AliasAnalysis.h revision 410354fe0c052141dadeca939395743f8dd58e38
1//===- llvm/Analysis/AliasAnalysis.h - Alias Analysis Interface -*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the generic AliasAnalysis interface, which is used as the
11// common interface used by all clients of alias analysis information, and
12// implemented by all alias analysis implementations.  Mod/Ref information is
13// also captured by this interface.
14//
15// Implementations of this interface must implement the various virtual methods,
16// which automatically provides functionality for the entire suite of client
17// APIs.
18//
19// This API represents memory as a (Pointer, Size) pair.  The Pointer component
20// specifies the base memory address of the region, the Size specifies how large
21// of an area is being queried.  If Size is 0, two pointers only alias if they
22// are exactly equal.  If size is greater than zero, but small, the two pointers
23// alias if the areas pointed to overlap.  If the size is very large (ie, ~0U),
24// then the two pointers alias if they may be pointing to components of the same
25// memory object.  Pointers that point to two completely different objects in
26// memory never alias, regardless of the value of the Size component.
27//
28//===----------------------------------------------------------------------===//
29
30#ifndef LLVM_ANALYSIS_ALIAS_ANALYSIS_H
31#define LLVM_ANALYSIS_ALIAS_ANALYSIS_H
32
33#include "llvm/Support/CallSite.h"
34#include "llvm/Pass.h"    // Need this for IncludeFile
35
36namespace llvm {
37
38class LoadInst;
39class StoreInst;
40class VAArgInst;
41class TargetData;
42
43class AliasAnalysis {
44protected:
45  const TargetData *TD;
46  AliasAnalysis *AA;       // Previous Alias Analysis to chain to.
47
48  /// InitializeAliasAnalysis - Subclasses must call this method to initialize
49  /// the AliasAnalysis interface before any other methods are called.  This is
50  /// typically called by the run* methods of these subclasses.  This may be
51  /// called multiple times.
52  ///
53  void InitializeAliasAnalysis(Pass *P);
54
55  // getAnalysisUsage - All alias analysis implementations should invoke this
56  // directly (using AliasAnalysis::getAnalysisUsage(AU)) to make sure that
57  // TargetData is required by the pass.
58  virtual void getAnalysisUsage(AnalysisUsage &AU) const;
59
60public:
61  AliasAnalysis() : TD(0), AA(0) {}
62  virtual ~AliasAnalysis();  // We want to be subclassed
63
64  /// getTargetData - Every alias analysis implementation depends on the size of
65  /// data items in the current Target.  This provides a uniform way to handle
66  /// it.
67  ///
68  const TargetData &getTargetData() const { return *TD; }
69
70  //===--------------------------------------------------------------------===//
71  /// Alias Queries...
72  ///
73
74  /// Alias analysis result - Either we know for sure that it does not alias, we
75  /// know for sure it must alias, or we don't know anything: The two pointers
76  /// _might_ alias.  This enum is designed so you can do things like:
77  ///     if (AA.alias(P1, P2)) { ... }
78  /// to check to see if two pointers might alias.
79  ///
80  enum AliasResult { NoAlias = 0, MayAlias = 1, MustAlias = 2 };
81
82  /// alias - The main low level interface to the alias analysis implementation.
83  /// Returns a Result indicating whether the two pointers are aliased to each
84  /// other.  This is the interface that must be implemented by specific alias
85  /// analysis implementations.
86  ///
87  virtual AliasResult alias(const Value *V1, unsigned V1Size,
88                            const Value *V2, unsigned V2Size);
89
90  /// getMustAliases - If there are any pointers known that must alias this
91  /// pointer, return them now.  This allows alias-set based alias analyses to
92  /// perform a form a value numbering (which is exposed by load-vn).  If an
93  /// alias analysis supports this, it should ADD any must aliased pointers to
94  /// the specified vector.
95  ///
96  virtual void getMustAliases(Value *P, std::vector<Value*> &RetVals);
97
98  /// pointsToConstantMemory - If the specified pointer is known to point into
99  /// constant global memory, return true.  This allows disambiguation of store
100  /// instructions from constant pointers.
101  ///
102  virtual bool pointsToConstantMemory(const Value *P);
103
104  //===--------------------------------------------------------------------===//
105  /// Simple mod/ref information...
106  ///
107
108  /// ModRefResult - Represent the result of a mod/ref query.  Mod and Ref are
109  /// bits which may be or'd together.
110  ///
111  enum ModRefResult { NoModRef = 0, Ref = 1, Mod = 2, ModRef = 3 };
112
113
114  /// ModRefBehavior - Summary of how a function affects memory in the program.
115  /// Loads from constant globals are not considered memory accesses for this
116  /// interface.  Also, functions may freely modify stack space local to their
117  /// invocation without having to report it through these interfaces.
118  enum ModRefBehavior {
119    // DoesNotAccessMemory - This function does not perform any non-local loads
120    // or stores to memory.
121    //
122    // This property corresponds to the GCC 'const' attribute.
123    DoesNotAccessMemory,
124
125    // AccessesArguments - This function accesses function arguments in
126    // non-volatile and well known ways, but does not access any other memory.
127    //
128    // Clients may call getArgumentAccesses to get specific information about
129    // how pointer arguments are used.
130    AccessesArguments,
131
132    // AccessesArgumentsAndGlobals - This function has accesses function
133    // arguments and global variables in non-volatile and well-known ways, but
134    // does not access any other memory.
135    //
136    // Clients may call getArgumentAccesses to get specific information about
137    // how pointer arguments and globals are used.
138    AccessesArgumentsAndGlobals,
139
140    // OnlyReadsMemory - This function does not perform any non-local stores or
141    // volatile loads, but may read from any memory location.
142    //
143    // This property corresponds to the GCC 'pure' attribute.
144    OnlyReadsMemory,
145
146    // UnknownModRefBehavior - This indicates that the function could not be
147    // classified into one of the behaviors above.
148    UnknownModRefBehavior
149  };
150
151  /// PointerAccessInfo - This struct is used to return results for pointers,
152  /// globals, and the return value of a function.
153  struct PointerAccessInfo {
154    /// V - The value this record corresponds to.  This may be an Argument for
155    /// the function, a GlobalVariable, or null, corresponding to the return
156    /// value for the function.
157    Value *V;
158
159    /// ModRefInfo - Whether the pointer is loaded or stored to/from.
160    ///
161    ModRefResult ModRefInfo;
162
163    /// AccessType - Specific fine-grained access information for the argument.
164    /// If none of these classifications is general enough, the
165    /// getModRefBehavior method should not return AccessesArguments*.  If a
166    /// record is not returned for a particular argument, the argument is never
167    /// dead and never dereferenced.
168    enum AccessType {
169      /// ScalarAccess - The pointer is dereferenced.
170      ///
171      ScalarAccess,
172
173      /// ArrayAccess - The pointer is indexed through as an array of elements.
174      ///
175      ArrayAccess,
176
177      /// ElementAccess ?? P->F only?
178
179      /// CallsThrough - Indirect calls are made through the specified function
180      /// pointer.
181      CallsThrough
182    };
183  };
184
185  /// getModRefBehavior - Return the behavior of the specified function if
186  /// called from the specified call site.  The call site may be null in which
187  /// case the most generic behavior of this function should be returned.
188  virtual ModRefBehavior getModRefBehavior(Function *F, CallSite CS,
189                                     std::vector<PointerAccessInfo> *Info = 0);
190
191  /// doesNotAccessMemory - If the specified function is known to never read or
192  /// write memory, return true.  If the function only reads from known-constant
193  /// memory, it is also legal to return true.  Functions that unwind the stack
194  /// are not legal for this predicate.
195  ///
196  /// Many optimizations (such as CSE and LICM) can be performed on calls to it,
197  /// without worrying about aliasing properties, and many functions have this
198  /// property (e.g. 'sin' and 'cos').
199  ///
200  /// This property corresponds to the GCC 'const' attribute.
201  ///
202  bool doesNotAccessMemory(Function *F) {
203    return getModRefBehavior(F, CallSite()) == DoesNotAccessMemory;
204  }
205
206  /// onlyReadsMemory - If the specified function is known to only read from
207  /// non-volatile memory (or not access memory at all), return true.  Functions
208  /// that unwind the stack are not legal for this predicate.
209  ///
210  /// This property allows many common optimizations to be performed in the
211  /// absence of interfering store instructions, such as CSE of strlen calls.
212  ///
213  /// This property corresponds to the GCC 'pure' attribute.
214  ///
215  bool onlyReadsMemory(Function *F) {
216    /// FIXME: If the analysis returns more precise info, we can reduce it to
217    /// this.
218    ModRefBehavior MRB = getModRefBehavior(F, CallSite());
219    return MRB == DoesNotAccessMemory || MRB == OnlyReadsMemory;
220  }
221
222
223  /// getModRefInfo - Return information about whether or not an instruction may
224  /// read or write memory specified by the pointer operand.  An instruction
225  /// that doesn't read or write memory may be trivially LICM'd for example.
226
227  /// getModRefInfo (for call sites) - Return whether information about whether
228  /// a particular call site modifies or reads the memory specified by the
229  /// pointer.
230  ///
231  virtual ModRefResult getModRefInfo(CallSite CS, Value *P, unsigned Size);
232
233  /// getModRefInfo - Return information about whether two call sites may refer
234  /// to the same set of memory locations.  This function returns NoModRef if
235  /// the two calls refer to disjoint memory locations, Ref if CS1 reads memory
236  /// written by CS2, Mod if CS1 writes to memory read or written by CS2, or
237  /// ModRef if CS1 might read or write memory accessed by CS2.
238  ///
239  virtual ModRefResult getModRefInfo(CallSite CS1, CallSite CS2);
240
241  /// hasNoModRefInfoForCalls - Return true if the analysis has no mod/ref
242  /// information for pairs of function calls (other than "pure" and "const"
243  /// functions).  This can be used by clients to avoid many pointless queries.
244  /// Remember that if you override this and chain to another analysis, you must
245  /// make sure that it doesn't have mod/ref info either.
246  ///
247  virtual bool hasNoModRefInfoForCalls() const;
248
249  /// Convenience functions...
250  ModRefResult getModRefInfo(LoadInst *L, Value *P, unsigned Size);
251  ModRefResult getModRefInfo(StoreInst *S, Value *P, unsigned Size);
252  ModRefResult getModRefInfo(CallInst *C, Value *P, unsigned Size) {
253    return getModRefInfo(CallSite(C), P, Size);
254  }
255  ModRefResult getModRefInfo(InvokeInst *I, Value *P, unsigned Size) {
256    return getModRefInfo(CallSite(I), P, Size);
257  }
258  ModRefResult getModRefInfo(VAArgInst* I, Value* P, unsigned Size) {
259    return AliasAnalysis::Mod;
260  }
261  ModRefResult getModRefInfo(Instruction *I, Value *P, unsigned Size) {
262    switch (I->getOpcode()) {
263    case Instruction::VAArg:  return getModRefInfo((VAArgInst*)I, P, Size);
264    case Instruction::Load:   return getModRefInfo((LoadInst*)I, P, Size);
265    case Instruction::Store:  return getModRefInfo((StoreInst*)I, P, Size);
266    case Instruction::Call:   return getModRefInfo((CallInst*)I, P, Size);
267    case Instruction::Invoke: return getModRefInfo((InvokeInst*)I, P, Size);
268    default:                  return NoModRef;
269    }
270  }
271
272  //===--------------------------------------------------------------------===//
273  /// Higher level methods for querying mod/ref information.
274  ///
275
276  /// canBasicBlockModify - Return true if it is possible for execution of the
277  /// specified basic block to modify the value pointed to by Ptr.
278  ///
279  bool canBasicBlockModify(const BasicBlock &BB, const Value *P, unsigned Size);
280
281  /// canInstructionRangeModify - Return true if it is possible for the
282  /// execution of the specified instructions to modify the value pointed to by
283  /// Ptr.  The instructions to consider are all of the instructions in the
284  /// range of [I1,I2] INCLUSIVE.  I1 and I2 must be in the same basic block.
285  ///
286  bool canInstructionRangeModify(const Instruction &I1, const Instruction &I2,
287                                 const Value *Ptr, unsigned Size);
288
289  //===--------------------------------------------------------------------===//
290  /// Methods that clients should call when they transform the program to allow
291  /// alias analyses to update their internal data structures.  Note that these
292  /// methods may be called on any instruction, regardless of whether or not
293  /// they have pointer-analysis implications.
294  ///
295
296  /// deleteValue - This method should be called whenever an LLVM Value is
297  /// deleted from the program, for example when an instruction is found to be
298  /// redundant and is eliminated.
299  ///
300  virtual void deleteValue(Value *V);
301
302  /// copyValue - This method should be used whenever a preexisting value in the
303  /// program is copied or cloned, introducing a new value.  Note that analysis
304  /// implementations should tolerate clients that use this method to introduce
305  /// the same value multiple times: if the analysis already knows about a
306  /// value, it should ignore the request.
307  ///
308  virtual void copyValue(Value *From, Value *To);
309
310  /// replaceWithNewValue - This method is the obvious combination of the two
311  /// above, and it provided as a helper to simplify client code.
312  ///
313  void replaceWithNewValue(Value *Old, Value *New) {
314    copyValue(Old, New);
315    deleteValue(Old);
316  }
317};
318
319// Because of the way .a files work, we must force the BasicAA implementation to
320// be pulled in if the AliasAnalysis header is included.  Otherwise we run
321// the risk of AliasAnalysis being used, but the default implementation not
322// being linked into the tool that uses it.
323//
324extern void BasicAAStub();
325static IncludeFile HDR_INCLUDE_BASICAA_CPP((void*)&BasicAAStub);
326
327} // End llvm namespace
328
329#endif
330