AliasAnalysis.h revision 42c31a70735e55bf82e66a9315c97d1821c9a798
1//===- llvm/Analysis/AliasAnalysis.h - Alias Analysis Interface -*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the generic AliasAnalysis interface, which is used as the
11// common interface used by all clients of alias analysis information, and
12// implemented by all alias analysis implementations.  Mod/Ref information is
13// also captured by this interface.
14//
15// Implementations of this interface must implement the various virtual methods,
16// which automatically provides functionality for the entire suite of client
17// APIs.
18//
19// This API represents memory as a (Pointer, Size) pair.  The Pointer component
20// specifies the base memory address of the region, the Size specifies how large
21// of an area is being queried, or UnknownSize if the size is not known.
22// Pointers that point to two completely different objects in memory never
23// alias, regardless of the value of the Size component.
24//
25//===----------------------------------------------------------------------===//
26
27#ifndef LLVM_ANALYSIS_ALIAS_ANALYSIS_H
28#define LLVM_ANALYSIS_ALIAS_ANALYSIS_H
29
30#include "llvm/Support/CallSite.h"
31#include <vector>
32
33namespace llvm {
34
35class LoadInst;
36class StoreInst;
37class VAArgInst;
38class TargetData;
39class Pass;
40class AnalysisUsage;
41
42class AliasAnalysis {
43protected:
44  const TargetData *TD;
45
46private:
47  AliasAnalysis *AA;       // Previous Alias Analysis to chain to.
48
49protected:
50  /// InitializeAliasAnalysis - Subclasses must call this method to initialize
51  /// the AliasAnalysis interface before any other methods are called.  This is
52  /// typically called by the run* methods of these subclasses.  This may be
53  /// called multiple times.
54  ///
55  void InitializeAliasAnalysis(Pass *P);
56
57  /// getAnalysisUsage - All alias analysis implementations should invoke this
58  /// directly (using AliasAnalysis::getAnalysisUsage(AU)).
59  virtual void getAnalysisUsage(AnalysisUsage &AU) const;
60
61public:
62  static char ID; // Class identification, replacement for typeinfo
63  AliasAnalysis() : TD(0), AA(0) {}
64  virtual ~AliasAnalysis();  // We want to be subclassed
65
66  /// UnknownSize - This is a special value which can be used with the
67  /// size arguments in alias queries to indicate that the caller does not
68  /// know the sizes of the potential memory references.
69  static uint64_t const UnknownSize = ~UINT64_C(0);
70
71  /// getTargetData - Return a pointer to the current TargetData object, or
72  /// null if no TargetData object is available.
73  ///
74  const TargetData *getTargetData() const { return TD; }
75
76  /// getTypeStoreSize - Return the TargetData store size for the given type,
77  /// if known, or a conservative value otherwise.
78  ///
79  uint64_t getTypeStoreSize(const Type *Ty);
80
81  //===--------------------------------------------------------------------===//
82  /// Alias Queries...
83  ///
84
85  /// Location - A description of a memory location.
86  struct Location {
87    /// Ptr - The address of the start of the location.
88    const Value *Ptr;
89    /// Size - The maximum size of the location, or UnknownSize if the size is
90    /// not known.  Note that an unknown size does not mean the pointer aliases
91    /// the entire virtual address space, because there are restrictions on
92    /// stepping out of one object and into another.
93    /// See http://llvm.org/docs/LangRef.html#pointeraliasing
94    uint64_t Size;
95    /// TBAATag - The metadata node which describes the TBAA type of
96    /// the location, or null if there is no known unique tag.
97    const MDNode *TBAATag;
98
99    explicit Location(const Value *P = 0,
100                      uint64_t S = UnknownSize,
101                      const MDNode *N = 0)
102      : Ptr(P), Size(S), TBAATag(N) {}
103
104    Location getWithNewPtr(const Value *NewPtr) const {
105      Location Copy(*this);
106      Copy.Ptr = NewPtr;
107      return Copy;
108    }
109
110    Location getWithoutTBAATag() const {
111      Location Copy(*this);
112      Copy.TBAATag = 0;
113      return Copy;
114    }
115  };
116
117  /// Alias analysis result - Either we know for sure that it does not alias, we
118  /// know for sure it must alias, or we don't know anything: The two pointers
119  /// _might_ alias.  This enum is designed so you can do things like:
120  ///     if (AA.alias(P1, P2)) { ... }
121  /// to check to see if two pointers might alias.
122  ///
123  /// See docs/AliasAnalysis.html for more information on the specific meanings
124  /// of these values.
125  ///
126  enum AliasResult { NoAlias = 0, MayAlias = 1, MustAlias = 2 };
127
128  /// alias - The main low level interface to the alias analysis implementation.
129  /// Returns an AliasResult indicating whether the two pointers are aliased to
130  /// each other.  This is the interface that must be implemented by specific
131  /// alias analysis implementations.
132  virtual AliasResult alias(const Location &LocA, const Location &LocB);
133
134  /// alias - A convenience wrapper.
135  AliasResult alias(const Value *V1, uint64_t V1Size,
136                    const Value *V2, uint64_t V2Size) {
137    return alias(Location(V1, V1Size), Location(V2, V2Size));
138  }
139
140  /// alias - A convenience wrapper.
141  AliasResult alias(const Value *V1, const Value *V2) {
142    return alias(V1, UnknownSize, V2, UnknownSize);
143  }
144
145  /// isNoAlias - A trivial helper function to check to see if the specified
146  /// pointers are no-alias.
147  bool isNoAlias(const Location &LocA, const Location &LocB) {
148    return alias(LocA, LocB) == NoAlias;
149  }
150
151  /// isNoAlias - A convenience wrapper.
152  bool isNoAlias(const Value *V1, uint64_t V1Size,
153                 const Value *V2, uint64_t V2Size) {
154    return isNoAlias(Location(V1, V1Size), Location(V2, V2Size));
155  }
156
157  /// pointsToConstantMemory - If the specified memory location is
158  /// known to be constant, return true. If OrLocal is true and the
159  /// specified memory location is known to be "local" (derived from
160  /// an alloca), return true. Otherwise return false.
161  virtual bool pointsToConstantMemory(const Location &Loc,
162                                      bool OrLocal = false);
163
164  /// pointsToConstantMemory - A convenient wrapper.
165  bool pointsToConstantMemory(const Value *P, bool OrLocal = false) {
166    return pointsToConstantMemory(Location(P), OrLocal);
167  }
168
169  //===--------------------------------------------------------------------===//
170  /// Simple mod/ref information...
171  ///
172
173  /// ModRefResult - Represent the result of a mod/ref query.  Mod and Ref are
174  /// bits which may be or'd together.
175  ///
176  enum ModRefResult { NoModRef = 0, Ref = 1, Mod = 2, ModRef = 3 };
177
178  /// These values define additional bits used to define the
179  /// ModRefBehavior values.
180  enum { Nowhere = 0, ArgumentPointees = 4, Anywhere = 8 | ArgumentPointees };
181
182  /// ModRefBehavior - Summary of how a function affects memory in the program.
183  /// Loads from constant globals are not considered memory accesses for this
184  /// interface.  Also, functions may freely modify stack space local to their
185  /// invocation without having to report it through these interfaces.
186  enum ModRefBehavior {
187    /// DoesNotAccessMemory - This function does not perform any non-local loads
188    /// or stores to memory.
189    ///
190    /// This property corresponds to the GCC 'const' attribute.
191    /// This property corresponds to the LLVM IR 'readnone' attribute.
192    /// This property corresponds to the IntrNoMem LLVM intrinsic flag.
193    DoesNotAccessMemory = Nowhere | NoModRef,
194
195    /// AccessesArgumentsReadonly - This function loads through function
196    /// arguments and does not perform any non-local stores or volatile
197    /// loads.
198    ///
199    /// This property corresponds to the IntrReadArgMem LLVM intrinsic flag.
200    AccessesArgumentsReadonly = ArgumentPointees | Ref,
201
202    /// AccessesArguments - This function accesses function arguments in well
203    /// known (possibly volatile) ways, but does not access any other memory.
204    ///
205    /// This property corresponds to the IntrReadWriteArgMem LLVM intrinsic flag.
206    AccessesArguments = ArgumentPointees | ModRef,
207
208    /// OnlyReadsMemory - This function does not perform any non-local stores or
209    /// volatile loads, but may read from any memory location.
210    ///
211    /// This property corresponds to the GCC 'pure' attribute.
212    /// This property corresponds to the LLVM IR 'readonly' attribute.
213    /// This property corresponds to the IntrReadMem LLVM intrinsic flag.
214    OnlyReadsMemory = Anywhere | Ref,
215
216    /// UnknownModRefBehavior - This indicates that the function could not be
217    /// classified into one of the behaviors above.
218    UnknownModRefBehavior = Anywhere | ModRef
219  };
220
221  /// getModRefBehavior - Return the behavior when calling the given call site.
222  virtual ModRefBehavior getModRefBehavior(ImmutableCallSite CS);
223
224  /// getModRefBehavior - Return the behavior when calling the given function.
225  /// For use when the call site is not known.
226  virtual ModRefBehavior getModRefBehavior(const Function *F);
227
228  /// doesNotAccessMemory - If the specified call is known to never read or
229  /// write memory, return true.  If the call only reads from known-constant
230  /// memory, it is also legal to return true.  Calls that unwind the stack
231  /// are legal for this predicate.
232  ///
233  /// Many optimizations (such as CSE and LICM) can be performed on such calls
234  /// without worrying about aliasing properties, and many calls have this
235  /// property (e.g. calls to 'sin' and 'cos').
236  ///
237  /// This property corresponds to the GCC 'const' attribute.
238  ///
239  bool doesNotAccessMemory(ImmutableCallSite CS) {
240    return getModRefBehavior(CS) == DoesNotAccessMemory;
241  }
242
243  /// doesNotAccessMemory - If the specified function is known to never read or
244  /// write memory, return true.  For use when the call site is not known.
245  ///
246  bool doesNotAccessMemory(const Function *F) {
247    return getModRefBehavior(F) == DoesNotAccessMemory;
248  }
249
250  /// onlyReadsMemory - If the specified call is known to only read from
251  /// non-volatile memory (or not access memory at all), return true.  Calls
252  /// that unwind the stack are legal for this predicate.
253  ///
254  /// This property allows many common optimizations to be performed in the
255  /// absence of interfering store instructions, such as CSE of strlen calls.
256  ///
257  /// This property corresponds to the GCC 'pure' attribute.
258  ///
259  bool onlyReadsMemory(ImmutableCallSite CS) {
260    return onlyReadsMemory(getModRefBehavior(CS));
261  }
262
263  /// onlyReadsMemory - If the specified function is known to only read from
264  /// non-volatile memory (or not access memory at all), return true.  For use
265  /// when the call site is not known.
266  ///
267  bool onlyReadsMemory(const Function *F) {
268    return onlyReadsMemory(getModRefBehavior(F));
269  }
270
271  /// onlyReadsMemory - If the functions with the specified behavior are known
272  /// to only read from non-volatile memory (or not access memory at all), return
273  /// true.  For use when the call site is not known.
274  ///
275  static bool onlyReadsMemory(ModRefBehavior MRB) {
276    return !(MRB & Mod);
277  }
278
279  /// getModRefInfo - Return information about whether or not an instruction may
280  /// read or write the specified memory location.  An instruction
281  /// that doesn't read or write memory may be trivially LICM'd for example.
282  ModRefResult getModRefInfo(const Instruction *I,
283                             const Location &Loc) {
284    switch (I->getOpcode()) {
285    case Instruction::VAArg:  return getModRefInfo((const VAArgInst*)I, Loc);
286    case Instruction::Load:   return getModRefInfo((const LoadInst*)I,  Loc);
287    case Instruction::Store:  return getModRefInfo((const StoreInst*)I, Loc);
288    case Instruction::Call:   return getModRefInfo((const CallInst*)I,  Loc);
289    case Instruction::Invoke: return getModRefInfo((const InvokeInst*)I,Loc);
290    default:                  return NoModRef;
291    }
292  }
293
294  /// getModRefInfo - A convenience wrapper.
295  ModRefResult getModRefInfo(const Instruction *I,
296                             const Value *P, uint64_t Size) {
297    return getModRefInfo(I, Location(P, Size));
298  }
299
300  /// getModRefInfo (for call sites) - Return whether information about whether
301  /// a particular call site modifies or reads the specified memory location.
302  virtual ModRefResult getModRefInfo(ImmutableCallSite CS,
303                                     const Location &Loc);
304
305  /// getModRefInfo (for call sites) - A convenience wrapper.
306  ModRefResult getModRefInfo(ImmutableCallSite CS,
307                             const Value *P, uint64_t Size) {
308    return getModRefInfo(CS, Location(P, Size));
309  }
310
311  /// getModRefInfo (for calls) - Return whether information about whether
312  /// a particular call modifies or reads the specified memory location.
313  ModRefResult getModRefInfo(const CallInst *C, const Location &Loc) {
314    return getModRefInfo(ImmutableCallSite(C), Loc);
315  }
316
317  /// getModRefInfo (for calls) - A convenience wrapper.
318  ModRefResult getModRefInfo(const CallInst *C, const Value *P, uint64_t Size) {
319    return getModRefInfo(C, Location(P, Size));
320  }
321
322  /// getModRefInfo (for invokes) - Return whether information about whether
323  /// a particular invoke modifies or reads the specified memory location.
324  ModRefResult getModRefInfo(const InvokeInst *I,
325                             const Location &Loc) {
326    return getModRefInfo(ImmutableCallSite(I), Loc);
327  }
328
329  /// getModRefInfo (for invokes) - A convenience wrapper.
330  ModRefResult getModRefInfo(const InvokeInst *I,
331                             const Value *P, uint64_t Size) {
332    return getModRefInfo(I, Location(P, Size));
333  }
334
335  /// getModRefInfo (for loads) - Return whether information about whether
336  /// a particular load modifies or reads the specified memory location.
337  ModRefResult getModRefInfo(const LoadInst *L, const Location &Loc);
338
339  /// getModRefInfo (for loads) - A convenience wrapper.
340  ModRefResult getModRefInfo(const LoadInst *L, const Value *P, uint64_t Size) {
341    return getModRefInfo(L, Location(P, Size));
342  }
343
344  /// getModRefInfo (for stores) - Return whether information about whether
345  /// a particular store modifies or reads the specified memory location.
346  ModRefResult getModRefInfo(const StoreInst *S, const Location &Loc);
347
348  /// getModRefInfo (for stores) - A convenience wrapper.
349  ModRefResult getModRefInfo(const StoreInst *S, const Value *P, uint64_t Size) {
350    return getModRefInfo(S, Location(P, Size));
351  }
352
353  /// getModRefInfo (for va_args) - Return whether information about whether
354  /// a particular va_arg modifies or reads the specified memory location.
355  ModRefResult getModRefInfo(const VAArgInst* I, const Location &Loc);
356
357  /// getModRefInfo (for va_args) - A convenience wrapper.
358  ModRefResult getModRefInfo(const VAArgInst* I, const Value* P, uint64_t Size) {
359    return getModRefInfo(I, Location(P, Size));
360  }
361
362  /// getModRefInfo - Return information about whether two call sites may refer
363  /// to the same set of memory locations.  See
364  ///   http://llvm.org/docs/AliasAnalysis.html#ModRefInfo
365  /// for details.
366  virtual ModRefResult getModRefInfo(ImmutableCallSite CS1,
367                                     ImmutableCallSite CS2);
368
369  //===--------------------------------------------------------------------===//
370  /// Higher level methods for querying mod/ref information.
371  ///
372
373  /// canBasicBlockModify - Return true if it is possible for execution of the
374  /// specified basic block to modify the value pointed to by Ptr.
375  bool canBasicBlockModify(const BasicBlock &BB, const Location &Loc);
376
377  /// canBasicBlockModify - A convenience wrapper.
378  bool canBasicBlockModify(const BasicBlock &BB, const Value *P, uint64_t Size){
379    return canBasicBlockModify(BB, Location(P, Size));
380  }
381
382  /// canInstructionRangeModify - Return true if it is possible for the
383  /// execution of the specified instructions to modify the value pointed to by
384  /// Ptr.  The instructions to consider are all of the instructions in the
385  /// range of [I1,I2] INCLUSIVE.  I1 and I2 must be in the same basic block.
386  bool canInstructionRangeModify(const Instruction &I1, const Instruction &I2,
387                                 const Location &Loc);
388
389  /// canInstructionRangeModify - A convenience wrapper.
390  bool canInstructionRangeModify(const Instruction &I1, const Instruction &I2,
391                                 const Value *Ptr, uint64_t Size) {
392    return canInstructionRangeModify(I1, I2, Location(Ptr, Size));
393  }
394
395  //===--------------------------------------------------------------------===//
396  /// Methods that clients should call when they transform the program to allow
397  /// alias analyses to update their internal data structures.  Note that these
398  /// methods may be called on any instruction, regardless of whether or not
399  /// they have pointer-analysis implications.
400  ///
401
402  /// deleteValue - This method should be called whenever an LLVM Value is
403  /// deleted from the program, for example when an instruction is found to be
404  /// redundant and is eliminated.
405  ///
406  virtual void deleteValue(Value *V);
407
408  /// copyValue - This method should be used whenever a preexisting value in the
409  /// program is copied or cloned, introducing a new value.  Note that analysis
410  /// implementations should tolerate clients that use this method to introduce
411  /// the same value multiple times: if the analysis already knows about a
412  /// value, it should ignore the request.
413  ///
414  virtual void copyValue(Value *From, Value *To);
415
416  /// replaceWithNewValue - This method is the obvious combination of the two
417  /// above, and it provided as a helper to simplify client code.
418  ///
419  void replaceWithNewValue(Value *Old, Value *New) {
420    copyValue(Old, New);
421    deleteValue(Old);
422  }
423};
424
425/// isNoAliasCall - Return true if this pointer is returned by a noalias
426/// function.
427bool isNoAliasCall(const Value *V);
428
429/// isIdentifiedObject - Return true if this pointer refers to a distinct and
430/// identifiable object.  This returns true for:
431///    Global Variables and Functions (but not Global Aliases)
432///    Allocas and Mallocs
433///    ByVal and NoAlias Arguments
434///    NoAlias returns
435///
436bool isIdentifiedObject(const Value *V);
437
438} // End llvm namespace
439
440#endif
441