AliasAnalysis.h revision 13214eb8ccaef26d9f5ad79a702f4b196d357537
1//===- llvm/Analysis/AliasAnalysis.h - Alias Analysis Interface -*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the generic AliasAnalysis interface, which is used as the
11// common interface used by all clients of alias analysis information, and
12// implemented by all alias analysis implementations.  Mod/Ref information is
13// also captured by this interface.
14//
15// Implementations of this interface must implement the various virtual methods,
16// which automatically provides functionality for the entire suite of client
17// APIs.
18//
19// This API represents memory as a (Pointer, Size) pair.  The Pointer component
20// specifies the base memory address of the region, the Size specifies how large
21// of an area is being queried, or UnknownSize if the size is not known.
22// Pointers that point to two completely different objects in memory never
23// alias, regardless of the value of the Size component.
24//
25//===----------------------------------------------------------------------===//
26
27#ifndef LLVM_ANALYSIS_ALIAS_ANALYSIS_H
28#define LLVM_ANALYSIS_ALIAS_ANALYSIS_H
29
30#include "llvm/Support/CallSite.h"
31#include "llvm/System/IncludeFile.h"
32#include <vector>
33
34namespace llvm {
35
36class LoadInst;
37class StoreInst;
38class VAArgInst;
39class TargetData;
40class Pass;
41class AnalysisUsage;
42
43class AliasAnalysis {
44protected:
45  const TargetData *TD;
46
47private:
48  AliasAnalysis *AA;       // Previous Alias Analysis to chain to.
49
50protected:
51  /// InitializeAliasAnalysis - Subclasses must call this method to initialize
52  /// the AliasAnalysis interface before any other methods are called.  This is
53  /// typically called by the run* methods of these subclasses.  This may be
54  /// called multiple times.
55  ///
56  void InitializeAliasAnalysis(Pass *P);
57
58  /// getAnalysisUsage - All alias analysis implementations should invoke this
59  /// directly (using AliasAnalysis::getAnalysisUsage(AU)).
60  virtual void getAnalysisUsage(AnalysisUsage &AU) const;
61
62public:
63  static char ID; // Class identification, replacement for typeinfo
64  AliasAnalysis() : TD(0), AA(0) {}
65  virtual ~AliasAnalysis();  // We want to be subclassed
66
67  /// UnknownSize - This is a special value which can be used with the
68  /// size arguments in alias queries to indicate that the caller does not
69  /// know the sizes of the potential memory references.
70  static unsigned const UnknownSize = ~0u;
71
72  /// getTargetData - Return a pointer to the current TargetData object, or
73  /// null if no TargetData object is available.
74  ///
75  const TargetData *getTargetData() const { return TD; }
76
77  /// getTypeStoreSize - Return the TargetData store size for the given type,
78  /// if known, or a conservative value otherwise.
79  ///
80  unsigned getTypeStoreSize(const Type *Ty);
81
82  //===--------------------------------------------------------------------===//
83  /// Alias Queries...
84  ///
85
86  /// Alias analysis result - Either we know for sure that it does not alias, we
87  /// know for sure it must alias, or we don't know anything: The two pointers
88  /// _might_ alias.  This enum is designed so you can do things like:
89  ///     if (AA.alias(P1, P2)) { ... }
90  /// to check to see if two pointers might alias.
91  ///
92  /// See docs/AliasAnalysis.html for more information on the specific meanings
93  /// of these values.
94  ///
95  enum AliasResult { NoAlias = 0, MayAlias = 1, MustAlias = 2 };
96
97  /// alias - The main low level interface to the alias analysis implementation.
98  /// Returns a Result indicating whether the two pointers are aliased to each
99  /// other.  This is the interface that must be implemented by specific alias
100  /// analysis implementations.
101  ///
102  virtual AliasResult alias(const Value *V1, unsigned V1Size,
103                            const Value *V2, unsigned V2Size);
104
105  /// alias - A convenience wrapper for the case where the sizes are unknown.
106  AliasResult alias(const Value *V1, const Value *V2) {
107    return alias(V1, UnknownSize, V2, UnknownSize);
108  }
109
110  /// isNoAlias - A trivial helper function to check to see if the specified
111  /// pointers are no-alias.
112  bool isNoAlias(const Value *V1, unsigned V1Size,
113                 const Value *V2, unsigned V2Size) {
114    return alias(V1, V1Size, V2, V2Size) == NoAlias;
115  }
116
117  /// pointsToConstantMemory - If the specified pointer is known to point into
118  /// constant global memory, return true.  This allows disambiguation of store
119  /// instructions from constant pointers.
120  ///
121  virtual bool pointsToConstantMemory(const Value *P);
122
123  //===--------------------------------------------------------------------===//
124  /// Simple mod/ref information...
125  ///
126
127  /// ModRefResult - Represent the result of a mod/ref query.  Mod and Ref are
128  /// bits which may be or'd together.
129  ///
130  enum ModRefResult { NoModRef = 0, Ref = 1, Mod = 2, ModRef = 3 };
131
132
133  /// ModRefBehavior - Summary of how a function affects memory in the program.
134  /// Loads from constant globals are not considered memory accesses for this
135  /// interface.  Also, functions may freely modify stack space local to their
136  /// invocation without having to report it through these interfaces.
137  enum ModRefBehavior {
138    // DoesNotAccessMemory - This function does not perform any non-local loads
139    // or stores to memory.
140    //
141    // This property corresponds to the GCC 'const' attribute.
142    DoesNotAccessMemory,
143
144    // AccessesArguments - This function accesses function arguments in well
145    // known (possibly volatile) ways, but does not access any other memory.
146    AccessesArguments,
147
148    // AccessesArgumentsAndGlobals - This function has accesses function
149    // arguments and global variables well known (possibly volatile) ways, but
150    // does not access any other memory.
151    AccessesArgumentsAndGlobals,
152
153    // OnlyReadsMemory - This function does not perform any non-local stores or
154    // volatile loads, but may read from any memory location.
155    //
156    // This property corresponds to the GCC 'pure' attribute.
157    OnlyReadsMemory,
158
159    // UnknownModRefBehavior - This indicates that the function could not be
160    // classified into one of the behaviors above.
161    UnknownModRefBehavior
162  };
163
164  /// getModRefBehavior - Return the behavior when calling the given call site.
165  virtual ModRefBehavior getModRefBehavior(ImmutableCallSite CS);
166
167  /// getModRefBehavior - Return the behavior when calling the given function.
168  /// For use when the call site is not known.
169  virtual ModRefBehavior getModRefBehavior(const Function *F);
170
171  /// getIntrinsicModRefBehavior - Return the modref behavior of the intrinsic
172  /// with the given id.  Most clients won't need this, because the regular
173  /// getModRefBehavior incorporates this information.
174  static ModRefBehavior getIntrinsicModRefBehavior(unsigned iid);
175
176  /// doesNotAccessMemory - If the specified call is known to never read or
177  /// write memory, return true.  If the call only reads from known-constant
178  /// memory, it is also legal to return true.  Calls that unwind the stack
179  /// are legal for this predicate.
180  ///
181  /// Many optimizations (such as CSE and LICM) can be performed on such calls
182  /// without worrying about aliasing properties, and many calls have this
183  /// property (e.g. calls to 'sin' and 'cos').
184  ///
185  /// This property corresponds to the GCC 'const' attribute.
186  ///
187  bool doesNotAccessMemory(ImmutableCallSite CS) {
188    return getModRefBehavior(CS) == DoesNotAccessMemory;
189  }
190
191  /// doesNotAccessMemory - If the specified function is known to never read or
192  /// write memory, return true.  For use when the call site is not known.
193  ///
194  bool doesNotAccessMemory(const Function *F) {
195    return getModRefBehavior(F) == DoesNotAccessMemory;
196  }
197
198  /// onlyReadsMemory - If the specified call is known to only read from
199  /// non-volatile memory (or not access memory at all), return true.  Calls
200  /// that unwind the stack are legal for this predicate.
201  ///
202  /// This property allows many common optimizations to be performed in the
203  /// absence of interfering store instructions, such as CSE of strlen calls.
204  ///
205  /// This property corresponds to the GCC 'pure' attribute.
206  ///
207  bool onlyReadsMemory(ImmutableCallSite CS) {
208    ModRefBehavior MRB = getModRefBehavior(CS);
209    return MRB == DoesNotAccessMemory || MRB == OnlyReadsMemory;
210  }
211
212  /// onlyReadsMemory - If the specified function is known to only read from
213  /// non-volatile memory (or not access memory at all), return true.  For use
214  /// when the call site is not known.
215  ///
216  bool onlyReadsMemory(const Function *F) {
217    ModRefBehavior MRB = getModRefBehavior(F);
218    return MRB == DoesNotAccessMemory || MRB == OnlyReadsMemory;
219  }
220
221
222  /// getModRefInfo - Return information about whether or not an instruction may
223  /// read or write memory specified by the pointer operand.  An instruction
224  /// that doesn't read or write memory may be trivially LICM'd for example.
225
226  /// getModRefInfo (for call sites) - Return whether information about whether
227  /// a particular call site modifies or reads the memory specified by the
228  /// pointer.
229  ///
230  virtual ModRefResult getModRefInfo(ImmutableCallSite CS,
231                                     const Value *P, unsigned Size);
232
233  /// getModRefInfo - Return information about whether two call sites may refer
234  /// to the same set of memory locations.  This function returns NoModRef if
235  /// the two calls refer to disjoint memory locations, Ref if CS1 reads memory
236  /// written by CS2, Mod if CS1 writes to memory read or written by CS2, or
237  /// ModRef if CS1 might read or write memory accessed by CS2.
238  ///
239  virtual ModRefResult getModRefInfo(ImmutableCallSite CS1,
240                                     ImmutableCallSite CS2);
241
242public:
243  /// Convenience functions...
244  ModRefResult getModRefInfo(const LoadInst *L, const Value *P, unsigned Size);
245  ModRefResult getModRefInfo(const StoreInst *S, const Value *P, unsigned Size);
246  ModRefResult getModRefInfo(const CallInst *C, const Value *P, unsigned Size) {
247    return getModRefInfo(ImmutableCallSite(C), P, Size);
248  }
249  ModRefResult getModRefInfo(const InvokeInst *I,
250                             const Value *P, unsigned Size) {
251    return getModRefInfo(ImmutableCallSite(I), P, Size);
252  }
253  ModRefResult getModRefInfo(const VAArgInst* I,
254                             const Value* P, unsigned Size) {
255    return AliasAnalysis::ModRef;
256  }
257  ModRefResult getModRefInfo(const Instruction *I,
258                             const Value *P, unsigned Size) {
259    switch (I->getOpcode()) {
260    case Instruction::VAArg:  return getModRefInfo((const VAArgInst*)I, P,Size);
261    case Instruction::Load:   return getModRefInfo((const LoadInst*)I, P, Size);
262    case Instruction::Store:  return getModRefInfo((const StoreInst*)I, P,Size);
263    case Instruction::Call:   return getModRefInfo((const CallInst*)I, P, Size);
264    case Instruction::Invoke: return getModRefInfo((const InvokeInst*)I,P,Size);
265    default:                  return NoModRef;
266    }
267  }
268
269  //===--------------------------------------------------------------------===//
270  /// Higher level methods for querying mod/ref information.
271  ///
272
273  /// canBasicBlockModify - Return true if it is possible for execution of the
274  /// specified basic block to modify the value pointed to by Ptr.
275  ///
276  bool canBasicBlockModify(const BasicBlock &BB, const Value *P, unsigned Size);
277
278  /// canInstructionRangeModify - Return true if it is possible for the
279  /// execution of the specified instructions to modify the value pointed to by
280  /// Ptr.  The instructions to consider are all of the instructions in the
281  /// range of [I1,I2] INCLUSIVE.  I1 and I2 must be in the same basic block.
282  ///
283  bool canInstructionRangeModify(const Instruction &I1, const Instruction &I2,
284                                 const Value *Ptr, unsigned Size);
285
286  //===--------------------------------------------------------------------===//
287  /// Methods that clients should call when they transform the program to allow
288  /// alias analyses to update their internal data structures.  Note that these
289  /// methods may be called on any instruction, regardless of whether or not
290  /// they have pointer-analysis implications.
291  ///
292
293  /// deleteValue - This method should be called whenever an LLVM Value is
294  /// deleted from the program, for example when an instruction is found to be
295  /// redundant and is eliminated.
296  ///
297  virtual void deleteValue(Value *V);
298
299  /// copyValue - This method should be used whenever a preexisting value in the
300  /// program is copied or cloned, introducing a new value.  Note that analysis
301  /// implementations should tolerate clients that use this method to introduce
302  /// the same value multiple times: if the analysis already knows about a
303  /// value, it should ignore the request.
304  ///
305  virtual void copyValue(Value *From, Value *To);
306
307  /// replaceWithNewValue - This method is the obvious combination of the two
308  /// above, and it provided as a helper to simplify client code.
309  ///
310  void replaceWithNewValue(Value *Old, Value *New) {
311    copyValue(Old, New);
312    deleteValue(Old);
313  }
314};
315
316/// isNoAliasCall - Return true if this pointer is returned by a noalias
317/// function.
318bool isNoAliasCall(const Value *V);
319
320/// isIdentifiedObject - Return true if this pointer refers to a distinct and
321/// identifiable object.  This returns true for:
322///    Global Variables and Functions (but not Global Aliases)
323///    Allocas and Mallocs
324///    ByVal and NoAlias Arguments
325///    NoAlias returns
326///
327bool isIdentifiedObject(const Value *V);
328
329} // End llvm namespace
330
331// Because of the way .a files work, we must force the BasicAA implementation to
332// be pulled in if the AliasAnalysis header is included.  Otherwise we run
333// the risk of AliasAnalysis being used, but the default implementation not
334// being linked into the tool that uses it.
335FORCE_DEFINING_FILE_TO_BE_LINKED(AliasAnalysis)
336FORCE_DEFINING_FILE_TO_BE_LINKED(BasicAliasAnalysis)
337
338#endif
339