBasicBlockModify(const BasicBlock &BB, const Location &Loc);
426
427  /// canBasicBlockModify - A convenience wrapper.
428  bool canBasicBlockModify(const BasicBlock &BB, const Value *P, uint64_t Size){
429    return canBasicBlockModify(BB, Location(P, Size));
430  }
431
432  /// canInstructionRangeModify - Return true if it is possible for the
433  /// execution of the specified instructions to modify the value pointed to by
434  /// Ptr.  The instructions to consider are all of the instructions in the
435  /// range of [I1,I2] INCLUSIVE.  I1 and I2 must be in the same basic block.
436  bool canInstructionRangeModify(const Instruction &I1, const Instruction &I2,
437                                 const Location &Loc);
438
439  /// canInstructionRangeModify - A convenience wrapper.
440  bool canInstructionRangeModify(const Instruction &I1, const Instruction &I2,
441                                 const Value *Ptr, uint64_t Size) {
442    return canInstructionRangeModify(I1, I2, Location(Ptr, Size));
443  }
444
445  //===--------------------------------------------------------------------===//
446  /// Methods that clients should call when they transform the program to allow
447  /// alias analyses to update their internal data structures.  Note that these
448  /// methods may be called on any instruction, regardless of whether or not
449  /// they have pointer-analysis implications.
450  ///
451
452  /// deleteValue - This method should be called whenever an LLVM Value is
453  /// deleted from the program, for example when an instruction is found to be
454  /// redundant and is eliminated.
455  ///
456  virtual void deleteValue(Value *V);
457
458  /// copyValue - This method should be used whenever a preexisting value in the
459  /// program is copied or cloned, introducing a new value.  Note that analysis
460  /// implementations should tolerate clients that use this method to introduce
461  /// the same value multiple times: if the analysis already knows about a
462  /// value, it should ignore the request.
463  ///
464  virtual void copyValue(Value *From, Value *To);
465
466  /// replaceWithNewValue - This method is the obvious combination of the two
467  /// above, and it provided as a helper to simplify client code.
468  ///
469  void replaceWithNewValue(Value *Old, Value *New) {
470    copyValue(Old, New);
471    deleteValue(Old);
472  }
473};
474
475/// isNoAliasCall - Return true if this pointer is returned by a noalias
476/// function.
477bool isNoAliasCall(const Value *V);
478
479/// isIdentifiedObject - Return true if this pointer refers to a distinct and
480/// identifiable object.  This returns true for:
481///    Global Variables and Functions (but not Global Aliases)
482///    Allocas and Mallocs
483///    ByVal and NoAlias Arguments
484///    NoAlias returns
485///
486bool isIdentifiedObject(const Value *V);
487
488} // End llvm namespace
489
490#endif
491