AliasAnalysis.h revision 541481f34c7ffd49c0b55b56eab3753fda17c3e5
1//===- llvm/Analysis/AliasAnalysis.h - Alias Analysis Interface -*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the generic AliasAnalysis interface, which is used as the
11// common interface used by all clients of alias analysis information, and
12// implemented by all alias analysis implementations.  Mod/Ref information is
13// also captured by this interface.
14//
15// Implementations of this interface must implement the various virtual methods,
16// which automatically provides functionality for the entire suite of client
17// APIs.
18//
19// This API represents memory as a (Pointer, Size) pair.  The Pointer component
20// specifies the base memory address of the region, the Size specifies how large
21// of an area is being queried.  If Size is 0, two pointers only alias if they
22// are exactly equal.  If size is greater than zero, but small, the two pointers
23// alias if the areas pointed to overlap.  If the size is very large (ie, ~0U),
24// then the two pointers alias if they may be pointing to components of the same
25// memory object.  Pointers that point to two completely different objects in
26// memory never alias, regardless of the value of the Size component.
27//
28//===----------------------------------------------------------------------===//
29
30#ifndef LLVM_ANALYSIS_ALIAS_ANALYSIS_H
31#define LLVM_ANALYSIS_ALIAS_ANALYSIS_H
32
33#include "llvm/Support/CallSite.h"
34#include "llvm/System/IncludeFile.h"
35#include <vector>
36
37namespace llvm {
38
39class LoadInst;
40class StoreInst;
41class VAArgInst;
42class TargetData;
43class Pass;
44class AnalysisUsage;
45
46class AliasAnalysis {
47protected:
48  const TargetData *TD;
49  AliasAnalysis *AA;       // Previous Alias Analysis to chain to.
50
51  /// InitializeAliasAnalysis - Subclasses must call this method to initialize
52  /// the AliasAnalysis interface before any other methods are called.  This is
53  /// typically called by the run* methods of these subclasses.  This may be
54  /// called multiple times.
55  ///
56  void InitializeAliasAnalysis(Pass *P);
57
58  /// getAnalysisUsage - All alias analysis implementations should invoke this
59  /// directly (using AliasAnalysis::getAnalysisUsage(AU)).
60  virtual void getAnalysisUsage(AnalysisUsage &AU) const;
61
62public:
63  static char ID; // Class identification, replacement for typeinfo
64  AliasAnalysis() : TD(0), AA(0) {}
65  virtual ~AliasAnalysis();  // We want to be subclassed
66
67  /// getTargetData - Return a pointer to the current TargetData object, or
68  /// null if no TargetData object is available.
69  ///
70  const TargetData *getTargetData() const { return TD; }
71
72  /// getTypeStoreSize - Return the TargetData store size for the given type,
73  /// if known, or a conservative value otherwise.
74  ///
75  unsigned getTypeStoreSize(const Type *Ty);
76
77  //===--------------------------------------------------------------------===//
78  /// Alias Queries...
79  ///
80
81  /// Alias analysis result - Either we know for sure that it does not alias, we
82  /// know for sure it must alias, or we don't know anything: The two pointers
83  /// _might_ alias.  This enum is designed so you can do things like:
84  ///     if (AA.alias(P1, P2)) { ... }
85  /// to check to see if two pointers might alias.
86  ///
87  enum AliasResult { NoAlias = 0, MayAlias = 1, MustAlias = 2 };
88
89  /// alias - The main low level interface to the alias analysis implementation.
90  /// Returns a Result indicating whether the two pointers are aliased to each
91  /// other.  This is the interface that must be implemented by specific alias
92  /// analysis implementations.
93  ///
94  virtual AliasResult alias(const Value *V1, unsigned V1Size,
95                            const Value *V2, unsigned V2Size);
96
97  /// isNoAlias - A trivial helper function to check to see if the specified
98  /// pointers are no-alias.
99  bool isNoAlias(const Value *V1, unsigned V1Size,
100                 const Value *V2, unsigned V2Size) {
101    return alias(V1, V1Size, V2, V2Size) == NoAlias;
102  }
103
104  /// pointsToConstantMemory - If the specified pointer is known to point into
105  /// constant global memory, return true.  This allows disambiguation of store
106  /// instructions from constant pointers.
107  ///
108  virtual bool pointsToConstantMemory(const Value *P);
109
110  //===--------------------------------------------------------------------===//
111  /// Simple mod/ref information...
112  ///
113
114  /// ModRefResult - Represent the result of a mod/ref query.  Mod and Ref are
115  /// bits which may be or'd together.
116  ///
117  enum ModRefResult { NoModRef = 0, Ref = 1, Mod = 2, ModRef = 3 };
118
119
120  /// ModRefBehavior - Summary of how a function affects memory in the program.
121  /// Loads from constant globals are not considered memory accesses for this
122  /// interface.  Also, functions may freely modify stack space local to their
123  /// invocation without having to report it through these interfaces.
124  enum ModRefBehavior {
125    // DoesNotAccessMemory - This function does not perform any non-local loads
126    // or stores to memory.
127    //
128    // This property corresponds to the GCC 'const' attribute.
129    DoesNotAccessMemory,
130
131    // AccessesArguments - This function accesses function arguments in well
132    // known (possibly volatile) ways, but does not access any other memory.
133    //
134    // Clients may use the Info parameter of getModRefBehavior to get specific
135    // information about how pointer arguments are used.
136    AccessesArguments,
137
138    // AccessesArgumentsAndGlobals - This function has accesses function
139    // arguments and global variables well known (possibly volatile) ways, but
140    // does not access any other memory.
141    //
142    // Clients may use the Info parameter of getModRefBehavior to get specific
143    // information about how pointer arguments are used.
144    AccessesArgumentsAndGlobals,
145
146    // OnlyReadsMemory - This function does not perform any non-local stores or
147    // volatile loads, but may read from any memory location.
148    //
149    // This property corresponds to the GCC 'pure' attribute.
150    OnlyReadsMemory,
151
152    // UnknownModRefBehavior - This indicates that the function could not be
153    // classified into one of the behaviors above.
154    UnknownModRefBehavior
155  };
156
157  /// PointerAccessInfo - This struct is used to return results for pointers,
158  /// globals, and the return value of a function.
159  struct PointerAccessInfo {
160    /// V - The value this record corresponds to.  This may be an Argument for
161    /// the function, a GlobalVariable, or null, corresponding to the return
162    /// value for the function.
163    Value *V;
164
165    /// ModRefInfo - Whether the pointer is loaded or stored to/from.
166    ///
167    ModRefResult ModRefInfo;
168  };
169
170  /// getModRefBehavior - Return the behavior when calling the given call site.
171  virtual ModRefBehavior getModRefBehavior(CallSite CS,
172                                   std::vector<PointerAccessInfo> *Info = 0);
173
174  /// getModRefBehavior - Return the behavior when calling the given function.
175  /// For use when the call site is not known.
176  virtual ModRefBehavior getModRefBehavior(Function *F,
177                                   std::vector<PointerAccessInfo> *Info = 0);
178
179  /// getModRefBehavior - Return the modref behavior of the intrinsic with the
180  /// given id.
181  static ModRefBehavior getModRefBehavior(unsigned iid);
182
183  /// doesNotAccessMemory - If the specified call is known to never read or
184  /// write memory, return true.  If the call only reads from known-constant
185  /// memory, it is also legal to return true.  Calls that unwind the stack
186  /// are legal for this predicate.
187  ///
188  /// Many optimizations (such as CSE and LICM) can be performed on such calls
189  /// without worrying about aliasing properties, and many calls have this
190  /// property (e.g. calls to 'sin' and 'cos').
191  ///
192  /// This property corresponds to the GCC 'const' attribute.
193  ///
194  bool doesNotAccessMemory(CallSite CS) {
195    return getModRefBehavior(CS) == DoesNotAccessMemory;
196  }
197
198  /// doesNotAccessMemory - If the specified function is known to never read or
199  /// write memory, return true.  For use when the call site is not known.
200  ///
201  bool doesNotAccessMemory(Function *F) {
202    return getModRefBehavior(F) == DoesNotAccessMemory;
203  }
204
205  /// onlyReadsMemory - If the specified call is known to only read from
206  /// non-volatile memory (or not access memory at all), return true.  Calls
207  /// that unwind the stack are legal for this predicate.
208  ///
209  /// This property allows many common optimizations to be performed in the
210  /// absence of interfering store instructions, such as CSE of strlen calls.
211  ///
212  /// This property corresponds to the GCC 'pure' attribute.
213  ///
214  bool onlyReadsMemory(CallSite CS) {
215    ModRefBehavior MRB = getModRefBehavior(CS);
216    return MRB == DoesNotAccessMemory || MRB == OnlyReadsMemory;
217  }
218
219  /// onlyReadsMemory - If the specified function is known to only read from
220  /// non-volatile memory (or not access memory at all), return true.  For use
221  /// when the call site is not known.
222  ///
223  bool onlyReadsMemory(Function *F) {
224    ModRefBehavior MRB = getModRefBehavior(F);
225    return MRB == DoesNotAccessMemory || MRB == OnlyReadsMemory;
226  }
227
228
229  /// getModRefInfo - Return information about whether or not an instruction may
230  /// read or write memory specified by the pointer operand.  An instruction
231  /// that doesn't read or write memory may be trivially LICM'd for example.
232
233  /// getModRefInfo (for call sites) - Return whether information about whether
234  /// a particular call site modifies or reads the memory specified by the
235  /// pointer.
236  ///
237  virtual ModRefResult getModRefInfo(CallSite CS, Value *P, unsigned Size);
238
239  /// getModRefInfo - Return information about whether two call sites may refer
240  /// to the same set of memory locations.  This function returns NoModRef if
241  /// the two calls refer to disjoint memory locations, Ref if CS1 reads memory
242  /// written by CS2, Mod if CS1 writes to memory read or written by CS2, or
243  /// ModRef if CS1 might read or write memory accessed by CS2.
244  ///
245  virtual ModRefResult getModRefInfo(CallSite CS1, CallSite CS2);
246
247public:
248  /// Convenience functions...
249  ModRefResult getModRefInfo(LoadInst *L, Value *P, unsigned Size);
250  ModRefResult getModRefInfo(StoreInst *S, Value *P, unsigned Size);
251  ModRefResult getModRefInfo(CallInst *C, Value *P, unsigned Size) {
252    return getModRefInfo(CallSite(C), P, Size);
253  }
254  ModRefResult getModRefInfo(InvokeInst *I, Value *P, unsigned Size) {
255    return getModRefInfo(CallSite(I), P, Size);
256  }
257  ModRefResult getModRefInfo(VAArgInst* I, Value* P, unsigned Size) {
258    return AliasAnalysis::ModRef;
259  }
260  ModRefResult getModRefInfo(Instruction *I, Value *P, unsigned Size) {
261    switch (I->getOpcode()) {
262    case Instruction::VAArg:  return getModRefInfo((VAArgInst*)I, P, Size);
263    case Instruction::Load:   return getModRefInfo((LoadInst*)I, P, Size);
264    case Instruction::Store:  return getModRefInfo((StoreInst*)I, P, Size);
265    case Instruction::Call:   return getModRefInfo((CallInst*)I, P, Size);
266    case Instruction::Invoke: return getModRefInfo((InvokeInst*)I, P, Size);
267    default:                  return NoModRef;
268    }
269  }
270
271  //===--------------------------------------------------------------------===//
272  /// Higher level methods for querying mod/ref information.
273  ///
274
275  /// canBasicBlockModify - Return true if it is possible for execution of the
276  /// specified basic block to modify the value pointed to by Ptr.
277  ///
278  bool canBasicBlockModify(const BasicBlock &BB, const Value *P, unsigned Size);
279
280  /// canInstructionRangeModify - Return true if it is possible for the
281  /// execution of the specified instructions to modify the value pointed to by
282  /// Ptr.  The instructions to consider are all of the instructions in the
283  /// range of [I1,I2] INCLUSIVE.  I1 and I2 must be in the same basic block.
284  ///
285  bool canInstructionRangeModify(const Instruction &I1, const Instruction &I2,
286                                 const Value *Ptr, unsigned Size);
287
288  //===--------------------------------------------------------------------===//
289  /// Methods that clients should call when they transform the program to allow
290  /// alias analyses to update their internal data structures.  Note that these
291  /// methods may be called on any instruction, regardless of whether or not
292  /// they have pointer-analysis implications.
293  ///
294
295  /// deleteValue - This method should be called whenever an LLVM Value is
296  /// deleted from the program, for example when an instruction is found to be
297  /// redundant and is eliminated.
298  ///
299  virtual void deleteValue(Value *V);
300
301  /// copyValue - This method should be used whenever a preexisting value in the
302  /// program is copied or cloned, introducing a new value.  Note that analysis
303  /// implementations should tolerate clients that use this method to introduce
304  /// the same value multiple times: if the analysis already knows about a
305  /// value, it should ignore the request.
306  ///
307  virtual void copyValue(Value *From, Value *To);
308
309  /// replaceWithNewValue - This method is the obvious combination of the two
310  /// above, and it provided as a helper to simplify client code.
311  ///
312  void replaceWithNewValue(Value *Old, Value *New) {
313    copyValue(Old, New);
314    deleteValue(Old);
315  }
316};
317
318/// isNoAliasCall - Return true if this pointer is returned by a noalias
319/// function.
320bool isNoAliasCall(const Value *V);
321
322/// isIdentifiedObject - Return true if this pointer refers to a distinct and
323/// identifiable object.  This returns true for:
324///    Global Variables and Functions (but not Global Aliases)
325///    Allocas and Mallocs
326///    ByVal and NoAlias Arguments, if Interprocedural is false
327///    NoAlias returns, if Interprocedural is false
328///
329bool isIdentifiedObject(const Value *V, bool Interprocedural = false);
330
331} // End llvm namespace
332
333// Because of the way .a files work, we must force the BasicAA implementation to
334// be pulled in if the AliasAnalysis header is included.  Otherwise we run
335// the risk of AliasAnalysis being used, but the default implementation not
336// being linked into the tool that uses it.
337FORCE_DEFINING_FILE_TO_BE_LINKED(AliasAnalysis)
338FORCE_DEFINING_FILE_TO_BE_LINKED(BasicAliasAnalysis)
339
340#endif
341